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Abstract. We present a collaborative query processing proto-
col based on the principles of Contract Nets. The protocol is
designed for pervasive computing environments where, in ad-
dition to operating on limited computing and battery resources,
mobile devices cannot always rely on being able to access the
wired infrastructure. Devices, therefore, need to collaborate
with each other in order to obtain data otherwise inaccessible
due to the nature of the environment. Furthermore, by intelli-
gently using answers cached by peers, devices can reduce their
computation cost. We show the effectiveness of our approach
by evaluating performance of devices querying for data while
moving in a citylike environment.

Keywords: Distributed join processing – Mobile ad hoc net-
works – Peer-to-peer computing – Pervasive computing envi-
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1 Introduction

We address the problem of how mobile devices in pervasive
computing environments can locate and provide information
satisfying a user’s needs by collaborating with peer devices.
We specify a model for performing joins in pervasive comput-
ing environments that takes into account the limited battery,
computation, connectivity, and storage resources of mobile
devices.

Locating and obtaining context-sensitive information in a
mobile environment supported by the wired infrastructure is
a difficult problem. One must consider three principal chal-
lenges [18,28]: (i) What information will a user require? (ii)
When will the user need it? (iii) How can her device ob-
tain the required information? Pervasive computing environ-
ments only exacerbate the problem. The realization of ad hoc
wireless network technologies, such as Bluetooth [6], creates
an intriguing variation of the problem. These technologies
allow spontaneous connectivity among mobile devices, in-
cluding handheld and wearable devices, computers in vehi-
cles, computers embedded in the physical infrastructure, and
(nano)sensors. There is no longer a guarantee of infrastruc-
ture support. To obtain data, devices should no longer depend

solely on the help of some fixed, centralized server [31]. The
devices should also not be required to precache all required
data a priori. Since mobile devices are no longer standalone
entities or simple clients, they should be treated as peers that
can interchangeably function both as information consumers
and providers in order to share information among themselves
and to provide utility to their users [28,30]. For example, a car
does not have to connect to a yellow pages service or store an
entire phone book directory in order to locate a gas station. It
should be able to find the gas station by interacting with other
devices or an electronic sign of some gas station in its vicinity.

The dynamic nature of ad hoc wireless networks makes
existing solutions for traditional mobile systems inapplicable
[18,28]. Traditional query processing techniques, especially
those performing joins, will often fail in this environment as
they depend on infrastructure support. Further, because peer
devices are mobile, the availability of information sources be-
comes spatially and temporally dependent.

Therefore, as a complement to infrastructure-based query-
ing, a device should utilize its vicinity by collaborating with
its peers. Collaborating devices will be able to obtain data oth-
erwise inaccessible due to the nature of the environment. By
querying its immediate neighbors and other devices accessi-
ble in its vicinity, a mobile device may be able to obtain the
same data or data of even higher quality than by connecting to
servers in the wired infrastructure. This is especially advanta-
geous when a device has no access to the wired infrastructure.
Additionally, by intelligently using answers cached by peers,
devices will be able to reduce their computation cost. Col-
laboration will become especially helpful when performing
joins over multiple data sources, which may be required when
a single data source cannot provide the complete answer to
a query. The querying device may have to horizontally join
data streams from multiple devices holding the same type of
data. The device may also have to vertically join data streams
from different devices as they become available. We use the
term data stream to represent both data sources according to
the traditional definition and the “streaming”-data sources de-
fined by the sensor network community [11].

We utilize our previous work on what information a user
seeks and when she seeks it based on her current context. By
context we mean a collection of information that can be used
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to characterize the present situation of users and their devices
[16]. Such information often describes location, time, iden-
tity, and the current activity. We take a more expansive view
of context and include beliefs, desires, and intentions of a user
stored in a user profile [30]. This allows a device to predict
what information the user will need. Based on the prediction,
a device dynamically adapts its strategies for querying its peer
devices, caching of data, and for collaborative processing of
joins. While our implementation builds on our specific pre-
vious work, the collaborative model we propose is relatively
agnostic – any other technique for computing dynamic queries
can be used [12].

The paper builds on our past work in defining a profile-
driven data management framework for pervasive environ-
ments. Previously we were concerned with data representa-
tion, data discovery, and profile-based caching of data [28,
30]. In this paper, we make the following new contributions:

• We propose a collaboration protocol based on the princi-
ples of Contract Nets [1,34]. Our collaborative query pro-
cessing (CQP) protocol enables a mobile device to query
its vicinity and locate peer data sources that can answer
a given query. More importantly, our protocol allows the
device to obtain data matching any query, irrespective of
whether the query is a selection or a join. We extend the
traditional concept of nested loop joins and our previous
work on selection queries in pervasive computing environ-
ments [28]. CQP allows two or more devices to cooper-
ate by executing any combination of select–project–join
queries. The protocol accomplishes the task by subdivid-
ing queries. Each subquery can be assigned to a differ-
ent device. The assignment is determined according to the
available resources of devices present in the vicinity. For
example, CQP allows a tourist to use her handheld device
to ask for the closest, cheapest laundromat that is open
given her current location, time of day, and a price range.
The protocol also allows the tourist to ask for the clos-
est laundromat adjacent to a Chinese restaurant – a query
requiring a join over two data streams.

• We design and implement a realistic experimental model
for simulating a city traffic scenario of people traveling
around lower Manhattan.The model is implemented on top
of MoGATU [29,28,30,31], which is a robust framework
for profile-driven data management in pervasive com-
puting environments. Our experimental model represents
handheld/embedded computers and intersection beacons.
We have explicitly chosen not to use any wired infrastruc-
ture in order to demonstrate that our model can operate in
an ad hoc mode; however, our protocol can employ any
device accessible by the querying device as a data source,
including servers in the wired infrastructure. The primary
objective of the model is to allow each mobile device to
utilize as much available information as possible in order
to enhance its functionality. The device can use static in-
formation such as user preferences and information about
data sources. The device can also rely on dynamic informa-
tion, such as the current context description. This allows
each device to gather, provide, and possibly create data
that will be helpful to the user in the near future.

• We demonstrate the capability of CQP by implementing
it in the MoGATU framework and by evaluating its per-

formance in the city traffic experimental model. We show
how the protocol improves the average success rate of sat-
isfying user queries for each entity. We also show how the
protocol affects the combined computing cost and network
traffic for all devices in the environment.

The remainder of the paper is organized as follows. We
present related work and argue why traditional mobile solu-
tions are not applicable in Sect. 2. In Sect. 3 we define the CQP
protocol and provide an overview of the MoGATU framework.
We present our experimental model and setup in Sect. 4 and
show the effectiveness of our technique through performance
evaluation. We conclude and describe directions for future
work in Sect. 5.

2 Related work

The networking aspects of collaboration in pervasive comput-
ing environments have been well addressed [2,6,22,32,33],
especially in terms of device discovery and routing protocols.

The problem of data management in wireless networks
has also drawn significant attention; however, to the best of
our knowledge very little work has been done on data col-
laboration and sharing. We are unaware of any work done in
the area of processing joins over multiple data sources in a
pervasive computing environment. Although research on in-
network query processing and data aggregation in sensor net-
works addresses somewhat similar questions, we argue later
in this section that the ad hoc and sensor network domains
differ significantly. The existing solutions consist of two very
distinct approaches to addressing problems imposed by the un-
derlying networking technology, such as low bandwidth and
high probability of disconnection.

One approach, for supporting disconnected operations, re-
lies on offline data precaching. In wireless contexts, this was
pioneered by the Coda file system [24] and more recently by
commercial software such as AvantGo [3]. While precaching
techniques preserve battery power and do not require connec-
tivity, they are unable to provide answers beyond the scope of
their caches and are also prone to stale data.

At the other end of the spectrum are solutions exploit-
ing traditional wireless connectivity, such as those provided
by cellular networks or WLANs [19]. These solutions treat
mobile devices as clients connecting to a proxy-based wired
infrastructure [12,13,37]. Chrysanthis et al. [26] consider dis-
connected operations within mobile databases by presenting a
mechanism, referred to as a “view holder”, that maintains ver-
sions of views required by a particular mobile unit. Kottkamp
and Zukunft [25] present optimization techniques for query
processing in mobile database systems that include location
information. They present a cost model and different strategies
for query optimization that incorporate mobility-specific fac-
tors like energy and connectivity. Demers et al. [15] present the
Bayou architecture, which is a platform of replicated, highly
available, variable-consistency, mobile databases for building
collaborative applications. These solutions rely on the support
of a fixed, wired infrastructure. They place primary data on
servers located within the wired infrastructure and treat mo-
bile devices solely as clients. Using this approach all selection
queries and joins are executed by servers and mobile devices
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simply receive updates to their materialized views. Moreover,
these solutions often incur monetary costs for cellular connec-
tivity and are also prone to frequent disconnections due to the
environment and mobility patterns. Lastly, these solutions are
susceptible to a possible single point of failure at the server
side.

In contrast to these approaches, our work does not require
support from a fixed infrastructure. At the same time our work
does not preclude the use of an infrastructure. We treat all data
sources equally, irrespective of whether they are mobile de-
vices or servers in wired networks. In related work [31], we
studied the effects of decreasing the infrastructure’s presence
on completing transactions for mobile devices. We compared
a method for committing transactions that depended on an in-
frastructure support with an alternative method employing an
n-hop vicinity of transacting peers. We then varied the infras-
tructure’s presence in terms of the number of available access
points used for routing network traffic to the nodes in the
wired network from 0 to 100%. Our results showed that even
a small reduction in an infrastructure’s presence drastically
decreased the performance of the system. Additionally, when
a mobile device requires instantaneous information, e.g., traf-
fic updates, it may be more easily, sometimes only, accessible
from other “local” mobile devices and not from a fixed node.
As defined in [9], a mobile device in our work is always in
nomadic mode.

Since we do not rely on infrastructure support, we must ad-
dress an additional constraint not researched in the literature:
information consumers are not the only mobile devices. In-
formation sources – other peers – also change their locations.
This limits data availability and causes answers to questions
to become spatially and temporally dependent. Additionally,
this may negatively affect execution of joins over multiple
data streams because not all required data sources may be
concurrently available. In traditional approaches, all stream
sources must be available at the same time, which may not
be the case in pervasive environments. A device performing a
join must thus be able to precache intelligently relevant parts
of the data that are currently available while searching for
sources of missing data. The nature of the environment also
affects the duration of any connection between a pair of de-
vices and limits the possibility of a reconnection. Since each
device moves independently, there is no guarantee that two
mobile devices currently connected will ever again be able to
communicate between themselves, which may cause incon-
sistencies. The environment also permits interaction between
any two devices disregarding the heterogeneous types of data
they may understand or provide. If these devices talk using in-
compatible ontologies/schemata, they will fail to answer any
queries. Consequently, every device must become more au-
tonomous and adaptive in order to answer queries because it
can mostly depend only on itself and its local resources [28,
30]. Essentially, the requirements to support heterogeneous
devices and data render most solutions for traditional mobile
networks unusable.

Recently, significant research interests have been directed
toward the area of sensor networks. The research particularly
concentrates on querying continuous data streams.The Cougar
[7] and Fjords [27] projects represent two such architectures.
Additionally, Chandrasekaran et al. [11] present PSoup, a sys-
tem for processing continuous queries over continuous data.

PSoup extends the work on Eddies [4] – a query processing
mechanism, which is part of the Telegraph project [20]. Eddy
enables dynamic query reordering by routing tuples between
multiple operators represented as independent threads.

Although the issues related to query processing in sensor
networks appear somewhat similar, the environment and the
objectives significantly differ. The goal of a sensor network
is to collect and optionally aggregate fixed types of data at
every node. The nodes then propagate their results to a col-
lecting base station. Once a sensor network is established, all
sensors know their peers. It is the collecting base station that
uses the sensed information. Each sensor node represents a
simple “slave” proxy or a provider but never a consumer. On
the other hand, the pervasive computing environment is dy-
namic and may never stabilize. Every mobile device in our
environment can be a consumer. Each device interacts with
others to obtain data primarily for itself. Only optionally does
the device become a proxy or a provider for some other peer
in its vicinity. Hence, a mobile device is always changing the
type of data it needs and the operations it must perform for
itself and possibly for other devices. Consequently, data man-
agement in sensor networks and ad hoc peer-to-peer networks
require different kinds of solutions.

3 Collaborative query processing

The collaborative query processing (CQP) protocol allows the
mobile devices in pervasive computing environments to help
each other in locating, computing, and obtaining answers for
queries involving one or more data streams. The protocol en-
ables a querying device to view its peers as additional sources
of information. By reusing data made available by other de-
vices, the “system” is able to provide data to a larger number of
individual nodes while still preserving systemwide resources.
These resources, which are always limited, include battery and
computing overhead. Before detailing the design of our proto-
col we provide a brief overview of the MoGATU framework
as it constitutes the underlying base for the CQP protocol.

3.1 MoGATU system overview

MoGATU is a framework for handling serendipitous query-
ing and data management in pervasive computing environ-
ments [28,30,31]. The framework treats all devices present
in the environment as equal semiautonomous peers. To pro-
vide uniform communications functionality, and to handle data
management issues, the framework abstracts all devices in the
environment in terms of information managers, information
providers, and information consumers. It also specifies several
communication interfaces. Figure 1 depicts the framework and
the relationship among devices and their resources. Every de-
vice is required to implement an information manager and at
least one communication interface.

Information providers represent the data sources available
in a pervasive environment. Every information provider holds
a partial set, a fragment, of heterogeneous data available in
the whole environment. We specify our data model as a set of
ontologies and express its instances in a semantic language.
Each information provider stores its data in the data’s base
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Fig. 1. MoGATU’s entity and interaction
model

form according to the ontology definition. Data involving one
ontology are already expressed in their base forms and are
stored in the format they were obtained. For data involving
multiple ontologies, a provider decomposes the data into their
base forms and maintains a view to link the base forms. Using
this approach a view is represented as a list of pointers to the
respective base fragments. It may be impossible to maintain
global consistency among all information providers because
the wireless ad hoc network frequently remains partitioned.As
a result, mobile nodes attempt to be vicinity-consistent only.

Information consumers represent entities that query and
update data that is available in the environment. In the cur-
rent design, information consumers represent human users
and proactive agents that actively prefetch context-sensitive
information from other devices in the environment.

Lastly, an instance of an information manager (InforMa)
must also be present on every device. Information managers
are responsible for network communication and for most of
the data management functions. Each InforMa is responsi-
ble for maintaining information about peers in its vicinity.
This information includes the types of devices and informa-
tion they provide. An InforMa also maintains a data cache for
storing information obtained from other mobile devices and to
cache information generated by its local providers. Addition-
ally, each InforMa may include a user’s profile reflecting some
of the user’s beliefs, desires, and intentions (BDI). This model
has been explored in multiagent interactions [8] and signifi-
cantly extends the work of [12] on profiles, which explicitly
enumerates data and their utility. In contrast, by using the
BDI concept, our profiles adapt to the environment by varying
both data and their utility over time and present situations. The
InforMa uses the profile to adapt its caching strategies and to
initiate collaboration with peers to obtain desired information.

3.2 Data representation

Every mobile device holds a subset of the globally available
heterogeneous data. Since the pervasive environment is, by
definition, an open system, there are no restrictions or rules
specifying the type and format of available data. To narrow
this vast space of possibilities, we have previously argued the
need for employing ontologies / schemata. In MoGATU, we
define ontologies using the DARPA Agent Markup Language
(DAML+OIL) [21]. This semantically rich language allows
the specification of numerous types of data and also defines

relationship among classes and their properties. For example,
we can define ontologies for weather and traffic updates [29].

One may argue that an ontology introduces too much of
an overheard and that the use of a tabular relational schema
would be sufficient. We disagree. Let us, for example, consider
a case where we replace restaurant ontology by a schema defin-
ing restaurant properties in a fashion that allows the data to be
stored in one table. Such a table could be horizontally frag-
mented over many devices in the environment, and it would
allow other devices to query it. This, however, would require
all devices in the environment to employ the same schema.
Moreover, this would also remove any relationship informa-
tion between data instances, such as inheritance or subClassOf
constraints. For example, it would no longer be possible to
deduce that the Joy Luck restaurant is an Asian cuisine restau-
rant without an explicit attribute stating so. Additionally, this
would limit the possibility of introducing additional proper-
ties to data that already exist in the system because the cost
of appending new relations to existing tables present on every
device in the environment would be very high. Therefore, the
use of ontologies in these environments is vital.

By using ontologies, we impose a requirement on each de-
vice to be able to parse DAML+OIL annotated information.
This is not to say that all devices will, or must, understand
all ontologies. Rather, we anticipate a scenario where each
device has some knowledge of a set of ontologies. For new
or unknown ontologies already present in the environment,
a device can detect some metadata information by applying
DAML+OIL rules. This will allow a device to match queries
with provider advertisements without any knowledge about
the particular data. This may also allow a device that under-
stands ontology A to use data annotated in an unknown ontol-
ogy B if B is a subClassOf A. For example, a device may not
be able to deduce that Joy Luck is a Chinese restaurant, but it
will at least know that Joy Luck is a restaurant.

In this paper, we concentrate on query processing only. We
do not take into account the time necessary for reasoning over
the ontology knowledge, e.g., whether a Joy Luck is a Greek
restaurant. We ground each base data instance in one ontology
and include a globally unique identifier. For data representing
information from multiple ontologies, such as a result of a
join, we assign a locally unique identifier in addition to the
global identifiers of the base data.

When an information provider generates new data, it as-
signs the data a lifetime timestamp. The lifetime represents a
time period after which the data should be invalidated and
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purged from cache. Additionally, an InforMa assigns each
data a local timestamp before placing it into its cache. We
use the timestamps to calculate recency of cached data during
query execution. In [30] we introduced a profile-based seman-
tic cache replacing strategy. Our results showed that using
context information and user preferences stored in a profile
greatly improves cache performance over simple timestamp
approaches. Our strategy uses a profile and context to preallo-
cate cache space into bins for different types of data. For each
bin, we employ a combination of timestamp, location, and user
preferences to select a replacement victim when necessary. We
employ the same technique in the CQP model.

3.3 Query representation

A device can either wait for the user to ask an explicit query
and attempt to obtain an answer from its peer devices or it
can proactively attempt to obtain data before a user asks for
them. Proactive data querying is a preferred solution because
it allows a device to cache data while the data are available
[30]. A device employing the proactive approach has a greater
possibility of providing the right data to its user than one using
the reactive approach. The use of a profile is vital in order to al-
low the device to reason about its user’s needs. Consequently,
MoGATU distinguishes between two types of queries: (i) ex-
plicit queries – those asked by users – and (ii) implicit queries,
which are inferred from user profiles.

The CQP model applies to both explicit and implicit
queries. However, for the purpose of validating the CQP
model, we only use explicit queries for measuring the overall
performance of the framework. We restrict the devices so that
they answer explicit queries using only their local resources.
This way a device will not initiate an interaction with its peers
when its user asks a question. On the other hand, a device
will initiate the CQP model for implicit queries in order to ob-
tain missing data from its peers. Implicit queries are excluded
from the overall success performance because at the end only
explicit queries are valuable to a user. This is because a user
explicitly asks such queries, while implicit queries are inferred
from a profile.

We define queries using a DAML+OIL ontology. In par-
ticular, the queries are specified in DAML-S [14], which is a
standard evolving in the Semantic Web community. For pre-
sentation in this paper, we abstract the query representation
using a familiar select–from–where form. Figure 2 shows the
abstract representation form. A query is specified by a tuple
consisting of a set of used ontologies (O), selection list (σ),
filtering statement (θ), cardinality (Σ), and temporal (τ ) con-
straints:

query = (O , σ, θ, Σ, τ). (1)

Each query defines the ontologies used for constructing
the filtering clause and for final projection of the matching
data instances. The set can include a specific ontology multi-
ple times if the filtering clause consists of a join over multiple
data streams represented in that ontology. The size of the on-
tology list, therefore, specifies the degree of the query. The
degree represents the number of joins that must be performed
for obtaining an answer. The filtering clause represents a com-
bination of Boolean conjunctive and disjunctive predicates. A

SELECT (select_list)
FROM (ontology_list)
WHERE (conjunct_disjunct_predicate_list)
LIMIT [minCardinality, maxCardinality]
TIME neededBy

Fig. 2. Abstract query specification

device uses its cached data and context information, includ-
ing current geographical position and time of day, as inputs
to these predicates. This allows a mobile device to perform
a dynamic query asking for the closest local gas station. It
also allows a device to pose a static query asking for a Chi-
nese restaurant located on W 72nd Street. Along with string
and numeric comparisons the filtering clause supports basic
calculations such as addition and multiplication. Additionally,
the filtering clause supports more advanced predicates based
on the ontology specification such as a distance computation
between two geographical objects. The cardinality constraints
of the query specify the minimum and maximum size of a re-
quired answer. Lastly, the temporal constraint specifies when
the query should be completed. This is used by the device to
periodically query its peers, given an implicit query, when time
permits and the device has not yet cached a sufficient answer.

3.3.1 Explicit query

When a user asks her mobile device a question, the device,
represented by the InforMa, attempts to answer the query by
examining its local resources only. The InforMa evaluates the
filtering statement θ over any combination of data that are
present in local fragments. The data must be defined using a
subset of ontologies from the ontology list O. The InforMa
continues examining the data until the size of the answer is
within the cardinality constraints Σ or the allowed time τ has
expired. For selection queries over data from a single source,
the InforMa directly scans and evaluates data instances stored
in one local fragment. For queries requiring joins over data
from multiple sources, the InforMa first checks whether a
cached result from a similar query could be used. If no such
result view is found or the cardinality constraint has so far
not been satisfied, the InforMa performs the necessary join
operations over its local fragments and returns the final result.

3.3.2 Implicit query via user profile

The InforMa on each device may include a user’s profile,
which specifies a subset of beliefs and desires that the mobile
device should know. The knowledge contained in the profile
is initially defined using DAML+OIL. Upon loading the pro-
file, the InforMa converts the knowledge into implicit queries.
These queries include constraints describing time, location
ranges, and the probability of the query being asked by the
user. For example, a profile may contain a preference stat-
ing that the user likes to eat lunch between noon and 2 pm.
Additionally, the profile may state that the user prefers Chi-
nese restaurants. The InforMa combines the two beliefs into
an implicit query, which collects and maintains the location
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Fig. 3. Message and state flow of the col-
laborative query processing protocol

of at least one Chinese restaurant in the current vicinity from
11:45 am until 2 pm. The details of reasoning over profiles for
generating queries is beyond the scope of this paper and we
refer readers to [30].

Each belief or desire can be represented as the following
tuple:

belief, desire = (O , σ, θ, Σ, λ, τ,P), (2)

where O, σ, and θ define the set of used ontologies, the selec-
tion list, and the filtering statement, respectively. Σ represents
the minimal cardinality of the answer that the query should
return when evaluated locally. λ and τ represent the location
and time when the implicit query should be actively evaluated.
P denotes the probability predicting that the user will, in fact,
ask a question that uses the data obtained by executing the im-
plicit query. When evaluating the success of our framework,
we consider results for explicit queries only. This is because
we do not want to reward a device for proactively caching
data to questions its user never asks; however, for evaluating
the overhead of the CQP model we measure the computing
and networking cost for processing both implicit and explicit
queries.

3.4 Collaboration protocol

We now present the detailed design of the CQP protocol. We
show the message and state flow of the CQP model in Fig. 3.
CQP is based on the principles of Contract Nets [1,34]. Any
device in the environment can initiate the protocol. Other de-
vices in the vicinity of the originating device can, at their
will, collaborate by helping in answering queries involving
one or more data streams. In this paper, we are not interested
in studying incentive-driven mechanisms and the conditions
for a device to participate. We only assume that each device
has a certain degree of willingness to help – a probability that
a device responds to a query.

We designed CQP with the underlying environmental char-
acteristics in mind. In order to overcome the frequent discon-
nections and low bandwidth, we expect each device to locally

process as much data as possible before sending results to
its peers. We do so by decomposing DAML+OIL annotated
queries into selection queries over base ontologies and their
combinations. To overcome the network limitations, we em-
ploy a Contract Net-based negotiation among peers for identi-
fying devices that will provide certain data. For this we build
upon our previous experience in service and data discovery
[2,10] and our previous work on MoGATU. We employ both
gossiping and pull-based techniques for advertising data and
for querying peers. Whenever possible, we attempt to utilize
the underlying routing protocol for network packets between
mobile peers; however, in order to overcome the uncertainty
of the ad hoc environment, CQP does not need to collect all
data before terminating, as detailed in Sect. 3.4.6.

The resulting CQP protocol consists of a contract agree-
ment phase, a streaming phase, and a termination phase. In the
first phase, a device discovers peers that have the required data.
The originating device creates an agreement with its peers on
their tasks and the desired outcome. In the streaming phase,
collaborating devices process data locally and return results to
their peers. In the last step the involved devices finalize their
query processing operations. Since there is no guarantee of a
stable connectivity, in addition to exchanging messages, as a
last resort the involved devices also employ timers. We now
detail each step:

3.4.1 Call for query

When a mobile device needs to satisfy some of the beliefs and
desires stored in a user’s profile, the device converts the re-
quirement into an implicit query. Initially, the mobile device
attempts to satisfy the implicit query by using only its local
cache. When the device is unable to reach the desired num-
ber of cache hits, it constructs a call-for-query message. The
message contains the query or a part of it, cardinality require-
ments, and the deadline for delivering the complete answer.
The message also includes the time when a winner will be
announced. The device sends the message to its peers up to
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n-hops away and starts its bid-submission timer. The mobile
device is now a contractor.

The contracting device is effectively flooding its n-hop
vicinity with the call-for-query message. Using this method,
the device is not required to maintain any information de-
scribing the type of data its peer devices are able to provide.
However, if the contracting device has some knowledge about
a specific peer that can provide an answer to the query based
on past experience or from the peer’s advertisement, the con-
tracting device can optionally send a direct request to that
specific peer.

For a selection query, the device includes the entire query
in the message. This is because the device needs to simply
ask one peer at a time to scan its local fragment matching the
query. For queries involving multiple data streams, the device
may require help from more than one device in its vicinity, as
depicted in Fig. 4. The device first searches for a peer that can
perform the entire query over its local fragments and return
the results. Alternatively, when it does not receive a response
within the bid-submission time, the device starts to decompose
the query by vertically fragmenting it into subqueries involv-
ing fewer data streams. The device sends a new message for
each subquery. When it does not receive a positive response,
the device continues to decompose the query until it gener-
ates base selection queries. Each device uses the τ timer of
the query, the bid-submission timer, and the number of cached
answers to iterate through the decomposition process. We em-
ploy this heuristic, as a device cannot predict a priori what
sources are currently available.

Unlike traditional join techniques, the CQP protocol does
not require all input streams to be concurrently available. A
mobile device can use the CQP protocol to cache, i.e., hold,
one input stream that is currently available. The device then
delays the join until the other stream becomes available in
time and space. This allows a mobile device to better utilize
the serendipitous nature of the environment, as we show in the
next section.

The CQP protocol also enables chaining of multiple col-
laborations. For example, a device that agreed to provide an
answer to a query may be unable or choose not to perform the
operation itself. Instead, the device may decompose the query
and request other devices to perform the necessary subopera-
tions. This allows resource-limited devices to collaboratively
execute a query of almost any complexity.

3.4.2 Bid submission

Upon receipt of a call for query, a device decides if it should
interact in the proposed collaboration based on an inference.A
mobile device that wishes to collaborate calculates the size of
the answer it can provide to the contractor. If for some reason
the mobile device does not believe it can satisfy the proposal,
the device simply ignores the call-for-query message. On the
other hand, if the mobile device determines that it can provide
a valid answer, the device returns its bid message including the
estimated size of its answer. The responding mobile device,
now a bidder, starts a timer awaiting a bid-award message.
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Fig. 4. Possible decompositions of a query involving two streams.
In case 1, querying device A asks its vicinity for one input stream
only since it already holds the second stream. In case 2, A asks its
vicinity for the final join result only. In case 3, A asks for each stream
separately in order to perform the join locally. In case 4, A asks B to
process the query, but B needs to first obtain the second stream from
some other device C. In case 5, A “delegates” the task to C, which
asks its vicinity for the input streams instead. There are other possible
combinations; however, the current CQP model employs only these
five cases

3.4.3 Bid award

Because the contractor cannot predict effectively how many
responses it would receive, the contractor employs a timer.
The contractor waits a predefined time period for any response
before evaluating them. When a contractor’s timer for bid sub-
mission expires, the contractor evaluates all successfully re-
ceived bids, choosing the bidder that claims to be able to de-
liver the most data in the shortest possible time. The contrac-
tor prefers a short streaming period because the network can
quickly become disconnected. The contractor creates a bid-
award message, starts an ack timer, and sends the message
to the winning bidder. The contractor attempts to contact the
winner at most n times before discarding the current session.

3.4.4 Acknowledgment

If a bidder does not receive a bid-award message before its
timer expires, the bidder resends its bid message at most n−1
more times before discarding the current session. If the bidder
does not receive the bid-award message after the last attempt,
the bidder assumes someone else was awarded the contract.
It also discards the current session. On the other hand, when
the bidder receives the bid-award message, the bidder, now a
winner, sends back an ack message. The winner starts its sync
timer and waits for ack from the contractor. The contractor
also waits at most n times the period of the sync timer in order
to receive an ack message from the winner before discarding
the current session.

In the CQP protocol, interacting devices employ timers
because the wireless ad hoc network may not support a reli-
able message delivery. This could be due to frequent network
partitioning or fast device mobility. Therefore, devices proac-
tively retransmit messages in addition to using any available
routing protocols for reliable message delivery.

3.4.5 Streaming data

Once the winner and contractor receive ack messages from
each other, the winner is ready to start sending an answer in
terms of a data stream. The contractor is also ready to accept
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the stream. The contractor continuously asks for the next data
instance until it receives either an end-of-stream or a stream-
error message. Alternatively, the contractor stops receiving
data when its streaming deadline timer expires.

The contractor is effectively treating other peers as data
streams. These streams can consist not only of one data type
but also of a combined stream whenever the source peer is
sending a result of a join operation. In order to preserve the
limited bandwidth, the receiving peer can further send an ad-
ditional selection query to filter the results calculated by the
source peer. In that case the source peer processes its outgoing
stream before sending it out so as to avoid transmitting data
that the contractor would find “useless”.

3.4.6 Termination

The CQP protocol terminates in two ways. First, the protocol
terminates when the winner has sent its entire answer and the
contractor received it. The size of the answer was previously
defined by its maximal cardinality in the agreement. Alterna-
tively, the protocol terminates when a stream-error exception
is generated. The exception can be generated at either the con-
tractor or the winner site. The exception is generated when
there are no additional data or when the streaming deadline
expires. The exception is also raised when a partition occurs
in the ad hoc network due to the mobility of the contractor,
the winner, or some routing device. Therefore, both contrac-
tor and winner terminate the session either once all data are
exchanged or after a predefined period of inactivity.

3.4.7 Error handling

To overcome possible errors caused by network partitions and
resource limitations, our protocol operates on a best-effort ba-
sis only. We employ a profile-based caching policy for storing
local results and data received from peers. When a device de-
termines that it needs to obtain additional data, it initiates the
CQP protocol and interacts with the winner. If the interaction
fails before the contract is satisfied, the contractor attempts to
find another source after a parametrized period of time. We
employ the initial contract agreement phase for two reasons.
First, the device is able to collect a catalog of its vicinity based
on its query. Using the catalog the device can select the most
applicable peers for interaction. Second, by requiring a longer
initial interaction, we overcome situations where a device is
in range only during the agreement phase and disappears as
soon as agreement is reached, causing the execution to fail.

3.4.8 Join query over two streams

In this environment, we must differentiate between two types
of join executions. One join execution involves only one de-
vice operating over two local streams. Such a device can em-
ploy any join algorithm. The other kind of join involves one
or more network streams as shown in Fig. 4. These streams
represent data sent to the processing device by its peers. For
this type of join processing, the device may be unable to use
an advanced hashing or sorting technique because the device

cannot influence the stream order or size. For our implemen-
tation we have chosen to use a traditional nested-loop join
processing algorithm. At the same time, if a device can cache
the entire network streams locally, then the device can again
use any alternative algorithm. Although speed is an important
factor in traditional query processing, we do not envision it to
be as important in ad hoc environments. We assume that the
complexity and amount of data will be relatively smaller than
for traditional database problems.

3.4.9 Example of join execution among peers

To illustrate how the protocol works, let us consider a mobile
device A. A has an implicit query that involves joining two
streams α and β, e.g., restaurants and gas stations. It has gen-
erated the query based on the prediction that its user is likely to
ask a similar query in the near future. The device can only col-
lect data that are currently available in its vicinity. As a result,
the device is never guaranteed that it will ever hold a complete
result to its query. Instead, the device tries to collect as much
data as possible. Using CQP protocol, the device attempts to
first contact someone who can completely satisfy the query. If
that fails, the device decomposes the query into two selection
subqueries, one for each stream. The device then attempts to
collect data for each stream and performs the join locally or
with the help of another peer. More importantly, the device
does not have to ask for both streams at the same time. As it
iterates through the possible decompositions of the implicit
query, the device can ask for one stream and delay the query
for the second stream. This is especially important in pervasive
computing environments where the concurrent availability of
all required sources is not guaranteed. For example, let us
consider the presence of two other devices: the first device B
contains data for stream α and is available now. The second
device C contains data for the stream β and will become avail-
able in 10 min. Using the CQP protocol, device A asks device
B first to execute the complete query and then to execute a
subquery over stream α only. Device A caches the result and
periodically checks for a presence of someone holding stream
β. Once device C becomes available, it is asked to collaborate
in performing another select subquery over its stream. Device
A then uses the incoming result to immediately join the two
streams α and β. This would be impossible using traditional
techniques because those return either a valid answer or no
data at all. At the same time, when device A caches the results
from device B, it may hold stale data with respect to its current
context. Therefore, if device A determines it has stale data, the
device will requery its vicinity in the permitted time. This way
the device is continuously collecting data for active implicit
queries. Therefore, if a query depends on a location and time,
the device will continue to proactively locate and obtain new
data. We also note that it is explicit queries that are important
from the standpoint of system performance.

4 Experiments

The objective of our experiments was to study the performance
of the CQP protocol in ad hoc networks. We employed an
experimental spatiotemporal environment representing a city
scenario. The scenario closely resembled a 4-h period in lower
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Manhattan in NewYork City. Devices in our environment rep-
resented moving objects such as pedestrians’ handhelds and
devices embedded in bicycles and cars. Devices also repre-
sented stationary objects such as store beacons or intersection
lights. Every device implemented the MoGATU framework.
Each device included an InforMa, an information consumer,
and several information providers. Each InforMa could adver-
tise and solicit information about other mobile devices in its
vicinity. It accomplished that using epidemic/gossiping tech-
niques traditionally used in mobile environments [30]. Each
InforMa could also advertise or solicit information providers
and send bulk data. Most importantly, each InforMa derived
implicit queries from profiles and used the CQP protocol for
answering them. Each InforMa also used the profile to adjust
its caching strategies.

We used GloMoSim [36] to simulate the environment. Glo-
MoSim is a scalable simulation environment for wireless and
wired networks. It is designed to use a discrete event simula-
tion capability provided by Parsec. GloMoSim defines several
mobility models, such as a random-waypoint algorithm, and
allows users to define additional models in order to emulate
network partitioning in time and space. GloMoSim simulates
the Open Systems Interconnect layered model defined by the
International Standards Organization. The simulator also de-
fines various radio models and radio propagation algorithms.
Most importantly, GloMoSim computes radio noise gener-
ated by devices in the vicinity and pseudorandomly introduces
additional radio noise in order to delay or drop packets. To
perform the simulation, we used Intel Pentium IV 1.4-GHz
desktops with 256 MB RAM, running Linux 2.4.18-5. The
GloMoSim and the MoGATU extension were written in C.

Users in our model could represent pedestrians, people
traveling using public transport, and people driving in auto-
mobiles. We chose parameters of our environment (speed of
movement and direction of movement) to mimic vehicular
traffic, cars, and their drivers. This represented the higher end
of the speed parameter and led to frequent changes in the
“vicinity” of a user. This also represented the worst-case sce-
nario for our approach; however, it was somewhat mitigated
by the fact that an automobile drives in a more predictable
and organized fashion in the city (along roads) than a device
allowed to walk completely randomly (direction- and speed-
wise) through two-dimensional space. The use of a city traffic
environment thus enabled us to better examine the CQP pro-
tocol performance in realistic scenarios, and our particular
choice of parameters stressed the protocol.

Within the environment we measured the system perfor-
mance in terms of the average success rate of answering ex-
plicit queries per user. We measured the average computing
cost each user’s device spent answering its explicit and im-
plicit queries, and we measured and compared the cost to the
average computing cost each device spent answering queries
posed by other devices in its vicinity. Finally, we measured
the network traffic incurred by each device when answering
its queries and the traffic due to answering queries of its peers.
For our experiments, we varied and measured the following
parameters:

• Query success rate: The average query success rate repre-
sented a fraction of explicit queries that each device was
able to answer using its local fragments. Initially, a de-

vice of every user had an empty cache and thus had no
“remote” data. The device could obtain additional data
by either accepting bulk advertisements from intersection
beacons or by executing implicit queries that were derived
from a profile.

• Profile accuracy: This represented how closely a user pro-
file resembled the real actions of the particular user. A
completely accurate profile knew precise explicit queries.
An accurate profile also knew the location and time a spe-
cific query was going to be performed. At the same time,
a completely accurate profile did not imply a 100% query
success rate. A car knowing a complete profile might still
be unable to obtain the required data due to its limited
resources and to the nature of the environment. For exam-
ple, a car driving in New York City was unable to answer
queries involving the current weather conditions in Los
Angeles. A 0% accurate profile had no knowledge, while
the profiles with accuracy from 1 to 99% synthetically
changed the complete profile to, on average, be able to
answer that percentage of explicit queries. For example,
50% accurate profile could, on average, answer 50% of
explicit queries.

• Willingness to help: This value represented the probability
of a car responding to a call for query given that it could
provide a valid answer. A willingness level set to 0% im-
plied no help from other cars in the vicinity. A willingness
set to 75% implied that a car was willing to help three
times out of four whenever it could.

• Computing cost: Computing cost represented the average
amount of energy used by a user’s device for performing
operations while pursuing either its goals or goals of its
peers. We created an abstract function that converted each
operation a car performed to a value. The function consid-
ered the complexity of the operation and the time it took
to complete the operation. We summed the values of all
operations performed by each car during the simulation
into a single scalar value. This value represented an aver-
age number of instructions or the energy consumption per
car.

• Network traffic cost: This represented the average number
of packets sent and received by each car. We counted the
number and size of packets each car sent and received
when attempting to satisfy its implicit queries. We also
counted the number and size of packets each car sent and
received when helping others.

We used the results of these metrics to measure the im-
plementation performance of the CQP protocol, that is, we
measured and studied the effects of:

1. Profile accuracy vs. Query success rate (Sect. 4.2)
2. Profile accuracy vs. Computing cost (Sect. 4.3)
3. Willingness to help vs. Query success rate (Sect. 4.4)
4. Willingness to help vs. Computing and network cost

(Sect. 4.5)
5. Willingness to help vs. Query success rate/computing cost

(Sect. 4.6)

To avoid confusion, in the remaining part of the paper we
refer to user devices simply as cars and to stationary inter-
section devices as beacons. We would like to emphasize the
fact that user devices are not necessarily just cars. They can
be bicycles or handheld devices carried by pedestrians.
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Fig. 5. Sample intersection representation used for the experimental
model

4.1 Experimental setup

4.1.1 Environment

We created a realistic model that mapped streets and their in-
tersections south of 72nd Street in Manhattan. We computed
intersections between two or more streets by creating vertices
in a directed graph. Our resulting model represented a graph
with 793 intersections (vertices) in a 5000 × 9000m space.
Each intersection was assigned an (x, y) coordinate. Addi-
tionally, each intersection was given a list of its neighboring
intersections. This allowed us to obtain an angular direction
and distance between each pair of intersections. Figure 5 ex-
emplifies what information each intersection had and how it
related to the original map.

4.1.2 Beacon entity

We assigned a stationary beacon to each intersection, which
resulted in a total of 793 beacons. We used these beacons as
sources for information about their locations, i.e., each beacon
had some knowledge about its vicinity. Each beacon imple-
mented an instance of MoGATU and was able to transmit up
to a distance of 125 m with a maximum throughput of 2 Mbps.
A beacon represented a computationally limited resource but
was able to provide a base of location-dependent data and had
an unlimited supply of energy. For example, a beacon at 52nd
Street and 5th Avenue contained information about restau-
rants, movie theaters, and the latest traffic conditions within
200 m. Although each beacon held a large amount of data and
was willing to share them with others, it did not have the capa-
bility to perform joins over multiple streams. Beacons could
provide answers to a selection query involving one stream
only, i.e., a scan. We chose this scenario to make users (cars)
work “harder” for their information.

4.1.3 Car entity

We used 100 cars, which represented the other type of devices
in our environment. Cars also transmitted up to a distance of
125 m and had a maximum throughput of 2 Mbps. Each car
moved freely according to the mobility model, which we de-
scribe below. Initially, every car was assigned a profile, which
represented the beliefs and desires of its driver with a cer-
tain degree of accuracy. To obtain additional data, a car had
to be close to another device in the environment when the
other device was broadcasting bulk data, i.e., pass a beacon.
Alternatively, a car had to infer an implicit query based on
its profile and use that to interact with other devices in its

vicinity, irrespective of whether those were cars or beacons.
Unlike beacons, a car represented a computationally powerful
device. When a car was willing to collaborate, it could help in
processing a query over a single or multiple streams.

4.1.4 Mobility model

To allow cars to move in a more organized manner than using
the random-way-point model, we extended the work on the
smooth random-way-point mobility model [5]. This model
defined parameters allowing a moving object to accelerate,
decelerate, and move in a random-way-point pattern. In our
model we restricted each car to drive from one intersection to
another. Our model also accounted for acceleration and decel-
eration of an object; however, our objects did not have to come
to a full stop in order to change their directions. Additionally,
we considered all traffic lights in the environment to ensure
that cars obeyed the local driving laws.

When a car started moving, it had an initial location,
preferred speeds, acceleration properties, maximum time pe-
riod for parking, and parking frequency. We fixed the turning
and maximum speeds at 17.5 mph (28.16 km/h) and 35 mph
(56.32 km/h), respectively. Additionally, we fixed the min-
imum and maximum acceleration to −4 m/s and +2.5 m/s.
These values were suggested in [5]. After collecting all traces
for 100 cars, the average speed was 21.4 mph (34.44 km/h),
which is similar to a realistic traffic and speed patterns in a
city.

In the simplest case, a car was driven by a tourist randomly
throughout the city. The car started by accelerating to its max-
imum speed. It maintained the maximum speed while it was
not too close to the next intersection. Once a car started ap-
proaching an intersection, it decided on its next move. It could
decide to turn left or right and thus would have decelerated to
its turning speed. The car could also decide to continue going
straight, if possible. In that case the car maintained its current
speed. Alternatively, the car could notice a yellow or red light
and so would start braking in order to come to a complete stop.
The car continued to move in a similar fashion for a random
amount of time bound by the value of a parking frequency. At
that time, the car stopped moving and waited for a pseudoran-
dom time up to the predefined maximum parking period. The
car then continued to drive in a similar fashion for the rest of
the simulation.

In a more complex case, cars were driven by taxi drivers.
They followed the same speed and turning principles, as did
tourists’ cars; however, instead of making semirandom deci-
sions at each intersection, they precomputed their routes. The
routes were computed as the shortest paths to the destination
from current positions. The taxis followed the routes to the fi-
nal destinations. This simulated an actual taxi driver asked by
her passenger to drive to a particular location in the city. Once
the car reached the destination, it waited for a fixed amount of
time before serving the next passenger.

For our environment, we computed mobility traces for 50
taxi drivers and 50 traces for tourist drivers. We used the re-
sulting traces as inputs to GloMoSim for the 100 mobile nodes
emulating cars in our environment.

We placed tourists in automobiles rather than as pedestri-
ans because the mobility afforded by an automobile is more
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Duration 4 h
Space (x,y) 5000 x 9000 m

Tx range 125 m
Tx throughput 2 Mbps

Data 10 ontologies, each 4096 entries
Devices 100 cars (C); 793 beacons (B)

Profile accuracy C: any; B: none
Will to help C: any; B: 0/join,100%/select

Initial distribution C: no data; B: local data

Fig. 6. Experimental parameters

difficult from a data management perspective. Given the speed
of cars, it is possible that, by the time a data source is discov-
ered and selected by the protocol, it has already moved out of
range. Our experiments therefore report results under stress
conditions. These experiments conducted under more favor-
able conditions, which assume people rather than cars, would
clearly lead to better results. We also did not choose to use
bicyclists because they would represent yet another type of
car but driving at slower speeds.

4.1.5 Data, profiles, and queries

Ten distinct ontologies were defined for our experiments. Each
ontology defined five attributes and their respective relation-
ships. For example, one ontology depicted an abstraction of
a restaurant database. Another ontology was an abstraction of
traffic conditions measured and used by both cars and intersec-
tion beacons. We created 4096 data instances of each ontology
and distributed the data among intersection beacons. For on-
tologies using (x, y) coordinates, e.g., a restaurant location,
we placed these data at specific beacons in that location. This
ensured that a beacon knew only about restaurants in its imme-
diate vicinity. For ontologies not following (x, y) coordinates,
we distributed the data randomly. Some ontologies included
the concept of time, and thus data availability depended on
both location and the time of day. For example, traffic jam
warning information was available only when a jam occurred.

We constructed 36 distinct explicit queries for each car.
Each query contained between 1 and 16 conjunctive Boolean
predicates. One half of the queries were static, i.e., the filtering
clause for these queries was fixed. The clause did not depend
on the location and time a query was posed (e.g., “Where is
the National Art Gallery?”). Other queries were dynamic, i.e.,
their filtering clause depended on the car’s current location
and the time of day (e.g., “Where is the closest Chinese restau-
rant?”). Out of the 36 queries, 18 involved one data stream, 12
required joins over two data streams, and 6 required three data
streams. We refer to queries involving one stream as simple
queries, while queries involving more than one stream are re-
ferred to as complex queries. We note that intersection beacons
could provide answers to simple queries only as specified in
Sect. 4.1.2. In addition to specifying a query, a car also had the
query prerequisite information describing the time, location,
frequency, and probability that each query would be asked.

Additionally, we constructed profiles for each car with a
varying accuracy from 0 to 100% with a step of 20%. The 0%
accurate profile contained no information. A completely accu-
rate profile represented knowledge enabling a car to compute

implicit queries equivalent to the 36 queries each car could ask.
The other four cases held a permuted subset of the complete
profile such that the data collected using the implicit queries
could answer, on average, only that many explicit queries. We
synthetically computed the incomplete profiles so that, given
all global databases, the number of entries returned by exe-
cuting the union of explicit and implicit queries divided by the
required cardinality of answers was close to the desired accu-
racy rate. Note, however, that even the precise knowledge of
the user-explicit queries was insufficient. This was because no
car knew its precise location at a future point in time when a
dynamic query was posed.

The profiles and explicit queries were constructed ran-
domly in order to limit any correlation bias among different
cars.Additionally, since explicit queries were constructed ran-
domly and only a limited amount of data existed, it was often
the case that no valid answer could be delivered or no such
answer existed. On the other hand, this did not limit the accu-
racy of our experiments. No car in a real environment would
have complete global knowledge of all data. Consequently, the
car could not always determine whether a query could yield a
result with the desired cardinality of an answer.

4.2 Profile accuracy vs. query success rate

In the first experiment, we measured how profile accuracy
improved the average query success rate. We varied the profile
accuracy of each car from 0 to 100% with an incremental step
of 20%. For each step, we calculated the average success rate
of answering all explicit queries per car. We also calculated the
average success rate of answering explicit queries involving
only one, two, or three streams. We obtained each result by
assigning a partial credit to all cars. If n represented the number
of queries asked by a car, α represented the cardinality of
the answer obtained for a query i and γ denoted the desired
cardinality for i, then a car had a total partial credit, from 0 to
n, as:

1
n

∑

n

min(α, γ)
γ

. (3)

We looked at two different scenarios: in the first case no car
was willing to help answer queries posed by peers. In the sec-
ond case each car had the willingness-to-help level set to 75%.
This ensured that when a car had a valid answer it responded
to, on average, three out of four call-for-query messages only.
Figures 7a and b plot the collected results for willingness lev-
els equal to 0% and 75%, respectively.

The results for 0% accurate profile in the first scenario de-
fined our baseline. These results represented the average query
success rate a car could obtain using only intersection beacons
in its vicinity. Each car could answer its explicit queries using
only bulk data advertised by peers, i.e., intersection beacons.
The overall baseline query success rate was 0.193. The base-
line query success rate for explicit queries involving one, two,
and three streams was 0.260, 0.177, and 0, respectively.

As expected, a more accurate profile yielded a higher av-
erage query success rate than a less accurate profile. In the
first case, complete profile accuracy improved the overall suc-
cess rate from the original 0.193 to 0.387. This was a 100%
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Fig. 7a,b. Effects of profile accuracy on average query success rate.
a Willingness to help = 0%. b Willingness to help = 75%
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Fig. 8. Effects of profile accuracy on average computing cost

improvement in results obtained using 0% accurate profiles.
In the second case, complete profile accuracy together with a
75% probability of help from other cars improved the overall
success rate from 0.193 to 0.439 – a 127% improvement.

The average success rate never reached 1. This implies
that no car, on average, was able to answer all of the ex-
plicit queries. The best outcome was in the second case, which
yielded only 0.506 for queries joining two streams. The best
overall average success rate was 0.439, again in the second
scenario. These results were due to the fact that some car
asked queries that could not be answered by anyone in its
current and/or past vicinity. Queries were not answered either
because no answer existed in the environment or because no
device with the answer was ever in the vicinity of the querying
car. In addition, an important factor was the speed of each car
in the environment. On average, the cars traveled at 21.4 mph
(34.44 km h). Consequently, some interactions could not be
completed because the two interacting peers moved away too
soon.

4.3 Profile accuracy vs. computing cost

In the next experiment we measured the amount of effort a
car expended on answering its user’s queries. We again varied
the profile accuracy of each car from 0 to 100% with an incre-
mental step of 20%. For each step we calculated the computing
cost by measuring the operations and time that was required
for a car to execute the operations. We considered only those
operations that a car performed while executing its implicit
queries. We did not include the cost caused by other devices
requesting help. Like the previous experiment, we looked at
two different scenarios. The first scenario set the willingness
to help to 0%, while the other scenario set willingness to help
to 75%. Figure 8 shows the results.

As expected, the computing cost quickly increased with
more accurate profile. With a 0% accuracy level of a profile,
no car derived any implicit query. Therefore, a car incurred no
computing cost with a 0% accurate profile. For other accuracy
levels, the cost increased by almost a factor of two from one
accuracy step to the next. This was due to the fact that each
car had more implicit queries to answer, half of which could
not be answered, as suggested in Sect. 4.2. This could also be
validated from the fact that the costs from the two scenarios,
0% and 75% willingness to help, closely resemble each other.
Even though cars were willing to help more often in the second
case, they still could not provide answers to the other half of
queries.

4.4 Willingness to help vs. query success rate

After establishing the experimental baseline in Sect. 4.2, we
measured how the different willingness-to-help levels im-
proved the average query success rates. We set the profile ac-
curacy to 80%. This meant that each car had almost complete
knowledge about the types, time, and location of queries its
user was likely to ask. We varied the willingness-to-help level,
i.e., car degree of collaboration, from 0 to 100% with incre-
mental steps of 25%. At one extreme, no car was willing to
help, while at the other extreme each car was always trying to
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Fig. 9. Effects of willingness to help on average query success rate

help whenever it could. We used the same approach as in the
first experiment to calculate a partial credit for each car and to
plot the results in Fig. 9.

The collected results show that the CQP protocol improved
the average query success rate for each car. The total query
success rate was 0.37 when no car was willing to help and the
total query success rate was 0.433 when all cars were willing to
help. This was a 13.5% improvement.We were, however, more
interested in the performance of explicit complex queries. The
success rates for queries over two and three streams were 0.425
and 0.103, respectively, when no car was willing to help. The
help of all cars yielded success rates of 0.506 and 0.15, re-
spectively. For queries over three data streams, the rate of
improvement was 45.6%. Therefore, the CQP protocol signif-
icantly improved the execution of joins.

Interestingly, the results for queries involving two streams
always outperformed queries involving a single stream. This
was caused by the smaller number of executed queries requir-
ing two streams and by the fact that many of these queries
could reuse locally cached data. Each car asked on average 18
single stream questions, 12 involving two streams and 6 in-
volving three streams. These questions were generated pseu-
dorandomly, but it turned out that some questions involving
two streams could always reuse results from other questions.
Since the profile accuracy was 80% for this experiment, each
car was able to better predict needed data and adapt its caching
and querying policies accordingly. Moreover, when defining
the queries we required more “hits”, i.e., larger answer car-
dinality, for queries involving a single stream than for com-
plex queries. We gave partial credit to queries returning at
least some answer. This, however, was not enough for sim-
ple queries to outperform queries involving two streams when
profile accuracy was above 60%, as is apparent from results
in Sect. 4.2.

4.5 Willingness to help vs. computing and network cost

Although on average every car improved its query success rate,
the improvement was not without a cost. In exchange for better
success rates, each car paid in terms of its computing cost and
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Fig. 10. Effects of willingness to help on average resource cost for
helping peers

additional network traffic. In this experiment, we compared
how much of the total resources was, on average, allocated
to helping others. We did this by collecting and calculating
the fraction of total cost (computing and traffic) that a car
used to help other peers. We again set the profile accuracy
level to 80% and varied the willingness-to-help level from 0
to 100% with an incremental step of 25%. We collected the
total amount of computing costs used by each car and the
amount of computing done on behalf of others. The latter cost
included evaluation of call-for-query messages, submission
of bids, performing selection and join operations for peers,
for sending data to peers, and for collaboration-related timer
processing. We also collected the total amount of data sent and
received by each car. We differentiated among traffic inflicted
while helping peers and traffic due to answering the car’s own
implicit queries. We display the values in Fig. 10. We note
that the vertical axis defines a fraction of resources used for
helping others, and the displayed range is between 0 and 0.5
only.

The results show that the cost for helping others increased
both in terms of computing resources and network traffic; how-
ever, the computing costs due to helping others was at most one
third of the total resource consumption and the traffic cost was
11% only. Interestingly, the fraction of received data vs. the
total amount of received data did not change significantly. The
fraction was equivalent to 10.4% when nobody was willing to
help and 11.1% when everyone was willing. This was due to
the fact that cars received and accepted more call-for-query
messages. In turn, this caused more requests for subsequent
data during the streaming phase; however, other cars experi-
enced a similar pattern. Therefore, both the number of data
received when helping others and the total amount of received
data increased proportionally.

4.6 Willingness to help vs. query success rate/computing cost

In this experiment, we measured how different levels of will-
ingness to help affected the ratio of utility to cost. In our exper-
iments, a utility was represented by the average query success
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Fig. 11. Effects of willingness to help on average query success rate
per computing resources

rate of each car. We then represented the cost value in terms
of the total computing cost per car. Again, we set the profile
accuracy level to 80% and varied the willingness-to-help level
from 0 to 100% with an incremental step of 25%. We collected
the average success rate for answering explicit queries and the
average computing cost. We show the results in Fig. 11.

The utility to cost ratio remained constant. The ratio value
for no willingness to help was 0.021. The value was higher
than for other willingness-to-help levels because no car ever
responded to a call for collaboration. In this case each car
spent the least amount of resources. Moreover, each querying
car in this case utilized resources of local intersection beacons
only. In the other cases where cars were willing to help, we
saw that the ratio value stabilized at 0.017. This was due to the
fact that, even though each car executed more computations,
and thus had a higher computing cost, each car was also able
to improve its overall query success rate. Therefore, the in-
creasing computing cost was well justified by the improving
rate of query success rate.

5 Conclusions and future work

We have presented the design and implementation of the CQP
protocol that enables devices in pervasive computing environ-
ments to locate data sources and obtain data matching their
queries. A query can represent a selection scan over one data
stream. It can also consist of a join over multiple streams. The
protocol combines the traditional concept of nested-loop joins,
our previous work on selection queries in pervasive comput-
ing environments, and the principles of Contract Nets. The
features of the protocol enable any device, irrespective of its
limited computing, memory, and battery resources, to collabo-
rate with other peers in order to obtain an answer for its queries.
We have shown that the protocol improves the overall system
performance in terms of the number of successfully answered
explicit queries. We have also shown how the protocol affects
the combined computing cost and the network traffic inflicted
on each mobile device.

We have not addressed the issues concerning privacy and
incentive for devices participating in information exchange.
Although these are valid issues, our focus in this paper was
primarily on enabling mobile devices to exchange data in per-
vasive computing environments. Colleagues in our group are
developing policy-based security and privacy mechanisms for
such environments [23,35]. We also have not addressed the
problem of ontology/schema translation. This is an important
objective for our future work since any two devices under-
standing different (incompatible) types of ontology can meet
in this serendipitous environment. As a simple solution a de-
vice may ignore peers it does not understand; however, that is
clearly an inefficient solution because it limits the amount of
data available in the environment. The presence of an ontol-
ogy translator will likely become paramount. There has been
some work on this problem, but the proposed solutions are
still in their preliminary stages and require vast computing
and memory resources not available to mobile devices [17].
Lastly, we have not addressed the notion of update transac-
tions, though we have done some initial work on e-commerce
type transactions [1] in these environments.
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