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Abstract— The newly formed Department of Homeland Security has
been mandated to reduce America’s vulnerability to terrorism. In addi-
tion to being charged with physical protection, this newly formed depart-
ment is also responsible for protecting the nation’s critical infrastructure.
Protecting computer systems from intrusions is an important aspect of
securing the nation’s infrastructure. We are exploring how fuzzy data
mining and concepts introduced by the semantic web can operate in syn-
ergy to perform Distributed Intrusion Detection. The underlying premise
of our intrusion detection model is to describe attacks as instances of an
ontology using a semantically rich language, reason over them and subse-
quently classify them as instances of an attack of a specific type. However,
before an abnormality can be specified as an instance of the ontology, it
first needs to be detected. Hence, our intrusion detection model is two
phased, where the first phase uses data mining techniques to analyze low
level data streams that capture process, system and network states and to
detect anomalous behavior. The second phase reasons over instances of
anomalous behavior specified according to our ontology. This paper fo-
cuses on the initial phase of our model: outlier detection within low level
data streams. Accordingly, we present the preliminary results of the use of
fuzzy clustering to detect anomalies within low level kernel data streams.

I. INTRODUCTION

The Department of Homeland Security was formed after the
tragic events of September 11. The mission of this department
is to reduce America’s vulnerability to terrorist attacks. In ad-
dition to being charged with physical protection, this newly
formed department is also responsible for protecting the na-
tion’s critical infrastructure. According to Presidential Deci-
sion Directive 63 (PDD63), critical infrastructures are com-
prised of cyber-based systems to include those systems serv-
ing: telecommunications, energy, banking and finance, trans-
portation, water systems and emergency services. There is lit-
tle doubt that any attack that paralyzes the computer systems
serving our critical infrastructures will cause enormous dam-
age and can be as devastating in consequences as any physical
attack. Moreover, the speed, virulence, and maliciousness of
cyber attacks have increased dramatically in recent years. The
recent W32.Slammer worm, which went as far as to block ac-
cess to some ATM bank accounts in January 2003, is an ample
proof of this fact. Reportedly, the Department of Homeland
Security aims to place an especially high priority on protecting
our cyber infrastructure from terrorist attack.

Intrusion detection is very important aspect of protecting
the cyber infrastructure from terrorist attacks. The overarch-
ing philosophy driving intrusion detection is that, due to their
static nature, intrusion prevention techniques such as firewalls
and routing filter policies fail to stop many types of attacks.
Therefore, no matter how secure you try to make your system,

intrusions still happen and therefore must be detected. Conse-
quently, Intrusion Detection Systems (IDS) form a second line
of defense that identify and report attacks in near real time in
order to mitigate their damage.

Research in the field of intrusion detection (ID) has been on-
going for approximately 20 years. One of the earliest papers in
the field is James Anderson’s 1980 paper Computer Security,
Threat Monitoring, and Surveillance [1]. Seven years later,
Dorothy Denning wrote An Intrusion Detection Model [2], pro-
viding a framework for IDSs. Denning held that evidence of
malicious activity would be reflected in the audit records of the
affected host.

IDSs are categorized according to model — signature or
anomaly, and scope — network-based or host-based. Anomaly
detectors attempt to detect usage outside of the bounds of pre-
established statistical norms. To effectively do this, anomaly
detectors must create and dynamically maintain usage profiles
reflecting normative behavior for all users and processes of
the system. In contrast, misuse detectors filter usage against
a static set of attack signatures. Essentially, anomaly detectors
compare events to what is deemed to be acceptable while mis-
use detectors compare events to what is deemed to be unaccept-
able. The key differentiator between host-based and network-
based IDSs is that a network based IDS, although run on a sin-
gle host, is responsible for an entire network, or some network
segment, while a host based IDS is only responsible for the
host on which it resides.

Similar to Denning’s approach, we hold that evidence of ma-
licious activity is reflected in system level data, however by
analyzing data at much lower level than audit data, we can pro-
file the system’s normative state and perform anomaly detec-
tion instead of signature detection. The underlying premise of
our intrusion detection model is to describe attacks as instances
of an ontology using a semantically rich language like DAML
[3]. This ontology captures information about attacks such as
the system component it affects, the consequences of the at-
tack, the means of the attack, the location of the attacker, etc.
Such a target-centric ontology has been developed by Under-
coffer et al., [4]. However, before anomalous system behavior
can be specified as an instance of the ontology, it first needs to
be detected. Hence our intrusion detection model consists of
two phases. The initial phase uses data mining techniques to
analyze data streams that capture process, system and network
states and detect anomalous behavior. The second, or high level



phase, reasons over data that is representative of the anomaly
defined as an instance of an ontology. Figure 1 illustrates our
IDS model.
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Fig. 1. Two Phase IDS Model

We model the quiescent state of a system based on these data
streams. Some work has already been done on using system
call data and TCP packet information for building anomaly de-
tection models [5][6]. Our model not only includes streams of
system call and network data but also includes low level kernel
data such as memory usage, address offsets, MIB data, inter-
rupts etc. These data streams are provided by the operating
system for the processes present in the system. Thus one can
collect data for any process and build models that represent the
quiescent state of the process and the system. We are explor-
ing the use of fuzzy data mining and concepts introduced by
the semantic web to operate in synergy to perform Distributed
Intrusion Detection.

One way to build models from these data streams is to use
fuzzy clustering. Accordingly, we use the Fuzzy c-Medoids
(FCMdd) algorithm developed by Krishnapuram et al., [7],
which takes a dissimilarity matrix for the objects to be clus-
tered as input. The objective functions are based on selecting
n representative objects (medoids) from the feature set in such
a way that the total fuzzy dissimilarity within each cluster is
minimized. We use the Mahalanobis metric [8] as a dissimi-
larity measure because the differences within the variances of
our feature set is large and the Mahalanobis metric mitigates
against this by providing scale independence. Once we con-
struct a model representing the quiescent state of the system
and its processes, we use this model to detect outliers.

The work presented here is focused on the initial phase of our
intrusion detection model: outlier detection within low level
data streams. The remainder of this paper is structured as fol-
lows. Section Il discusses related work on data mining and
fuzzy approaches to intrusion detection. Section 11 details our
approach to modeling normal system behavior using low level
data streams. We present our results in Section IV and conclude
in Section V.

Il. RELATED WORK

Because anomaly detectors looks for an abnormalities, many
of the data mining techniques that seek to identify outliers in

data become readily applicable. Hence many researchers have
explored applying data mining techniques to the problem of
intrusion detection. Lee et al., [6] performed experiments on
sendmail system call data and network tcpdump data. They
used RIPPER [9] [10] to generate classifiers for these datasets.
In another paper Lee et al., [11] describe how to use association
rules and frequent episode algorithms to guide the process of
audit data gathering and selection of useful features to build the
classifiers.

Dokas et al., [12] have developed classification algorithms
for intrusion detection. These algorithms are designed espe-
cially for learning from datasets in which the class of interest
(i.e. the intrusion class) is significantly smaller than the class
representing normal behavior. In this body of work, the authors
discuss various outlier detection schemes for detecting network
intrusions.

Dickerson et al., [13] developed the Fuzzy Intrusion Recog-
nition Engine (FIRE) using fuzzy sets and fuzzy rules. FIRE
uses the Fuzzy C-Means Algorithm developed by Bezdek [14]
to generate fuzzy sets for every observed feature. The fuzzy
sets are then used to define fuzzy rules to detect individual at-
tacks. FIRE does not establish any sort of model representing
the quiescent state of the system, but instead relies on attack
specific rules for detection. The essential difference between
FIRE and our work is that FIRE is a signature based detector
while ours is an anomaly based detector.

I1l. APPROACH

During our experiments we employed a four step approach
to construct and test our model of outlier detection. First, we
exercise the target system in an attack free environment, col-
lecting data at the process, system and network levels. We then
use Principal Component Analysis (PCA) [15] [16] to reduce
the dimensionality of the collected data. Fuzzy clustering is
then performed on the data to obtain clusters that model the
quiescent state of the system. Finally, the system is placed un-
der attack and data containing anomalous behavior is collected
and compared to the clusters in order to test the efficacy of the
initial phase of our intrusion detection model. The following
details these four steps.

A. Data Collection

We are using data generated by the LINUX kernel and the
Apache web server [17], for our experiments. We use kernel
and web server versions that are susceptible to the attacks that
we launch against the targeted system. As previously stated, we
are collecting low level kernel data at the process, system and
network levels. Process data includes the number of child pro-
cesses forked by the parent process, the amount of time spent
by the process in user and system modes, attributes describ-
ing memory usage, and attributes describing signal informa-
tion. Collected network data is comprised of statistical infor-
mation regarding the IP, ICMP, UDP, and TCP layers of the net-
work protocol stack. This data is inclusive of rates of change
for the number of packets received, the number of packets re-



ceived in error, and the number of packets dropped. At the
system level we collect information regarding memory usage,
CPU load, etc. We obtain samples at a rate of once per second
to obtain a time-series that is representative of the system state.
In total, we have a feature set consisting 189 different values.

We have mirrored a web site on our target system and have
obtained the server logs for the mirrored site. To exercise the
system we employ three separate client machines to replay
those logs against the server over a 5 hour period collecting
data that is representative of the quiescent state of the system.
To collect data that contains anomalous behavior, we attacked
the Apache web server with the attacks described which will be
described in section 1V while concurrently replaying the same
set of server logs from the three client machines. We simulta-
neously replay the server logs while attacking in order to create
a realistic environment.

B. Principal Component Analysis

As is the case with all clustering techniques, FCMdd is af-
fected by the ““curse of dimensionality” suffering performance
degradation when confronted with data sets of high dimension-
ality, which is the case of our feature set of 189 values. Con-
sequently, we PCA to reduce the dimensionality of our feature
set. Accordingly, PCA constructs a new representation of the
feature set wherein the maximally variant dimensions of the
data is captured. Once processed using PCA, the dimensional-
ity of the feature set is reduced while the maximum amount of
information and patterns in the data are preserved. For our fea-
ture set we found that the leading 12 eigenvalues accounted
for 85% of the sum total of all of the eigenvalues. Hence,
we selected the 12 most significant eigenvectors to project the
data, reducing the dimensionality from an m x 189 matrix to
an m x 12 matrix where m is the number of rows in our data
set.

C. Fuzzy Clustering And Outlier Detection

The Mahalanobis metric associates the correlation between
parameters and standardizes each parameter to a zero mean and
unit variance by using the covariance matrix in the distance
calculation.

Once the dimensionality of the data set is reduced, we use
FCMdd to cluster the data points. In traditional clustering ap-
proaches membership of a data-point in a cluster is binary de-
cision. Either the data-point is a member of the cluster or it is
not. In fuzzy clustering the membership of a data-point in a
cluster is a fuzzy decision. A data-point is considered to be a
member of every cluster with a given possibilistic membership
value that ranges from 0 to 1. The objective function of the
FCMdd algorithm is based on selecting n representative ob-
jects (medoids) from the data set in such a way that the total
fuzzy dissimilarity within each cluster is minimized. Here, the
clusters of data-points represent the quiescent state of the sys-
tem. The FCMdd algorithm takes pair wise distances between
the data-points as input. We use the Mahalanobis metric to
calculate the pair wise distances between the data-points. We

use the Mahalanobis metric as opposed to the Euclidean dis-
tance because the difference in the variances of the feature set
is large and the Mahalanobis metric gives better results than the
standard Euclidean distance. Whereas the Euclidean distance
measurement treats all values equally when calculating the dis-
tance from the mean point, the Mahalanobis metric mitigates
the effects of this variability by providing scale independence.
The Mahalanobis metric associates the correlation between pa-
rameters and standardizes each parameter to a zero mean and
unit variance by using the covariance matrix in the distance
calculation. The Mahalanobis metric is given in equation 1,
where =1 is the inverted covariance matrix, and z;, z; are the
data points that the distance is calculated for.
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Once the clusters are generated, we compute the intra-
cluster and inter-cluster distances. Intra-cluster distances in-
dicate how cohesive the clusters are. For a given cluster, it is
calculated as the average of the distances between all pairs of
data points within that cluster. The equation for calculating the
intra-cluster distance is given in 2 where D denotes the distance
matrix such that the entry D(4, j) equals the distance between
the it" data-point and the j** data-point.
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Conversely, Inter-cluster distances indicate how well the
clusters are spread out from each other. The Inter-cluster dis-
tance between two given clusters is calculated as the average of
the distances between all pairs of data points such that one data
point is selected from the first cluster and the other data point is
selected from the second cluster. The equation for calculating
the inter cluster distance is given in 3, where k1 and k2 denote
two clusters with |k1| and | k2| data-points respectively.

intra-cluster;, =

ick1Zjer2D (4, j)
1] x [2]

The intra-cluster distance provides the average diameter of
the cluster, and is used for outlier detection. Hence the intra-
cluster radius r is half of the intra-cluster distance. A data
point is, therefore, a member of a given cluster if its distance
from the medoid of that cluster is less than a specified thresh-
old distance for that cluster. A data point is determined to be
an outlier if it is not a member of any of the clusters that model
the system’s normative state. The threshold for a given cluster
is based on the intra-cluster radius for that cluster. In our ex-
periments we vary the threshold value from 1.5r to 0.5r, where
intuitively it would seem that the smaller the threshold size the
greater the number of false positives and the greater the thresh-
old size the larger the number of false negatives.

The FCMdd algorithm produces multiple medoids for a clus-
ter. For a given test data-point, if the distance from any
randomly selected medoid is the only consideration, it might
wrongly classify the data-point as a member or non-member.

3)
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In order to resolve this issue, we employ two different outlier
detection schemes, both of which take all the medoids of a clus-
ter into account. In the Absolute Distance scheme, we calcu-
late the distances of a test data-point from all the medoids of
a cluster. If any of these distances is within the specified ra-
dius threshold the data-point is a member of that cluster. In the
Aver age Distance scheme we calculate the average of the dis-
tances of the test data-point from all the medoids of the cluster.
If this average distance is within the specified radius threshold
of some cluster, the data-point is a member of that cluster and
an outlier otherwise.

IV. EXPERIMENTS AND RESULTS

We carried out two types of attacks to test the efficacy of
our outlier detection mechanism. The first type of attack that
was carried out was effected by making a series of HTTP re-
quests that were ill formed and could potentially result in input
validation errors. We refer to these series of attacks as Input
Validation Attack and they consist of the following ill formed
inputs:

« Cross Site Scripting [18]. Cross-site scripting is a vulnera-
bility in the default error page of the Apache web server when
UseCanonicalName is turned ”Off” and support for wildcard
DNS is enabled. It allows remote attackers to execute a script.
« Atrtificially Long Slash Path Directory Listing Vulnerabil-
ity [19]. This vulnerability makes it possible for a malicious
remote user to launch an information gathering attack, which
could potentially result in compromise of the system.

« Long Strings [20]. A Buffer overflow in the ApacheBench
benchmark support program causing a denial of service and
possibly the execution of arbitrary code via a long response.

« Odd Characters. HTTP requests containing odd characters
such as: #, >, <, *, |, etc.

The second type of attack that we carried out, is commonly
referred to as an exploitation of the Apache Web Server
Chunk Handling Vulnerability [21]. This attack exploits a
vulnerability in the manner that the Apache web server han-
dles data encoded in chunks [22]. Chunk encoding is a process
that allows a client process to submit a variable-sized quantity
of data to a web server, called a chunk. The chunks contain
header information that allows the web server to assemble a
message arriving as a series of chunks and ensure whether it
has received the entire message. Some versions of the Apache
web server contain a bug in the routines which deal with re-
quests using chunked encoding. A carefully crafted invalid
request can cause an Apache child process to call the mem-
cpy() function in a way that will write past the end of its buffer,
corrupting the stack. On some platforms this can be remotely
exploited , allowing arbitrary code to be run on the server. On
some other platforms such requests simply cause the child pro-
cess handling the bad request to die resulting in a Denial of
Service attack as the server’s resources are wasted in setting up
the killed child processes again. We refer to this attack as the

Radius | Input Validation | Chunking | False Positives
Det. Rate Det. Rate
1.5r 10.20 16.34 4.55
1.25r 10.34 18.29 7.08
1.0r 12.1 25.93 12.22
0.75r 18.06 55.96 20.77
0.5r 80.36 83.02 34.84
TABLE |
ABSOLUTE DISTANCE SCHEME : ALL CLUSTERS
Radius | Input Validation | Chunking | False Positives
Det. Rate Det. Rate
1.5r 10.20 16.34 4.55
1.25r 10.34 18.29 7.08
1.0r 12.1 25.93 13.16
0.75r 18.06 55.96 25.73
0.5r 80.36 83.02 48.50
TABLE Il

AVERAGE DISTANCE SCHEME : ALL CLUSTERS

chunking attack in the following discussion.

We collected data from the target system while it was un-
der the above mentioned attacks. To test our outlier detection
mechanism, we split the normal data into two sets: training
dataset (80%) and test dataset (20%). The training dataset was
used to generate the clusters. The test dataset and the attack
datasets were then examined using the previously detailed out-
lier detection schemes. We measured the detection rate as the
percentage of data-points detected as outliers. To determine
the effect on detection rate, we varied the radius threshold from
1.57 to 0.5r in steps of .25 where r is the intra-cluster radius.
The 20% normal dataset was compared to the clusters along
with the attack data in order to determine the false positive rate.

Using 80% of normal data, the FCMdd produced four clus-
ters, two of which were dominant, containing 85% of the data
points. Consequently, we conducted a series of four experi-
ments. We applied both the Absolute Distance and Average
Distance schemes to all four clusters during two experiments.
In the other two experiments we discarded the two minority
clusters and applied the Absolute Distance and Average Dis-
tance schemes to the two dominant clusters.

Table I illustrates the results of using the Absolute Distance
scheme and all four baseline clusters. Table Il illustrates the re-
sults of using the Average Distance scheme and all four base-
line clusters. Table Il illustrates the results of using the Ab-
solute Distance scheme and only the two dominant clusters.
Table IV illustrates the results of using the Average Distance
scheme and only the two dominant clusters.

We use the performance measure presented by Dokas et al.,
[12] to define optimality. Equation 4 presents this measure.



Radius | Input Validation | Chunking | False Positives
Det. Rate Det. Rate
1.5r 14.52 43.53 16.12
1.25r 30.17 62.20 21.02
1.0r 59.54 88.74 26.23
0.75r 100 98.54 40.20
0.5r 100 100 47.87
TABLE IlI

ABSOLUTE DISTANCE SCHEME : DOMINANT CLUSTERS ONLY

Radius | Input Validation | Chunking | False Positives
Det. Rate Det. Rate
1.5r 16.03 46.05 17.76
1.25r 69.24 72.68 25.42
1.0r 99.80 92.30 36.39
0.75r 100 100 46.50
0.5r 100 100 63.16
TABLE IV

AVERAGE DISTANCE SCHEME : DOMINANT CLUSTERS ONLY

true positive rate
true positive rate + false positive rate

(4)

According to 4, when conducting outlier detection for the
Input Validation attacks performance is optimized using Aver-
age Distance scheme using the majority clusters and setting the
threshold radius to 1.0r.

Similarly, when conducting outlier detection for the Chunk-
ing Vulnerability attack performance is optimized using the Ab-
solute Distance scheme using all clusters and setting the thresh-
old radius to 1.5r. It is important to state, that although the per-
formance is optimal, it is unacceptable because the true positive
rate is only 16.34% when the maxium is 100% . Consequently,
a trade-off needs to be made in order to increase the true posi-
tive rate.

It should be noted that our preliminary results indicate that
our method of outlier detection has a high false positive rate
while yielding very high true positive rates. This is not an un-
expected trade-off in the area of intrusion detection. Recall that
our IDS model calls for sampling low level kernel data at close
intervals and using outlier detection to capture anomalous be-
havior within those data streams. This initial phase serves as
a filter to the higher level reasoning phase which will mitigate
the high false positive rate.

V. CONCLUSION

At this preliminary stage it appears that using low level ker-
nel data streams to model the quiescent state of a system is a
viable intrusion detection approach. Likewise, fuzzy cluster-
ing appears to be effective for outlier detection within these

low level system, process and network data streams.
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