
A VISION POTPOURRI

VISION FLASH 26

by

Tim Finin

Massachusetts Institute of Technology

Artificial Intelligence Laboratory

Robotics Section

JUNE 1972

Abstract

This paper discusses some recent changes and
additions to the vision system. Among the
additions are the ability to use visual feedback
when trying to acurately position an object and
the ability to use the arm as a sensory device.
Also discussed are some ideas and a description of
preliminary work on a particular sort of higher
level three-dimensional reasoning.

Work reported herein was conducted at the
Artificial Intelligence Laboratory, a
Massachusetts Institute of Technology research
program supported in part by the Advanced Research
Projects Agency of the Department of Defense and
monitored by the Office of Naval Research under
Contract Number N00014-70-A-0362-0003.

Vision flashes are informal papers Intended for
internal use.

This memo is located in TJ6-able form on file
VIS;VF26 >.

JIGGLING A 3LOCK INTO PLACE

The vision system can now use visual feedback when trying to

accurately position a block. This is done without a costly

rescanning of a significant portion of the scene by using our

knowledge of where the block should be to direct the eye. The

basic idea is to determine the block's actual location by looking

for certain key vertices using a circular-scanning vertex finder

developed by Winston and Lerman < Vision Flash 24 >.

When placing a block the arm sometimes makes positional

errors up to half an inch and rotational errors of about 10

degrees. These errors are caused by poor hand placement due to

hysteresis and general slop in the arm's joints and by poor

information about the brick's initial position and dimensions due

to a distorted line drawing. Although these errors can be

disastrous in delicate tasks such as stack-building, they are

small enough to allow us to use the scheme described below.

The organization of the theorems is shown in figure 1. TC-

JIGGLE, the top level theorem, first calls TC-FIND-BODY whose

goal is finding the actual location of the just moved brick.

This is done by locating a three-vertex Iskeleton' on either the

top or bottom of the brick , examples of which are shown in

figure 2. Candidate skeletons are suggested by the theorems TC-

LOOKFOR-TOP, TC-LOOKFOR-BOTTOM, and TC-LOOKFOR-SKELETON which

predict the locations of vertices and decide whether they should

be visable. TC-FIND30DY then locates the three vertices

PAGE 2.

comprising the skeleton with the circular-scan vertex finder and

calculates the true position of the brick. If it falls to find

one of the vertices, it asks for another skeleton and tries

agai n.

Once the location of the brick is found, TC-SHIFT-BODY

calculates the positional and rotational errors and, if they are

greater than a tolerance, corrects them thru a call to TC-MOVE-

GENTLY. This theorem differs from the usual TC-MOVE in calling

the arm with GRASP and UNGRASP commands instead of PICKUP and

DROP. PICKUP and DROP raise the arm several feet above the table

when moving to avoid obstacles, whereas GRASP and UGRASP lift the

hand less than an inch (using the wrist) and thus, hopefully,

are less prone to error.

The most difficult part of this jiggling procedure is

determining which vertices of a brick will be visable and not

obscured by other objects. We must also avoid looking for

vertices which are adjacent to others already in the scene , for

example the vertices where two bricks are aligned. Such

situations may confuse the vertex finder and cause it to find the

wrong vertex. Since these theorems are written to work in the

context of a copying task, they use Information about the model

scene that is being copied. For Instance, before TC-LOOKFOR-TOP

looks for any vertex on the top of a brick it must either find

that:

1. The top of the matching brick in the model was

PAGE 3

completely visable.

2. All bricks which could be adjacent to the one in

question are either below it or have not yet been placed.

The theorems lean toward conservatism in accepting vertices as

good candidates to look for and will reject all of them in some

cases,

One exciting possibility for further work is the

incorporation of a model of the hand, With It we coul

system to avoid vertices occluded by it, doing away wi

necessity to release the brick and withdraw the hand.

result in a more dynamic and accurate feedback system.

d adapt the

th the

This would

TC - TI -G-LE

z

pP 76C -WOc*PO -&IVo?4

TC - CLWEAR V/5SU

TC -Ae hr - boches

TC-4ooe ot -sKe/efo TC-oE -

G RA-SP U
TC -CHecc POttNTS

TC-BOI-CM/•_~1/KPfN Tr-5kELETO A

FI/C-O&kE 1

P/c o E 2

72~ -~f~`~R~

NeRA rLS
N&~A Sp

vol-ýA

V1EX i

PAGE 5

OUR ROBOT HAS A HAND, TOO

Until now the vision system has made no use of its arm in

getting information about the world. We now have a limited

ability to reach out and touch In order to disambiguate some

scenes, using a new arm primitive written by Jerry Lerman.

Sending (TOUCH X Y) to the arm causes it to position itself

above the point (X,Y) , slowly descend until It touches

something, and report its final height. An optional third

argument can specify a maximum height at which something is

expected, allowing the arm to rapidly drop to this height and

then more slowly feel its way downward.

A series of theorems have been written which activily use

the arm as a sensor and other theorems have been taught to use

them, resulting in the system network shown in figure 3. With

these theorems we can now handle scenes such as the pedestal in

figure 4. In this scene we can't determine the tallness of B1 ,

since it could touch the bottom of B2 near the front, the back,

or somewhere in between. As a result, we can't get the

dimensions and location of B2 either.

We can however determine the location of B1 in the X-Y plane

(thru TC-FIND-LOCATION-BOTTOM) . Moving the arm down over this

spot until it touches the top of B2 gives the altitude of B2's

top. With this information we can calculate the location and

dimensions of both bricks.

Previously, when we wanted to find the location or

PAGE 6

dimensions of a brick we had to find its altitude above the

table. If it was not resting on the table, we had to find the

dimensions of its supports, necessitating knowing their altitudes

above the table, etc...... We recurse downward until we reach

the table or fail by hitting a brick for which no tallness or

altitude can be found. With these new theorems we have another

alternative: recursing upward until we find a brick we can touch

with the arm.

One problem is that we aren't working with a very good three

dimensional model. TC-TOUCHTOP is the theorem which tries to

touch the top of a brick. Checking first that there is nothing

above the brick, It tries to touch It above the center of one of

its supports. The brick could, however, not be above this spot

(as in figure 4b) causing the arm to miss it. One precaution

that TC-TOUCHTOP takes Is calculating the minimum height to

expect the top of the brick. If It touches something below th.is

height, it assumes it missed.

TC- F NMb -b\mENstvos

TC- F-t~b-ocA" 1rOiVArop T C.-F • •Lb .OcA-rT,, - Q070-rrn

TCFt.~ k l:tT ,
)RK

r- -~--- '1
/

k ~CPN blP~'~\\LR
rc -Pf/1b- 6/ ocO

T
/C7gh~~

*TC-F/I VD-i/3-e .z.
.tc-Pl~v-c~~jb~--

`A rc- Fr- ,4Iw C 3 -s

ItrteAl h - A-JOAJC 7-

SI
//""~P"

C9

L
-- --.-

4ýý
I i

30r- ~TC- rc~/n)b7I /7

! u~or

A

3

PAGE 9

TC-FIND-SUPPORTS

TC-FIND-SUPPORTS and Its related theorems have been modified

to handle situations with which they previously could not cope.

Figure 5 shows the new organization of this part of the system.

The strategy of TC-FIND-SUPPORTS was to take each object below

the brick in question (found thru TC-FIND-ABOVE-1 & -2) as a

support candidate. The altitude and tallness of each candidate

were found and summed. The object or objects (if there were

several with nearly equal combined altitude and tallness) with

the largest sum were then taken as the actual supports, This

sum was then asserted as the altitude of the supported brick.

The theorem failed if it could not find an altitude or a tallness

for one of the bricks below.

The new TC-FIND-SUPPORTS works in much the same way , but has

been modified to handle many cases where the tallness or altitude

of. an support candidate can not be found. In such cases it

determines the minimum height that the top of the candidate could

have.

It will also yield useful Information in cases where it is

still ambiguous which objects support another. Before failing it

makes assertions of the form:

(B1 may-be-supported-by B4)

(B1 may-be-supported-by B7)

(B1 has-minimum-altitude 4.12)

These assertions can later be used bycther theorems with more

PAGE 10

real world knowledge to clarify the scene. For example, we

might call on a theorem which knows about stability or one which

can recognize a table top and legs to decide who is doing the

support i ng.

Two auxilliary theorems are used, TC-ADD-TO-SUPPORTS-1 and -

2, which contain some 3-D knowledge. TC-ADD-TO-SUPPORTS-1 looks

for a marrys relation between the brick In question and a support

candidate. If one Is found, the theorem reports that it must be

a support (assuming gravity and no glue). TC-ADD-TO-SUPPORTS-2

Is explained below.

The capabilities of the new TC-FIND-SUPPORTS are best shown

In the scenes In figure 5 . For each of these scenes the old TC-

FIND-SUPPORTS would simply fail, leaving no assertions in the

data base. Figure 5e is particularly Interesting , showing the

application of some three dimensional reasoning. On this figure

TC-FIND-SUPPORTS first calls TC-FIND-SUPPORT-CANDIDATES which

reports that 82 and B3 are likely support candidates and that 81

must have an altitude of at least T. TC-ADD-TO-SUPPORTS-1 then

finds that B2 marrys B1 along Bl's bottom edge, Implying that B2

must support B1 and that B1 has an altitude of T. TC-ADD-TO-

SUPPORTS-2 is activated and notes that Bl's altitude Is now known

to be T. Discovering that the minimum tallness of B3 is also T

(within an epsilon) it asserts that B3 must also marry B1 and be

a support.

-rC-Filvb-4LT /7tJbt

-TO

TC- TOWiE I 6-HT

~~"1

qlkseR-i-ns mee \04

CB 5TpaeZt-bop ars:

(IA is-ssoppaede-hy 84)

(el /6-¶~up eo~-6j &Bs)
(9e meny-sV- SPUpea4 -l L 8
(131 hpo-- -A4/Moe -Z)

a

Pcus e \\
I n\\M o~

4ýýtt~~fI -

,•,•C ,4 ,ove2 -rc- 5L--e-se/os-.o -•;o,

F/-OCr&E 5-

(\
(8\

(6/ /8sapiporvd-by Ablee)

(61/ Ms-mcnnwom-#<Me)

szI
(1/(S/

(6s n%4-oe-scvwrod -b
(at berasm/momr- a/Mad ie

(61 i-sApporxe-b (

(6I rql--Sle,4d ij
car ;AS-~h~f64 f

~704Q· ~5,

c~-suppor~P~-brl ~

mry-be-sop4d-by
t,ýAy-be-swplw·zkoeq 66y 83

PAGE 13

CHANGES TO TC-SKELETON

TC-SKELETON has been changed to return a little more

information if It can't find a complete skeleton for a brick.

When TC-SKELETON fails to find a line of a particular type It

tries to find the longest line fragment of that type and makes

partial-skeleton assertions of the form:

(B3 type-two * (V1 V2))

(B3 has-partial-skeleton V4 V1 * (V1 V2) V1 V14)

Figure 6 shows some examples of partial skeletons.

This partial skeleton information is used by other theorems

which hypothesize what the rest of the brick may be like. From

it we can get a handle on some three-dimensional information such

as a brick's orientation, its minimum dimensions, and some idea

of its location. Since other theorems make hypotheses that

complete parts of the skeleton, an antecedent theorem has been

added to keep the skeleton assertions up to date.

FcRE 6

(81 hiAs-pi~'A4/-~kp~ k v/e wz Y1 v3 j* (v3 V4))

(84 "-AW17ý-6kO7dMV (Y1 V) V1 VS) VZ V 4)

S

PAGE 14

TC-LI NE-BELONGS-TO-REGI ON

A new theorem exists which will determine whether a line is

physically associated with a particular region in a picture.

This question crops up in numerous places In the vision system:

finding the skeleton of a brick, finding a brick's tallness,

finding bottom lines, deciding whether a face of a brick Is

vertical or horizontal, etc. In each of these places several

heuristics were employed to find lines which 'belonged' to a

region. TC-LINE-BELONGS-TO-REGION is a collection of these

heuristic and several new ones which can be called whenever

needed. It makes assertions of the form:

(L-V1-V2 belongs-to R4)

One of the heuristics is that an interior line of a body

belongs to both regions It bounds, so that TC-LINE-BELONGS-TO-

REGION should not be used on self-occluding bodies. In general,

the heuristics are applied conservatavely, sometimes calling on

the theorem TC-OCCLUSION-1 to look for supportive or

contradictory evidence. Consequently some lines will not be

recognized. Having this Information at hand makes many tasks

much easier. For example:

* A region is a vertical face If there is a vertical

line which belongs to It.

* Two objects marry if we find a line which belongs to

a region from each body.

PAGE 15

M&M HACK

How many things can you find wrong with this picture?

In a picture such as the one above where .one brick obscures

the bottom of another, we can extract some information on the

whereabouts and size of the obscured brick. Examine the scene in

figure 7 . B2 could be a very tall brick which was touching B1 ,

or a shorter brick far behind B1, o•anywhere in between. It's

ambiguous. Knowing the range of possible heights and resulting

locations of the obscured brick will be quite useful to other

thoerems which try to decide what the situation really Is. To

get quantitative three dimensional Information we use the

procedures described below.

To get the maximum tallness of B2 we assume that it is

directly behind and touching B1. Assume for the moment that the

ends of B2's three vertical edges (b, c & d) touch the edge a-e.

PAGE 16

These three points would then have an altitude of h (the 3-D

tallness of B1) from the table. From this we can get their 3-D

coordinates and the resulting lengths of the three verticals.

We then take the shortest of these lengths as the maximum

tallness of B2. This corresponds to selecting the vertical

ending in c as the only one which could touch B1.

To get the minimum tallness we assume that B2 Is far behind

B1 and Its bottom edges just barely obscured. For the moment

assume all three points are on the table. We get their 3-D

coordinates and calculate the lengths of the verticals. The

maximum of these three lengths gives us a minimum tallness for

B2. Tak-lng the longest corresponds to selecting the point b as

the only one which could actually be on the table.

The problem with the picture on the previous page Is that,

assuming the obscured object is a brick, its apparent minimum

tallness is greater than its apparent maximum tallness.

A further refinement of this heuristic is shown in figure 8.

In this picture , to get the minimum tallness of the obscured

brick we assume that the points a and b rest not on the table,

but on the regions R1 and R2 respectively. We must check of

course, that these regions are not vertical , as in figure 8b.

A sort of dual exists for the Inverted case, the pedestal In

figure 9. If we assume that B1 supports B2 , we can put upper

PAGE 17

and lower bounds on the height of BI (and the resulting altitude

of B2). We know that the top of B1 must touch the bottom of 82

somewhere - near the front, the back, or somewhere In between.

Getting the minimum tallness is trivial , just measure the length

of the three vertical edges of B1 and take the largest of these.

This corresponds to a situation where B1 and B2 marry along their

front edges. To get the maximum tallness we start off by

locating the visi'le bottom edges of B2 and predicting where

the others should be. We then extend each vertical until it

Intersects one of the back bottom edges of B2. After calculating

the 3-D lengths of these verticals we take the shortest as being

the upper bound on the height of B1.

Considering the stability of such structures would of course

lead to more refined upper and lower bounds.

mrawn ,n7

a //,tess

FI&URE

4', /bt s s

3

FI6-URE.

F/~UIRE 9
aZL

Výxcýe,,, t18
R _

PAGE 19

ONE KIND OF THREE-DIMENSIONAL REASONING

Everyone agrees that future advances in computer vision will

come with the incorporation of 3D knowledge and reasoning. One

type of 3D reasoning we could add Is shown in

figure 10a the average human viewer (trusting

sees two identical bricks supporting a third

could be longer or shorter than B2. Because

same function (supporting B3) , have the same

far as we can see, could be the same.size, we

they are. Similarly , in figure 10b , we see

same size as the other three standing bricks.

figure 10. In

and non-cynical)

even though B1

B1 and B2 serve the

orientation, and as

easily assume that

B4 as being the

Here the evidence

Is:

* There is a preponderence of tall, thin standing bricks

* B1, B2, and B3 form a row, which would include 84

if it were the same size

* B1, B2, B3, and B4 all have the same orientation

* B4 could be the same size as B1, B2 and B3

Humans do this hypthesizing and filling in of details to a

great degree. It is an Integral part of perception, as It would

be impossibly costly (in time and effort) to try to disambiguate

everything we see. Teaching the machine to do such hypothesizing

would be a natural way to incorporate some three dimensional

reasoning and to enable it to consider the global context of the

scene.

PAGE 20

A similar form of reasoning was pointed out by Winston in

his thesis < Learning Structural Descriptions from Examples , Al

TR-231 >. In figure 11B2 appears to be a wedge, while we see B4

as a brick, even though they show the same arrangement of lines

and faces. In both cases since the the two objects form stacks

and are exactly aligned we first assume that they are identical.

We might object that this presupposes an orderly scene

one which Is carefully set up or contrived. However, the world

we humans create, and which robots may inherit, Is just such an

orderly, contrived world. Even in the mini-world of plain white-

faced blocks we use in our present research we tend to build

little arches, stacks, and other stuctures containing identical,

Interrelated parts. In the larger world of human construction

this orderliness is more apparent. We tend to build things which

are symmetric and unsurprising in details. Complex objects such

as buildings, electronic circuits, and cars are built using

smaller identical parts (e.g. standard-sized windows, resistors,

bolts). Who would suppose that the wheels on one side of a car

are any different than those on the other? Long hallways usually

have identically dimensioned doors uniformily spaced. The legs

of a table or desk are nearly always the same.

We might also object that a robot would do better to spend

his time trying to disambiguate a scene by removing some

obscuring obstacles, by walking to one side, or by reaching out

his hand and touching. In many cases however, our robot may find

PAGE 21

It impossible to change his viewpoint or to interact with the

scene. Even more importantly, the ability to do this sort of

reasoning would allow him to have some expectation as to what

will most probably be seen if obscuring objects are removed, or

the viewpoint is changed. The robot can then quickly test his

previously formed hypothesis. If this verification fails, he can

flush the hypothesis and examine the scene more carefully.

o10

10

F/c-aRE .2I

8/

F

i0,o

/13/

382

VFx e 9R

I

I
•v

PAGE 23

The following pages describe initial work in creating a

system of theorems to do just this sort of reasoning. A skeletal

system has been implemented which will handle a number of the

simpler situations (such as those with fairly obvious group type

relationships -- rows, stacks tables, arches, etc.).

Whenever we can't find the complete dimensions of a badly

obscured object, as in figures 10a and 10b, we check for evidence

that this mystery object might be just like some other object in

the scene. Typical of the evidence we look for are:

* Chains of relations (rows, stacks, walls)

* Identical relations to a third object, or functional

similarities (e.g. supports of an arch, table legs)

* A preponderence of Identical objects in the scene

* Exact alignment with another object

* Other relations and properties such as attitude,

nearness, placement, marrys, abuts, etc.

If we find such a candidate we check for contradictory ev-

Idence. Things we check are:

* That the known dimensions of the obscured object

agree with the corresponding dimensions in its

supposed double.

* The unknown dimension(s) lie within the

PAGE 24

apparent maximum and minimum bounds

we have calculated.

* That the hypothesis yields no colliding objects (l.e.

those occupying common space).

* That we do not contradict any previous assumptions

we have made (e.g. support).

In some cases we need not require an object which might be

an exact double, but only one which implies a similarity that

might resolve the hidden dimensions. For example, in figure 12

we hypothesize that that the two stacked bricks have the same

depth , even though their heights are different.

If we find any contradictory evidence, we reject the

candidate and can look for another. If no contradictory evidence

is found, then we make our calculations and tentatively assert

the dimensions and location of the object given our hypothesis.

This is done with pointers to the theorems which suggested this

hypothesis so that we can reconstruct our reasoning if needed.

With this information we can proceede to analyze the scene

F1/6-0RE -Xa

PAGE 25

and hope that we have not been tricked. Alternatively we can try

to verify the hypothesis by some other means. For Instance, we

could create a daemon theorem to lurk In the background waiting

for some of the obscuring objects to be removed. When they are,

the eye can be asked to verify critical lines or vertices

suggested by our hypothesis. For our paradigm arch case, as

soon as the top brick is removed, we can look for the top back

vertices of the mystery brick. If the vertices aren't found near

their proposed locations then the hypothesis Is flushed. In

such a case we could use the eye to more completely scan the area

to resolve the problem. In other situations we might be able to

use the hand as a sensor to verify the hypothesis or find out

what has gone wrong.

