
Development of two Science Investigator-led
Processing Systems (SIPS) for NASA’s

Earth Observation System (EOS)
Curt Tilmes, GSFC

NASA Goddard Space Flight Center
Greenbelt, MD 20771

Email: Curt.Tilmes@nasa.gov

Mike Linda, SAIC
7501 Forbes Blvd., Suite 103

Seabrook, MD 20706
Email: Mike.Linda@gsfc.nasa.gov

Albert J. Fleig, PITA Analytic Sciences
8705 Burning Tree Rd.
Bethesda, MD 20817

Email: Albert.J.Fleig@gsfc.nasa.gov

Abstract— While building a series of large data processors
for remotely sensed data, GSFC LTP generalized the approach
and developed a universal system architecture. With a suite
of plug-in modules for a variety of functions, the design is a
customizable data processing system driven by a rich set of
automated production rules. It can take high volumes of diverse
inputs, recognize data set types, run many separate processes
simultaneously as well as sequentially against the data, and
automatically send resulting products to end users. Implemented
with commodity hardware and open source software, the highly
scalable system has been proven in a number of applications
ranging in size from tiny to huge.

I. INTRODUCTION

NASA Goddard Space Flight Center (GSFC) Laboratory for
Terrestrial Physics (LTP) has been building data processing
systems for a number of years. We have now evolved several
systems. Most recently, starting in 2001, the LTP developed
a Science Investigator-led Processing System (SIPS) for the
Ozone Monitoring Instrument (OMI). Based on experience
from building previous systems, we generalized the approach
and showed that it can be quickly customized to a number of
missions. More importantly, due to the nature of the science
work that we support, our approach and the system architec-
ture play together in an uncommon way where hardware is
acquired as the project evolves. Our approach presents several
advantages including much reduced cost and a resilient system
that is highly adaptable and scalable.

II. BACKGROUND

OMI, to be launched on the Aura spacecraft in mid 2004,
is a European contribution to the Earth Observing System
(EOS). OMI measurements will be highly synergistic with data
from other instruments on the EOS Aura platform. OMI will
provide daily global coverage. It will continue the Total Ozone
Mapping Spectrometer (TOMS) record of ozone and related
atmospheric chemistry parameters.

The Netherlands’s Agency for Aerospace Programs (NIVR),
in collaboration with the Finnish Meteorological Institute
(FMI) and the Royal Netherlands Meteorological Institute
(KNMI), sponsored OMI construction. The OMI science team,
led by a principal investigator from the Netherlands, includes

government and industry participants from the Netherlands,
Finland, and the United States. The team is developing algo-
rithms, calibration, data processing, quality assessment, vali-
dation, and analysis software. Much of this science software
is being hosted on the LTP’s OMI SIPS.

III. GENERALIZED SIPS

A SIPS can be simplified to a context diagram shown in
Fig. 1. Data providers, such as remote sensing instruments,
or national weather centers, supply data. The data is ingested,
processed, and exported to receivers. The processing system
includes a way for human operators to control it and an
interface for the curious to see what is going on.

Web
Interface

Processing
System

Data Data
ReceiversProviders

Operators
and

Users

Data ExportImport

Fig. 1. Data Processing Context Diagram

Our approach to a generalized SIPS considers that the data
processing can be split into combinations of simultaneous
and sequential production steps. Although we sometimes call
the simultaneous execution of science code “parallel process-
ing,” the missions we support need to be distinguished from
massively parallel processing projects—we are not one of
those. The remote sensing algorithms that we deal with are
developed to execute independently of each other. Some feed
data sequentially from one process into another, but many
have no connection with others except for occasionally using
the same input files. In response, we developed a general
purpose SIPS that drives science processes simultaneously and
in sequences.

Satellite-acquired data often comes in discrete chunks that
can be dealt with independently of each other. Processing

0-7803-8742-2/04/$20.00 (c) 2004 IEEE 2190

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on February 05,2024 at 17:35:57 UTC from IEEE Xplore. Restrictions apply.

many independent chunks at the same time permits an increase
in performance of the overall system. In designing a SIPS,
we took advantage of such natural separation of data and
algorithms.

Satellite instrument data is typically processed in levels.
Level zero (L0) is raw data. Level 1B (L1B) is calibrated and
geolocated pixel-level radiance. Level two (L2) is also pixel-
level data, but converted to physical quantities (ozone, water
vapor, temperature, etc.). Level three (L3) is data re-sampled
in time or space; it is often aggregated from several L2 files.

Most of our SIPS processing is separated by processing
level and by products within processing levels. For example,
L0 data from MODIS and OMI comes in 2-hour sets. The
MODIS SIPS processes L0 data into 5-minute L1B granules
and the OMI SIPS generates one-orbit (90 minute) L1B files.
L2 processing in both systems maintains the same granule size
as their L1B. Since processing one data granule through one
algorithm is often independent of processing the same granule
through another algorithm, two algorithms can run simultane-
ously against the same input files. Similarly, processing one
granule through one algorithm, and processing the next granule
through the same algorithm is also often independent of each
other. L3 data can be often generated in independent spatial
regions that are smaller than the global data set. A SIPS can
take advantage of such independent processing and run many
steps simultaneously.

Over the years we evolved a generalized SIPS architec-
ture that is shown in Fig. 2. It can drive science software
in arbitrary and complex combinations of simultaneous and
sequential processing steps.

Archiver

Standing
Orders

Scheduler

Loader

Output
Data

IngestImport Export

Processing

Input
Data

Fig. 2. SIPS System Architecture

The major functional components of the generalized SIPS
were designed to be loosely coupled. The functions can be
hosted on separate machines as discussed in a later section
on scaling. Data within the system is handed off from one
discrete function to the next.

Data flow begins with an Import function as shown in Fig. 2.
Import provides a storage area where external entities can
deposit files. Import encapsulate handshaking that is unique to
each external entity. When new input files become available,

Import transports the files in and hands them to Ingest.
Ingest parses metadata associated with inputs and deter-

mines the type of received files. It hands files and information
about the files to the Archiver.

The Archiver manages a storage system. It saves files and
keeps track of them with entries in a small database.

The Scheduler checks for new file entries in the archive and
compares them against production plans using production rules
as a guide. Production plans are high level definitions of what
should get processed. Production rules are detailed definitions
for each science algorithm that describe what combinations
of input files are needed for each execution of the science
software. The Scheduler starts with production plans that it
expands into details, then it interprets the details using the
production rules. It then matches the interpretations against
input file availability. The result is a decision whether or not
there are enough input files available in the archive to initiate
a particular algorithm execution.

Let’s follow an example to illustrate how the Scheduler
works. Suppose that a production plan calls for the Ozone
algorithm to be executed for the month of June. When a
human operator enables the plan, the Scheduler expands it
using the Ozone algorithm’s production rules. The rules might
say that the algorithm should run once per 90-minute orbit.
The month of June has 30 days and therefore there will be
approximately (30 days) x (24 hours/day) x (60 minutes/hour)
x (1 execution/90 minutes) = 480 executions of the algorithm
for June. The Scheduler then determines a list of discrete input
files for each execution. The production rules might say the
the Ozone algorithm needs L1B radiances, so the Scheduler
might determine that it needs an L1B file of radiances that
spans from May 31 23:50 to June 1 01:20 for one of the
executions. In addition, the production rules might also call for
an L1B solar irradiance file that is generated (for OMI) once
per day. The Scheduler would look for an irradiance file that
temporally overlaps the L1B radiance file. With such a list of
needed files, the Scheduler queries the database to determine
which files in the archive match the criteria. If the query shows
that all files are available, the Scheduler initiates the algorithm
execution. If the files are not all available, the Scheduler tries
the same set of queries a while later. The Scheduler repeats
the process until all executions in the enabled plan have been
initiated.

When an algorithm execution is initiated, the Loader gets
the file list from the Scheduler and retrieves the needed files
from the archive. It loads the files into a processing node.
Processing then initiates the science algorithm against the
retrieved files.

When Processing finishes, it transmits the output files to
Ingest. Output files are new files for the archive, and just as
with any new files, Ingest parses metadata associated with the
files, determines file types, and hands the files to the Archiver.

Once files appear in the archive, the Standing Orders
processor matches up new files with user orders. For matches,
the Standing Orders processor uses Export to retrieve copies
of the files from the archive and send them out to end users.

0-7803-8742-2/04/$20.00 (c) 2004 IEEE 2191

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on February 05,2024 at 17:35:57 UTC from IEEE Xplore. Restrictions apply.

IV. MODAPS

The LTP developed a SIPS for the Moderate Resolution
Imaging Spectrometer (MODIS). The MODIS Data Processing
System (MODAPS) has been in full operation since the
launches of the Terra and Aqua spacecrafts in December 1999
and May 2002 respectively.

Since its early stages, MODAPS has continually evolved
to better support the MODIS mission. MODAPS originated
out of a 1997-vintage SeaWiFS Data Processing System. Ini-
tially, MODAPS was the MODIS Emergency Backup System
(MEBS) that later became “version zero” (V0) MODAPS.
By the time of Terra’s launch, MODAPS evolved to version
one (V1) described earlier [1]. With the launch of Aqua,
MODAPS evolved again into version two (V2) in which
the software architecture was somewhat generalized and the
software implementation was streamlined and made more
robust. MODAPS version three (V3) came about a year later.
It included a hardware topology shown in Fig. 3 in which the
central supercomputer is augmented with 2-processor Linux
servers connected by a network. The result is an “asymmetric
cluster” [2].

We now run multiple instances of MODAPS. The system
can process and reprocess MODIS data at a rate many times
faster than real time.

processing disks

HIPPI
Network

. . .

100BaseT

Gigabit Ethernet

Network Switch

. . .Online
Disk

Online
Disk

Fibre Channel archive disks

28, 64, 80 CPUs
SGI Origin

2p node
Linux

2p node
Linux Linux

Database
Node

2p node

Fig. 3. MODAPS V3 Hardware Architecture

V. FROM MODAPS TO OMIDAPS

MODAPS started out constrained by the original EOS her-
itage. The EOS system design called for centralized massive
computers with shared memory. The idea was to process im-
mense amounts of data all at once. SGI multi-CPU mainframes
were selected for the EOSDIS.

Our first MODIS SIPS followed the EOS approach—until
we realized that we had functions we did not need. We were
hosting largely independent processes on CPUs that did not
have to communicate closely with each other. Memory did
not need to be shared between CPUs. The storage system
did not need very high speed I/O between CPU and disk

for simultaneous shared access to large data sets. Unique
capabilities of the large SGI mainframe were not key for
MODIS. We realized we could buy the same computing
capability, without special mainframe features, at a lower cost.

As we added Intel Linux servers into MODAPS V3, and
had a chance to load the small Linux machines with lots of
work, we found that inexpensive computers were very capable
and robust. Since the job of the mainframe was actually a set
of several jobs that could be hosted on separate machines, the
multi-CPU mainframe could be replaced by loosely coupled
smaller machines. With sufficient communication between the
units, all functions of a processing system could be split up
into individual computers connected by a network. Also bulk
archiving could migrate from the MODAPS single large file
server to a farm of smaller file servers. Since technology has
now reached a point of providing sufficient networking, a large
cluster of commodity processors and disks could be used for
constructing the entire SIPS.

In 2001, when we set out to evolve MODAPS into the
next generation processing system, OMIDAPS, we considered
the differences and similarities between the two. Although
the science between MODIS and OMI is quite different,
running large numbers of science algorithms systematically
and repeatedly against vast quantities of data remains the
same. Both systems have essentially identical non-science
system requirements. As a result, MODAPS and OMIDAPS
system architectures are identical at the level shown in Fig. 2.
But instead of simply replicating a MODAPS, we decided
to evolve the system so it can be hosted on less expensive
hardware.

At the same time that we switched to commodity computers,
we also changed to open source software. The operating sys-
tem became Linux, and the database was implemented using
PostgreSQL. Having a system that is based completely on open
source allows the entire implementation to be distributed and
used without license concerns or costs.

One other notable change between MODAPS and OMI-
DAPS includes a generalized graphical user interface and re-
porting structure. While redesigning it, we also reimplemented
it as a web-based HTML system instead of the MODAPS Java-
based GUI. The web interface is hosted on an Apache web
server and implemented mostly using scripts written in Perl
and Mason.

VI. OMIDAPS

The OMI Data Processing System (OMIDAPS) hardware
architecture is shown in Fig. 4. A central network switch
connects a number of small servers that play various roles
in the system. The functions shown in Fig. 2 are typically
spread across one or more machines. We will say more about
that in the subsection on scaling.

Fig. 5 depicts the major interfaces between OMIDAPS and
external entities. OMI sends raw L0 data to ground stations. It
then flows through several NASA systems that are external to
OMIDAPS. Within minutes of acquisition by the spacecraft,

0-7803-8742-2/04/$20.00 (c) 2004 IEEE 2192

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on February 05,2024 at 17:35:57 UTC from IEEE Xplore. Restrictions apply.

Users

Operators
and

Data
Providers

Receivers
Data External

Node

External
Node

Node
Web

Node
Web

Database
Node

Primary

Database
Node

Backup

Node
Archive

Node
Archive

Node
Archive

...

...

...

...
Archive Disks

Archive Disks

Node
Processing

Node
Processing

Node
Processing

...
...

Disks
Buffer

Database

Network
Switch

Disks

Local

...

Processing
Disks

OMIDAPS

Fig. 4. OMIDAPS Hardware Architecture

the L0 data will be stored in the Goddard Earth Sciences
Distributed Active Archive Center (GES-DAAC).

OMIDAPS receives OMI L0 data from the GES-DAAC
through a buffer server. Once in OMIDAPS, the L0 data is
processed into L1B products. Calibrated and geolocated L1B is
then fed to science algorithms that produce L2 and L3 outputs.
All standard data products, L1B through L3, are transmitted
back to the GES-DAAC for long term archive and distribution
to the world.

OMIDAPS also provides direct data distribution to the OMI
Science Team for a number of purposes including quality
assessment, algorithm improvement, calibration, and trending.

We have several instances of OMIDAPS. A Development
instance is used for integration and testing of new OMIDAPS
features as well as for unit testing of OMI science processes
as they get delivered from the Science Team. A larger Test

Global Calibration
Ozone
Image

Data
Queries

Files

File
Parameters

standard
data productsdataorbital

Distribution to Science Team
Data and QA Product

Processing
Algorithms

EDOS

Public

Web

Site

OMIDAPS

OMI

Science

Team

elements

L0 Data

KNMI

Operational

ancillary

and ephemeris
orbit attitude

reprocessing

data

GES−DAAC

Fig. 5. OMIDAPS Interfaces

instance is used to ensure operational readiness of the inte-
grated system. The Test instance is functionally identical to
the Production instance (whereas the development instance
may not always be identical when new OMIDAPS features are
created). The Test instance is also used for science software
characterization that is key for cluster tuning; cluster tuning
is discussed later. Tested algorithms are then installed into
a Production instance that processes real OMI data in bulk.
Although different in size, all the OMIDAPS instances are
functionally identical. That is key for development and testing:
there is no sense proving that something works when it is
different from the target.

A. Scaling

Since it would not be cost-effective to replicate a full-sized
production system multiple times in support of development
and testing, we designed OMIDAPS to function identically at
whatever size we choose. Previous projects taught us that we
need a system that will evolve as the mission unfolds. Since
the growth direction is difficult to predict ahead of time, we
devised a system that will grow in increments. The direction of
each increment, whether it means adding storage, processing
power, network hardware, or whatever, will be determined as
the project develops. We start with a system that is small and
out of balance, then add or reassign hardware without losing
any of the initial investment.

Ellipses in Fig. 4 show some of the places where the
system can expand. By adding or reassigning hardware, each
OMIDAPS function can grown or shrink in performance. The
system can be hosted across as many machines, and across as
many disks as are suited for the processing job at hand.

Our design makes no assumptions about the number of
servers in the system. As far as the software is concerned,
there can be any number of any computer or disk. Database
tables are populated so as to describe the hardware topology
to the software. The tables provide pointers that show each
software component where to find what across the network.

To demonstrate scalability, we have implemented OMI-
DAPS instances of varied sizes. Our smallest OMIDAPS runs
on a single 1.2 GHz laptop. The database tables map all
functions to the single computer.

The Test instance was brought up very early in the project,
about two years ago. It was used for teaching our testers how
to run OMIDAPS, and for exercising initial versions of OMI
science code.

Our Production instance is expected to grow the most. As
we progress through project phases, more machines will be
added. Currently, we are eagerly awaiting the launch of Aura
and first light data from OMI. The largest of our assembled
systems, Production has been sized to process data during the
first few months of the mission using science software that
we have today. We expect this system to keep up with real
time data from OMI at a nominal 1X processing rate. The
system must actually support processing rates of at least 2X
to accommodate periodic down time with the ability to catch
up to real time. As we gain more science software to process,

0-7803-8742-2/04/$20.00 (c) 2004 IEEE 2193

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on February 05,2024 at 17:35:57 UTC from IEEE Xplore. Restrictions apply.

we expect to grow the Production instance using hardware
which will be more capable than what we could have bought
initially for the same money.

Given real data, our science team will modify their algo-
rithms during the first months after Aura’s launch to better
process whatever was unexpected from the instrument in orbit.
We have been using simulated OMI data in lieu of real data; it
proved to be a very important ingredient in the development of
the science software. But simulated data does not have enough
information and artifacts in it to permit complete development
of the science algorithms. So starting a few months after the
OMI launch, we expect a continuous stream of improved
science code. After characterization and integration of the
revised science code into OMIDAPS, and after evaluation of
the integrated processing by the science team, we will rewind
back to the start of the data collection and reprocess all of the
mission’s data with the new software. Algorithm improvement,
and reprocessing, will continue throughout the mission.

To be able to quickly reprocess data, OMIDAPS has to
have processing capability several times the nominal 1x rate.
Experience from the SeaWiFS project and our own experience
reprocessing MODIS, TOMS, and SBUV data shows that there
is no upper limit on the desired x-rate for reprocessing. Faster
is better.

Although faster and bigger is better in most cases, there
is also a need for small OMIDAPS systems. It happens
often that a scientist wants to reprocess some data subset in
smaller volumes. Still too big for the scientist’s development
system, or too mundane to manually run thousands of times,
some of our team members occasionally need to run jobs on
an automated system rather than on a large or fast system.
Sometime small and automated is also the right answer.

The Database Node is the only monolithic component of
OMIDAPS that cannot yet be distributed across multiple
hardware. We continue to closely monitor its performance as
the system is scaled larger, but so far the database has not
been a bottleneck for us. Experience reprocessing TOMS and
SBUV data gave us confidence that our database is adequate.
Using today’s OMIDAPS, we reprocessed the complete TOMS
and SBUV data sets several times. In the latest reprocessing
of the TOMS data, OMIDAPS processed 108,000 full orbits
(twenty-five years) of data through 4 main processing steps
per orbit. The final result consisted of 800,000 L2 and L3
files which totaled about 400 GiB of product data. To produce
it, there were about 350,000 discrete executions of the science
software that were scheduled and managed by OMIDAPS. All
this was done using a relatively small database server. The
entire TOMS reprocessing took four days. That means the
system handled about 88,000 science software executions per
day using hardware that is already several years old.

OMI reprocessing will take longer than four days when
all the mission’s data becomes available because the OMI
data rate is about 1,000 times that of TOMS. However, the
number of algorithm executions that the database must support
is roughly similar. With 15 Aura orbits per day, perhaps 6
years of raw OMI data, and about 60 algorithms, we expect

a full reprocessing at the end of the mission to call for about
two million algorithm executions. Using the 88,000 algorithm
initiations per day from the current system that was used
for the TOMS reprocessing, the database could handle two
million initiations in about 23 days or less using today’s
hardware. Of course, with the higher OMI data rate, the overall
reprocessing will take substantially longer than this. But the
TOMS reprocessing proved that our system will be capable of
scheduling and managing the needed number of jobs even for
OMI.

Flexibility and growth of a system leads to an additional
task: balancing all the resources. As hardware is added, we
want all of the resources to be loaded at about the same level.
No sense, for example, having the internal network extremely
busy while disks and CPUs go mostly idle. Finding the right
balance is discussed next.

B. Tuning

Balancing the cluster was discussed initially in a paper about
MODAPS [2]. OMIDAPS presents similar challenges. The
problem stems not so much from the architectural approach
to building the system as it does from the nature of the work
that we support. The system performs best when the various
subsystems are configured optimally for the science software.
Different remote sensing algorithms need different amounts of
computer resources. OMIDAPS has to be configured accord-
ingly.

Since our science software will change throughout the
mission, balancing resources in the cluster will be an ongoing
task. We are taking a multifaceted approach.

We start by taking a rough guess based on science software
that we have in hand. Prior to 2003, simulated OMI data and
the science algorithms were not ready for production testing.
To configure, test, and tune the initial OMIDAPS prototype, we
used 25 years of TOMS and SBUV data. The early OMIDAPS
prototype not only provided for reprocessing and analysis of
these historical data sets using improved algorithms, but it
also gave us a platform that supported adaptation of science
algorithms for OMI. It permitted the initial debugging of our
techniques and processes. And it validated our new hardware
architecture and approach.

Second, we trend the characteristics of the science software.
The developers have provided early versions of their code.
For over two years, we have involved the science team
coders in integration of their software into early versions of
OMIDAPS. The early and ongoing involvement has resulted
in many versions of science code and OMIDAPS that have
been integrated many times, each time with increasing level of
complexity. The team has thus followed the spiral development
model where we do the same develop-integrate-test-feedback
cycle over and over while increasing maturity of the system
each time.

As the cycle repeats, it has enabled us to streamline our pro-
cesses. The software hand-off from developers, to integrators,
to testers, to production has been smoother during each cycle.
Although it took months for the first processing algorithm to

0-7803-8742-2/04/$20.00 (c) 2004 IEEE 2194

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on February 05,2024 at 17:35:57 UTC from IEEE Xplore. Restrictions apply.

reach production, our goal is to shorten the cycle to just a
few hours during post-launch algorithm improvements. Getting
a new version of software quickly from developer into an
instance of OMIDAPS is just as crucial as being able to
reprocess large amounts of data quickly. Streamlining the
integration permits rapid deployment of new code, and that
permits faster system characterization and system re-tuning.

As new bottlenecks are identified, and as we grow the
system, we will re-allocate existing components or purchase
new hardware. The plan is to buy no more than what is
needed for the evolving versions of the science code. So, for
example, if we find that a new version of an algorithm needs
much more temporary storage while it is running, we will
supplement our processing nodes with more disk. If we find
that some new version needs more CPU or RAM, we will
add larger processing servers and configure tables so that the
algorithm is allocated only to the larger servers for processing.
If we find the revised algorithms producing much larger output
files, we will add more disk to the Archiver, or increment
the number of archiver hosts. The system can be expanded in
many directions. The repetitive characterization, streamlined
processes, and just-in-time hardware acquisitions will permit
us to find the “sweet spot” of performance and balance the
cluster.

C. Advantages

There are many advantages that stem from our generalized
design and implementation. Here are just a few.

One major advantage stems from the timing of hardware
purchases. Because we postpone buying components until we
need them, we are able to acquire more capacity and perfor-
mance for the same money compared to buying everything at
the project’s onset.

Another advantage comes from our generalized design and
implementation. OMIDAPS does not depend on any unique
feature of any vendor. It will run on a wide variety of hardware,
whether Intel-based, Sun, HP, DEC, or whatever. As long
as a computer can host Unix, OMIDAPS will run on it.
OMIDAPS is implemented mostly in Perl using open source
system software that is available for machines from a multitude
of manufacturers. We took care to make the software portable.
Since we will be acquiring hardware over the course of the
project, the final system will likely end up very heterogenous.
Not being tied to any particular hardware vendor permits us to
shop for the best deal at the time. Since we will be purchasing
increments over the course of many years, we will benefit from
not being forced to choose the same vendor each time.

Another advantage to our approach results from the dis-
tributed, loosely coupled hardware. OMIDAPS is more re-

silient than the multi-CPU-in-one-box MODAPS. The whole
OMIDAPS does not go down when a single component (CPU,
memory module, power supply) breaks. MODAPS, on the
other hand, grinds to a halt with most component failures.
Multi-hour processing, if not completely finished, goes to
waste. MODAPS can be often rebooted and run without the
broken part, but when a replacement arrives, everything must
be shut down again to install it. In contrast, the distributed
OMIDAPS can have a broken host indicated with an entry in
the database, the Scheduler stops initiating new jobs on it, and
the rest of the system continues without a pause.

VII. CONCLUSION

An evolutionary development approach enabled us to build
two very capable processing systems for remotely sensed
data. MODAPS, that evolved out of a SeaWiFS system, went
through several generations of architecture. Building on those
experiences, we developed the latest incarnation of the system
for OMI. While building OMIDAPS, we used it to perform
a full reprocessing of twenty-five years of TOMS and SBUV
data. OMIDAPS now stands poised to process and reprocess
OMI data. For OMI, the production system will grow as the
needs of the project grow.

We have developed a generalized architecture that can be
used for building processing systems for diverse uses—not
just for remote sensing. The design is capable of handling
very large numbers of diverse inputs. It permits complex
processing rules that provide for simultaneous and sequential
combinations of processing. The processing system topology
is easily set, scaled, and tuned by adding hardware and by
changing entries in software lookup tables. Our system is
capable and available to process data not only for OMI, but
also for other coming missions.

ACKNOWLEDGMENT

The authors thank the many individuals comprising MODIS
and OMI teams for making development of MODAPS and
OMIDAPS successful. Some of the information presented
here was taken from a number of documents and web sites
throughout the two projects. OMIDAPS development is carried
out under NASA contract number NAS5-00220.

REFERENCES

[1] E. Masuoka, C. Tilmes, G. Ye and N. Devine, “Producing Global
Science Products for the Moderate Resolution Imaging Spectroradiometer
(MODIS) in the EOSDIS and MODAPS,” Proceedings, IEEE Geoscience
and Remote Sensing Society, 2000.

[2] C. Tilmes, E. Masuoka and P. McKerley, “Concepts for Scaling the Pro-
cessing Capability of the MODIS Data Processing System (MODAPS),”
Proceedings, IEEE Geoscience and Remote Sensing Society, 2000.

0-7803-8742-2/04/$20.00 (c) 2004 IEEE 2195

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on February 05,2024 at 17:35:57 UTC from IEEE Xplore. Restrictions apply.

	footer1:

