
Creating Context-Aware Software Agents

Harry Chen1, Sovrin Tolia1, Craig Sayers2, Tim Finin1, and Anupam Joshi1

1 eBiquity Research Group
University of Maryland Baltimore County

1000 Hilltop Circle, Baltimore, MD 21250, USA
{hchen4,stolia1,finin,joshi}@cs.umbc.edu

2 Software Technology Laboratory
Hewlett-Packard Laboratories

1501 Page Mill Road, Palo Alto, CA 94340, USA
craig sayers@hpl.hp.com

Abstract. Sharing ontology, sensing context and reasoning are crucial
to the realization of context-aware software agents. This document de-
scribes our effort on using Resource Description Framework (RDF) and
the Prolog Forward Chaining (Pfc) system to provide support for ontol-
ogy sharing and reasoning in the CoolAgent Recommendation System
(CoolAgent RS), a context-aware multi-agent system. This document
also describes the implementation of the CoolAgent RS document and
cuisine recommendation services that provide tailored services by ex-
ploiting user’s context.

1 Introduction

We humans are context-aware. We are able to use implicit situational informa-
tion, or context, to increase our conversational bandwidth [2]. This ability allows
us to act in advance and anticipate other’s needs.

For example, when two people are in the same room, Person A asks Person
B, “close the door please.” Naturally, Person B would reason that Person A is
requesting the door in the same room to be closed, not the door in any other
room.

This simple example demonstrates context-awareness in human beings. The
fact that Person B is able to take the right action is due to the following three
valuable capabilities of humans:

1. Ontology sharing – humans are able to share communication languages and
vocabularies

2. Sensing – humans are able to perceive their environment through sensory
organs

3. Reasoning – humans are able to make sense out of what they have perceived
based on what they already know

If Person B is unable to share ontology with Person A or unable to sense
from Person A or unable to make sense out of what he/she has perceived, then

W. Truszkowski, C. Rouff, M. Hinchey (Eds.): WRAC 2002, LNAI 2564, pp. 186–197, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



Creating Context-Aware Software Agents 187

Person B would not be able to close the door that Person A desires. In other
words, Person B becomes context-aware only when he/she possesses all of the
three capabilities described above.

We believe ontology sharing, sensing and reasoning are not only crucial to
human context-awareness, but also significant to the realization of context-aware
applications.

1.1 Context-Aware Applications

The construction of context-aware applications is cumbersome and challeng-
ing [15]. Exploiting context in applications requires sensing infrastructures to
capture contextual information in the physical environment, and reasoning in-
frastructures to support inferencing in distributed applications.

After reviewing existing context-aware systems [7, 11, 17], we find that much
of the current effort has been focused on the creation of reusable infrastructures
for sensing contextual information. Futhermore, from a survey of context-aware
research [3], we learn that context modeling and reasoning have not been seri-
ously considered in the existing context-aware systems.

The Mobisaic Web Browser [18] is one of the early context-aware application
that exploits location-related, and time-related, contextual information. Mobi-
saic extends standard client browsers to allow authors to reference dynamic con-
textual information in dynamic URLs containing environment variables. The dy-
namic URL is interpreted using current values of the environment variables, and
an appropriate page is returned. Mobisaic neither includes any context modeling
framework nor does it provide a domain-independent sensing infrastructure.

The Conference Assistant [6] assists attendees by exploiting context from
their location, the current time, and the schedules of presentations. After a mo-
bile user enters a conference room, it automatically displays the name of the
presenter, the title of the presentation and related information.

Available audio and video equipment automatically record the current pre-
sentation, comments, and questions for later retrieval. The core of the Confer-
ence Assistant is the Context Toolkit [15], which has limited expressive power
to support context modelling and reasoning.

Other systems [19, 13] that we have reviewed also possess similar weaknesses
in providing support for ontology sharing and reasoning. In particular, generic
contextual information is often directly programmed as part each domain-specific
implementation. Such design forces the overall systems to be tightly coupled, and
the system behavior becomes highly dependent on the structural representation
of the contextual information.

In this document, we describe our efforts on using RDF and Pfc to provide
support for sharing ontology and reasoning in CoolAgent RS, a context-aware
multi-agent system. We also describe the implementation of the CoolAgent RS
document and cuisine recommendation services that provide tailored services by
exploiting user’s context.

Section 2 discusses the use of contextual information in the CoolAgent RS
recommendation services. Section 3 provides a design overview of the CoolAgent



188 Harry Chen et al.

RS and reviews some of the related work. Section 4 describes the implementa-
tion details of the CoolAgent ontology, reasoning and agents. Conclusion and
acknowledgement are given in Sect. 5 and Sect. 5.1, respectively.

2 Context-Aware Services in CoolAgent RS

Our context-aware multi-agent system is designed around the three important
factors that contribute to human context-awareness: ontology sharing, sensing,
and reasoning. In this section, we describe two context-aware recommendation
services that exploit those three factors.

2.1 CoolAgent RS Document Recommendation Service

Similar to many of the existing document recommendation services, this rec-
ommendation service is designed to recommend relevant documents to meeting
participants. Nevertheless, unlike most of the existing services that often make
recommendations based on the relevance rankings between the document con-
tents and user requests, the CoolAgent RS Document Recommendation Service
makes recommendations based on the dynamic contextual information of the
users.

The recommendation service exploits the following contextual information:

– the presence of a meeting participant : a person is a meeting participant if
and only if that person is present in a location during the time when that
location is anticipated to have a scheduled meeting

– the profile of a meeting participant : this includes the personal and profes-
sional background information of the participant (e.g. what is job title of the
participant? what are the research interests of the participant? what is the
placement of the participant in the company’s organization chart?)

– the planned meeting context : this includes the subject of the meeting, re-
search work and projects that are related to the meeting, the schedule of the
meeting and the anticipated participants etc.

– organizational information: this includes the employment relationships
among the participants (e.g. is person A the supervior of person B? is person
A working with person B on the same project?) and the company internal
policies (e.g. what kind of documents would a department manager be in-
terested in?)

It is easy to see how some of the described contextual information can be used
in a document recommendation process. For example, the presence of a partic-
ipant can be used to pinpoint the recommenation candidates, and the research
interests of the participant can be used to limit the search space of finding rele-
vant documents.

On the other hand, some others (e.g. the schedule of a meeting) cannot be
used independently to support recommendations. Nevertheless, this information,



Creating Context-Aware Software Agents 189

as a piece of integrated knowledge, can be used to deduce new contextual in-
formation to allow more sophisticated reasoning that would otherwise not be
possible. For example, by knowning Person A is supervising Person B, and Per-
son B is working on project CoolTown, then it is appropriate to recommend
CoolTown documents to Person A.

2.2 CoolAgent RS Food Recommendation Service

Similar to the CoolAgent RS Document Recommendation Service, this recom-
mendation service recommends customized lunch specials to the people in a cafe-
teria during lunch hours. This service exploits the following contextual informa-
tion:

– the presence of a diner : a person is a diner if and only if that person is in
a dining venue during the lunch hours

– the profile of a diner : similar to the profile information that is used in the
document recommendation service

– the daily lunch special menu: the description of the lunch specials, including
the ingredients and cuisine information

2.3 The Need to Share Ontology

One interesting observation from the services described above is that the same
contextual information is exploited by two different services in very distinct
application domains. For example, the presence of people, the profile of people
etc..

This observation leads us to conclude that ontology sharing is important
to our context-aware system. If services can share a common representation
and context semantics, then overlapping information can be easily shared and
exchanged, thereby increasing the interoperability and flexiblity of the overall
system.

3 Designing CoolAgent RS

The CoolAgent RS was started in the summer of 2001 as a Summer Intern
project at Hewlett-Packard Laboratories. The goal was to develop a context-
aware extension to a prototype multi-agent Meeting Management system termed
CoolAgent[16].

CoolAgent RS is a multi-agent system that can automatically recommend
different types of tailored information to users by reasoning from their context
without any explicit manual input. The goal is to develop a proof-of-concept
agent system that demonstrates the significance of logical reasoning and ontology
sharing in a context-aware distributed computing environment.



190 Harry Chen et al.

Venue Agent
(VA)

Document
Recommendation

Agent (DA)

Food Service
Agent (FSA)

Entity Tracking
Agent (ETA)

Notification Proxy
Agent (NPA)

Meeting Agent
(MA)

Web Presence
Manager (WPM)

Personal Agent
(PA)

Content message is represented in RDF

Content message is represented in Prolog predicate

Fig. 1. An overview of the CoolAgent RS architecture

3.1 Design Goals

To support the context-aware services that we have described in Sect. 2, the
design goals of our system are the following:

– separate the representation and interpretation of the contextual information
from the system’s operating implementation

– provide a knowledge representation infrastructure to allow contextual infor-
mation to be represented, shared and manipulated

– provide a reasoning mechanism that supports cooperative reasoning

4 Implementing CoolAgent RS

The core of CoolAgent RS is a collection of agents, all of which are FIPA-
compliant JADE agents [1]. The following is an overview of the agents in CoolA-
gent RS (also see Figure 1):

Notification Agent Proxy (NAP) This agent is responsible for polling the
CoolTown Web Presence Manager (WPM) [5] to determine the presences
of physical objects in a particular location. NAP acts a proxy to WPM for
agents that do not have direct access to WPM. In particular, NAP provides
an ontology mapping service, translating contextual information from the



Creating Context-Aware Software Agents 191

CoolTown WPM ontology to the CoolAgent RS ontology, for agents sub-
scribing to it.

Entity Tracking Agent (ETA) This agent is responsible for tracking entity
presences in a particular location. ETA subscribes to NAP. ETA requests to
be notified when any physical objects are present in a particular location.

Venue Agent (VA) This agent is responsible for mediating contextual infor-
mation among the agents. VA collects contextual information of a particular
location, including people presences, anticipated meeting information and
relationship among various types of entities, by receiving entity presence
notification from ETA and communicating with the Meeting Agent.

Personal Agent (PA) This agent is responsible for providing personal and
professional profiles of human users. PA shares common ontology with other
agents, and it does not have any built-in reasoning capability.

Meeting Agent (MA) This agent is part of the existing CoolAgent Meeting
Management prototype. It creates an RDF-encoded web page to describe
each new meeting. The VA extracts details for upcoming meetings by exam-
ining those published pages.

Document Recommendation Agent (DA) This agent is responsible for
providing document recommendations to the meeting participants based on
their context.

Food Service Agent (FA) This agent is responsible for providing cuisine rec-
ommendations to the diners in a cafeteria based on their context.

In the following subsections we describe the ontology sharing and the logical
reasoning aspects of the CoolAgent RS implementation.

4.1 CoolAgent RS Ontology

The CoolAgent RS ontology consists of 231 classes and 179 properties. Classes
describe the concepts in the CoolAgent RS application domains. Properties de-
scribe various features and attributes of the classes.

The CoolAgent RS ontology is constructed using Protege-2000, a frame-based
ontology authoring tool [14]. Using Protege-2000, classes are modulated into 12
RDF Schema files constituting different namespaces.

These RDF Schema files contains ontologies that capture a wide range of
domain concepts that describe software agents, documents, meetings, organiza-
tions, people, places, times, FIPA device ontology, HP CoolTown ontology and
HP CoolAgent meeting ontology.

4.2 Reasoning

Reasoning takes place when an agent needs to make sense out of the contextual
information that is captured from the sensing infrastructure, and when an agent
needs to determine its subsequent behavior.

When a piece of contextual information is captured from the physical en-
vironment, the raw contextual information is mapped into the corresponding



192 Harry Chen et al.

RDF data model based on the CoolAgent RS ontology. For example, when the
presence of a RFID (Radio Frequency Identification) badge is detected in the
HPL Cafeteria, the corresponding RDF data model can be constructed as the
following:

<dev:RDF_Badge rdf:about=’urn:badge_001’

dev:badge_id=’000565319’

badge_label=’Harry Chen’/>

<plc:Cafeteria rdf:about=’urn:cafeteria_001’

plc:name=’HPL Cafeteria’/>

<plc:Is_In rdf:about=’urn:is_in_001’>

<plc:entity rdf:resource=’urn:badge_001’/>

<plc:location rdf:resource=’urn:cafeteria_001’/>

</plc:Is_In>

To make sense out of the contextual information in RDF, the agents rely on
the support from Pfc and reasoning rules. The same approach applies when an
agent needs to determine its subsequent behavior.

Reasoning over RDF RDF is a foundation for processing meta-data. RDF
itself is not a language; it is data model for representing meta-data [12]. At
present, RDF data model is commonly represented in XML statements, RDF
graphs, and triple statements.

Different RDF representations are suitable for different processing needs.
The RDF XML representation is suitable for machine processing (parsing in
particular) and for information exchange. RDF graphs provides a diagrammatic
representation of the RDF data model, which is suitable for human visualiza-
tion. On the other hand, the triple representation provides the means for logical
reasoning.

To support reasoning over RDF, we developed our infrastructure based on
the Pfc [8] package and the SICStus Prolog system. We first constructed a set
of Prolog rules that express the standard RDF model in first-order logic [4]. We
called them the basic RDF rules.

For example, the rdfs:subClassOf property, which specifies a sub-
set/superset relation between classes, can be interpreted by the Pfc rules as

triple(A, subClassOf, B) => subClassOf(A,B).

triple(A, subClassOf, B), subClassOf(B,C) => subClassOf(A,C).

And the rdf:type property, which indicates a resource is a member of a class,
can be interpreted by the Pfc rules as

triple(I, type, C) => instanceOf(I,C).

subClassOf(B,C), instanceOf(I,B) => instanceOf(I,C).

Domain specific rules, that allow agents to provide their own interpretation
of the contextual information and to determine their subsequent behaviors, are
constructed from the basic RDF rules. For example, domain specific reasoning
that infers the ownership of a badge can be constructed using the following rules:



Creating Context-Aware Software Agents 193

instanceOf(P,personClass) => person(P).

instanceOf(B,badgeClass) => badge(B).

instanceOf(R,ownsClass), triple(R,owner,P),

triple(R,thing,T) => owns(P,T).

person(P), badge(B),owns(P,B) => badgeOwner(P,B).

Implementing the Rule Shipping Technique The FIPA Agent Commu-
nicative Acts and Interaction Protocols specifications [9] have defined the com-
munication language and policy for agent communications. There are also FIPA
specifications for different content languages. However, it is up to the imple-
mentation to provide an ontology, and the interpretation of messages using that
ontology.

In the CoolAgent RS, the communication is mainly based on the FIPA
Subscribe Interaction Protocol [10]. For example, the Venue Agent sends a
subscribemessage to the Entity Tracking Agent requesting to be notified when
a person is present in a particular location. When a person is present, the Entity
Tracking Agent notifies the Venue Agent by replying with an informmessage. In
both messages, the content messages, the request for notification and the reply
to subscription, are to be defined by the CoolAgent RS.

To provide a flexible implementation for the Subscribe Interaction Protocol,
we have developed a rule-based content message representation technique. This
Rule Shipping technique allows an agent to send Prolog rules as the content of
a subscribe message. The content rules are evaluated by the receiver to deduce
new facts. Deduced facts are replied back to the sender as the content of a inform
message. The following example illustrates the Rule Shipping Technique:

The Entity Tracking Agent has the following contextual information ex-
pressed in RDF triples:

K1: triple(’urn:loc1’,rdf_type,place_Cafeteria)

K2: triple(’urn:loc1’,place_name,’HP Cafeteria’)

K3: triple(’urn:person1’,rdf_type,people_Person)

K4: triple(’urn:person1’,people_fname,’Harry’)

K5: triple(’urn:person1’,people_lname,’Chen’)

K6: triple(’urn:utc1’,rdf_type,times_UTC),

K7: triple(’urn:utc1’,times_utc_value,’2001-03-27:T13:26:00Z’)

K8: triple(’urn:isin1’,rdf_type, place_Is_In)

K9: triple(’urn:isin1’,place_entity’,’urn:person1’)

K10: triple(’urn:isin1’,place_location’,’urn:loc1’)

K11: triple(’urn:isin1’,times_start_time’,’urn:utc1’)

The Venue Agent is interested in the people presences in a particular location.
It subscribes the following forward-chaining rules as the content of its subscribe
message:

R1: instanceOf(CafeteriaInst,place_Cafeteria),

triple(CafeteriaInst,place_name,PlaceName)

=> cafeteria(CafeteriaInst,PlaceName).



194 Harry Chen et al.

R2: instanceOf(PersonInst,people_Person),

triple(PersonInst,people_name,FName,LName)

=> person(PersonInst,FName,LName).

R3: instanceOf(UTCInst,times_UTC),

triple(UTCInst,utc_value,UTCTime)

=> utc(UTCInst, UTCTime).

R4: instanceOf(IsInInst,place_Is_In),

triple(IsInInst,place_entity,EntityInst),

triple(IsInInst,place_location,LocationInst),

triple(IsInInst,times_start_time,UTCInst)

=> isIn(IsInInst, EntityInst, LocationInst, UTCInst).

R5: isIn(IsInInst,PersonInst,LocationInst,UTCInst),

utc(UTCInst,Time), cafeteria(LocationInst,LocName),

person(PersonInst,FName,LName)

=> {add(shouldInform(’com.hp.agent.palo-alto.va’,

’com.hp.agent.palo-alto.eta’,

’va.ruleid.131’

msg(IsInInst, LocationInst, LocName, UTCInst, Time,

PersonInst, FName, LName)))}.

Upon receiving the subscribe message, the Entity Tracking Agent asserts
these rules into it Knowledge Base (KB). The forward-chaining system in the
Entity Tracking Agent automatically adds new facts that can be deduced. Based
on the triple statements K1-K11, the following facts can be deduced and are
added to the KB:

N1: utc(’urn:time1’, ’2001-03-27:T13:26:00Z’)

N2: cafeteria(’urn:loc1’, ’HP Cafeteria’)

N3: person(’urn:person1’, ’Harry’, ’Chen’)

N4: isIn(’urn:isin1’, ’urn:person1’, ’urn:loc1’, ’urn:time1’)

N5: shouldInform(’com.hp.agent.palo-alto.va’,

’com.hp.agent.palo-alto.eta’,

’va.ruleid.131’,

msg(’urn:isin1’,’urn:loc1’,’HP Cafeteria’,

’urn:time1’,’2001-03-27:T13:26:00Z’,

’urn:person1’,’Harry’,’Chen’))

N1 says there is a UTC time instance referenced by the Unique Resource Iden-
tifier (URI) ’urn:time1’ with the UTC value ’2001-03-27:T13:26:00Z’. N2
says there is a cafeteria instance referenced by the URI ’urn:loc1’ with the
venue name ’HP Cafeteria’. N3 says there is a person instance referenced by the
URI ’urn:person1’ and with the first-name value ’Harry’ and the last-name
value ’Chen’. N4 says a person referenced by URI ’urn:person1’ is in a location
referenced by URI ’urn:loc1’ at UTC time referenced by URI ’urn:time1’. N5
says the Entity Tracking Agent should inform the Venue Agent, in reply to the
message ID va.ruleid.131, the fact

msg(’urn:isin1’,’urn:loc1’,’HP Cafeteria’,

’urn:time1’,’2001-03-27:T13:26:00Z’,

’urn:person1’,’Harry’,’Chen’)



Creating Context-Aware Software Agents 195

The Entity Tracking Agent queries for shouldInform/4 whenever new facts
are asserted to its KB. In the example above, as soon as the rules from
the Venue Agent are asserted, the Entity Tracking Agent queries its KB for
shouldInform/4 and returns N5.

The above example shows how the Rule Shipping Technique exploits the
triple representation of the RDF data model to enable reasoning. This technique
allows the Venue Agent to construct customized reasoning rules to infer about
people presences with the only requirement being that both the Venue Agent
and Entity Tracking Agent share a common ontology.

5 Conclusion

Enabling context-awareness is one step closer to the realization of computing
systems that can act in advance and anticipate users’ needs. Ontology sharing,
reasoning and sensing are the three important properties that the context-aware
systems need to possess.

In this document we have described a context-aware multi-agent system,
CoolAgent RS. We have demonstrate the feasibility of using RDF data model
and Pfc to support ontology sharing and reasoning in a context-aware system.
We have presented the reasoning infrastructure in the CoolAgent RS, which
enables distributed reasoning and knowledge sharing among agents.

5.1 Future Work

The Rule Shipping Technique provides the foundation for building distributed
cooperative reasoning and knowledge sharing. In the current implementation, the
sender is required to provide a complete set of reasoning rules to be evaluated
by the receiver.

We believe such requirements impose potential scalability issues on the com-
munication message size and the rule construction overhead. One of our immedi-
ate objectives is to develop a more effective and scalable distributed cooperative
reasoning and knowledge sharing infrastructure to support context-aware sys-
tems. Moreover, it provides scope for doing research on security considerations
under this scheme.

Acknowledgment

The research work described in this document was conducted by Harry Chen
and Sovrin Tolia as part of their research internships at Hewlett-Packard Lab-
oratories. The active support from all the members of the Agents for Mobility
Group and Cooltown Group at HPL is gratefully acknowledged.

Harry Chen would like to thank HPL for the fellowship support that helps
him to begin his initial research work on developing context-aware software
agents.



196 Harry Chen et al.

References

[1] F. Bellifemine. Jade: what it is and what it is next. In Workshop on Models and
Methods of Analysis for Agent Based Systems (MMAABS), Genova, April 2001.
190

[2] P. J. Brown, N. Davies, M. Smith, and P. Steggles. Towards a better understand-
ing of context and context-awareness. In H.-W. Gellerson, editor, Handheld and
ubiqitous computing, number 1707 in Lecture Notes in Computer Science, pages
304–7. Springer, September 1999. 186

[3] G. Chen and D. Kotz. A survey of context-aware mobile computing research.
Technical Report TR2000-381, Dept. of Computer Science, Dartmouth College,
November 2000. 187

[4] W. Conen and R. Klapsing. A logical interpretation of rdf. In Linköping Electronic
Articles in Computer and Information Science, volume 5 (2000):nr 013 of ISSN
1401-9841. Linköping University Electronic Press, 2000. 192

[5] P. Debaty. web presence manager documentation. Hewlett-Packard Laboratories.
http://cooltown.hp.com/dev/reference/coolbase/wpm/wpm user guide.asp.
190

[6] A. K. Dey, M. Futakawa, D. Salber, and G. D. Abowd. The conference assistant:
Combining context-awareness with wearable computing. In Proceedings of the 3rd
International Symposium on Wearable Computers, pages 21–28, San Francisco,
CA, October 1999. 187

[7] A. K. Dey, J. Mankoff, and G. D. Abowd. Distributed mediation of imperfectly
sensed context in aware environments. Technical Report GIT-GVU-00-14, Georgia
Institute of Technology, September 2000. 187

[8] T. Finin, R. Fritzson, and D. Matuszek. Adding forward chaining and thruth
maintenance to prolog. In Proc. of the Fifth Conference on Artificial Intelligence
Applications CAIA-89, pages 123–130, Miami, FL, 1989. 192

[9] FIPA. FIPA Communicative Act Library Specificaiton, pc00037h edition.
http://www.fipa.org/specs/fipa00037/. 193

[10] FIPA. FIPA Subscribe Interaction Protocol Specificaiton, pc00035d edition.
http://www.fipa.org/specs/fipa00035/PC00035D.pdf. 193

[11] K. Hinckley, J. Pierce, M. Sinclair, and E. Horvitz. Sensing techniques for mobile
interaction. In Proceedings of the 13th annual ACM symposium on User interface
software and technology, pages 91–100, San Diego, CA USA, November 2000. 187

[12] O. Lassila and R. R. Swick. Resource Description Framework (RDF) Model and
Syntax Specification. W3C, February 1999. 192

[13] N. Marmasse and C. Schmandt. Location-aware information delivery with com-
motion. In Proceedings of Second International Symposium on Handheld and
Ubiquitous Computing, HUC 2000, pages 157–171, Bristol, UK, Spetember 2000.
Springer Verlag. 187

[14] N. F. Noy, R. W. Fergerson, and M. A. Musen. The knowledge model of protege-
2000: Combining interoperability and flexibility. In 2th International Conference
on Knowledge Engineering and Knowledge Management (EKAW’2000), Juan-les-
Pins, France, 2000. 191

[15] D. Salber, A. K. Dey, and G. D. Abowd. The context toolkit: Aiding the develop-
ment of context-enabled applications. In Proceedings of the 1999 Conference on
Human Factors in Computing Systems (CHI ’99), pages 434–441, 1999. 187

[16] C. Sayers and R. Letsinger. The coolagent ontology: A language for publishing
and scheduling events. Technical Report HPL-2001-194, Software Technology



Creating Context-Aware Software Agents 197

Laboratory, Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA
94340, USA, 2001. 189

[17] B. Schiele, T. Starner, B. Rhodes, B. Clarkson, and A. Pentland. Sit-
uation aware computing with wearable computers. citeseer.nj.nec.com/

schiele99situation.html. 187
[18] G. M. Voelker and B. N. Bershad. Mobisaic: An information system for a mobile

wireless computing environment. In Proceedings of IEEE Workshop on Mobile
Computing Systems and Applications, pages 185–190, Santa Cruz, California, De-
cember 1994. IEEE Computer Society Press. 187

[19] H. Yan and T. Selker. Context-aware office assistant. In Intelligent User Inter-
faces, pages 276–279, 2000. 187


	Creating Context-Aware Software Agents
	Introduction
	Context-Aware Applications

	Context-Aware Services in CoolAgent RS
	CoolAgent RS Document Recommendation Service
	CoolAgent RS Food Recommendation Service
	The Need to Share Ontology

	Designing CoolAgent RS
	Design Goals

	Implementing CoolAgent RS
	CoolAgent RS Ontology
	Reasoning

	Conclusion
	Future Work





