
Ad Hoc Networks 4 (2006) 204–224

www.elsevier.com/locate/adhoc
Integrating service discovery with routing and
session management for ad-hoc networks q

Dipanjan Chakraborty *, Anupam Joshi, Yelena Yesha

Department of Computer Science and Electrical Engineering, University of Maryland, 1000 Hilltrop Circle,

Baltimore County, Baltimore, MD 21250, USA

Received 17 November 2003; accepted 19 March 2004
Available online 19 June 2004
Abstract

In this paper, we propose GSR: a new routing and session management protocol for ad-hoc networks as an integral
part of a service discovery infrastructure. Traditional approaches place routing at a layer below service discovery. While
this distinction is appropriate for wired networked services, we argue that in ad-hoc networks this layering is not as
meaningful and show that integrating routing with discovery infrastructure increases system efficiency. Central to
our protocol is the idea of reusing the path created by the combination of a service discovery request and a service
advertisement for data transmission. This precludes the need to use separate routing and discovery protocols. GSR also
combines transport layer features and provides end-to-end session management that detects disconnections, link and
node failures and enables service-centric session redirection to handle failures. This enables GSR to accommodate serv-
ice-centric routing apart from the traditional node-centric routing. We compare GSR with AODV in terms of packet
delivery ratio, response time and average number of hops traveled by service requests as well as data. GSR achieves
better packet delivery ratio with a minor increase of the average packet delivery delay.
� 2004 Elsevier B.V. All rights reserved.

Keywords: Service discovery; Ad-hoc networks; Routing; Session management; Service-centric routing
1570-8705/$ - see front matter � 2004 Elsevier B.V. All rights reserv
doi:10.1016/j.adhoc.2004.03.016

q This work supported in part by NSF Awards 9875433 and
0070802, DARPA DAML program and IBM.

* Corresponding author. Tel.: +1 410 455 8776; fax: +1 410
455 2668.

E-mail addresses: dchakr1@cs.umbc.edu, dchakr1@csee.
umbc.edu (D. Chakraborty), joshi@cs.umbc.edu (A. Joshi),
yeyesha@cs.umbc.edu (Y. Yesha).
1. Introduction

The growth of handheld devices ranging from
cell phones to portable mp3 players to win CE
iPAQs has opened up new research directions in
the area of pervasive computing. These devices
have varying resource capabilities. However, a
large number of them have basic networking capa-
bilities (GPRS, IR, Bluetooth, 802.11) to connect
ed.

mailto:dchakr1@csee.
mailto:joshi@cs.umbc.edu
mailto:yeyesha@cs.umbc.edu

D. Chakraborty et al. / Ad Hoc Networks 4 (2006) 204–224 205
to peer devices. Current usage of these devices vary
from localized access of capabilities (mostly) to
accessing Internet-based Services (sometimes) to
accessing rudimentary services from peer devices
like downloading business cards (rarely). However,
with the increase in the heterogeneity of informa-
tion, capabilities and usage of these devices, the fu-
ture holds an enormous potential for these devices
to utilize services in peer devices using ad-hoc net-
working capabilities. Examples range from mobile
commerce environments to battlefront environ-
ments to sensor networks. Mobile commerce exam-
ples include receiving discount coupons at malls,
carrying out automatic checkout in grocery stores.
Warfront activities and sensor networks often
need to integrate data (that are offered by services
on various devices/sensors) from heterogeneous
sources to discover meaningful trends.

It can be argued that the fundamental reason for
ad-hoc networks (also referred to as Mobile Ad-
hoc Networks or MANETs) is for devices to use
the services available from their peers in the vicin-
ity. By ‘‘Service’’, we refer to any software compo-
nent, data, or hardware resource on a device that it
makes accessible to others. Service discovery and
invocation are thus fundamental operations in an
ad-hoc network. While there exists a huge body
of work in service discovery in the context of
wired-networks, research in the area of service dis-
covery in ad-hoc networks is relatively new [1–3].
Solutions primarily utilize the broadcast-driven
nature of the underlying ad-hoc network to carry
out service discovery on various devices.

Service invocation is carried out after service
discovery and involves sending of service invoca-
tion data to the desired service. Service invocation
primarily utilizes underlying ad-hoc routing proto-
cols [4–7] for its operation. Most prior work in the
area of service discovery and invocation assumes
that the process of service discovery and routing
are only loosely coupled. To the contrary, it has
been argued in [8,9] that cross layer integration
of protocol stacks improve system efficiency. There
has also been some work in utilizing service-centric
data to route packets [10,11] for wired networks.
AODV [4] defined a service extension to its routing
protocol to incorporate discovery. However, as
discussed in Section 2, the extension considers only
bit-level addressing of services and is primarily
based on the broadcast-driven nature of the
AODV protocol. We argue that an efficient service
discovery protocol can provide further efficiency to
an integrated discovery and routing protocol. Fur-
thermore, incorporating some transport layer end-
to-end session management with the integrated
layer provides greater reliability to end applica-
tions in an ad-hoc network.

Apart from the benefits pointed out in [8], inte-
gration of the service discovery with routing in ad-
hoc networks provides the following benefits: (1)
Usage of available routes: The discovery infrastruc-
ture while trying to discover a service discovers
multiple possible paths to reach a service too. Typ-
ically, a discovery infrastructure discards this
information. While this is not needed in wired net-
works (since network topology is fixed and there
are very few route changes), it could be effectively
used by ad-hoc routing protocols; (2) Service-cen-
tric Route Enablement: Multiple instances of the
same service may potentially exist on different
ad-hoc nodes. If needed, the integrated layer can
use the information in the discovery infrastructure
to route the invocation data to a service instance

instead of a node address. This makes the inte-
grated protocol service-centric instead of the tradi-
tional node-centric approach towards routing; (3)
Resilience to Service-Node Failures: Moreover, all
routing protocols are node-centric (they route
based on the node address or IP address) and hence
prone to failure of that node. Service-node failure
leads to the service being unavailable leading to a
service failure. Ideally, we would like service dis-
covery and invocation to be immune to service-
node failure since multiple instances of the same
service could be existing on different nodes. We
achieve this by combining the service discovery
and routing layers. We borrow the notion of
path-repair which is widely used in optical net-
works where the switching fabric is aware of mul-
tiple paths from source to destination. However,
instead of multiple paths, the service discovery
layer is aware of multiple instances of a specific
type of service and the route to that service. In
the event of a service-node failure, this new inte-
grated layer can rediscover another instance of the
service and deliver data to it. (4) Reduced Routing

206 D. Chakraborty et al. / Ad Hoc Networks 4 (2006) 204–224
Overhead: Reuse of the discovery infrastructure
to route invocation data results in reduced over-
head since certain mandatory actions of standard
routing protocols like route discovery, path mainte-

nance can potentially be integrated with the dis-
covery infrastructure. Typically, ad-hoc service
discovery protocols involve local or global broad-
casting of service advertisements and service re-
quests until the requestor has discovered the
desired service. Once a service is discovered, any
standard on-demand or link-state/distance-vector

based routing protocol is used for service invoca-
tion. These routing protocols, which reside below
the service discovery layer, perform route discov-
ery (in case of on-demand protocols) and link-
maintenance (in case of link-state/distance-vector
protocols) using a flooding-based approach. The
overhead is essentially redundant because these
steps could be combined with the broadcasts done
during service discovery.

In prior work we have developed a distributed
and network efficient peer-to-peer caching based
service discovery architecture for ad-hoc networks
[3] that performs better than traditional broadcast-
driven discovery architectures [1,2]. However, it
uses the available underlying ad-hoc routing pro-
tocol for service invocation and data transmission.
In this paper, we describe our work in enabling
our discovery infrastructure to support service
invocation and hence obviate the necessity of a
separate routing protocol. We also show that inte-
grating the two layers in fact provide us with better
system efficiency. We call our protocol Group-
based Service Routing Protocol (GSR). Central
to our routing protocol is the concept of reusing
the path created by a service discovery request
and a service advertisement to enable data trans-
missions. The service request matches a service
advertisement at an intermediate node. The route
between the source and the destination service is
formed by the combination of the path traversed
by the service request and the path traversed
by the advertisement. We call the path that is
actively participating in data transfer as the
ACTIVE_PATH.

Traditional routing protocols do not encapsu-
late transport layer features like end-to-end net-
work state maintenance, session management etc.
However, since GSR offers upper layer applica-
tions the feature to discover and invoke a service
at the same time, we have augmented GSR to pro-
vide the transport layer features of end-to-end ses-
sion management during service invocation. We
call this protocol Group-based Service Routing
Protocol with session management (GSR-S). A ses-
sion is maintained for each invoked service at each
node in the ACTIVE_PATH. Each session handles
various kinds of failures (service-node and link fail-
ures), buffers ongoing data transmissions at the
intermediate nodes and performs service-centric
session redirection depending on session-specific
preferences from the source of the request. GSR
defines two kinds of sessions: Service-Consistent

session andNode-Consistent session to offer various
kinds of service guarantees to the end user.

We note that GSR also supports standard
node-centric routing. We do not attempt to over-
ride the approach of keeping routing at a separate
layer in the network stack. We argue that when the
upper layer is essentially a service discovery proto-
col, then integrating the discovery with the routing
protocol yields better efficiency.

We present simulation results comparing our
integrated routing protocols (with and without ses-
sion management) with a version where we have
our service discovery protocol running over stand-
ard Ad-hoc On-demand Distance Vector (AODV)
[4] routing protocol. We compare average packet
delivery ratio, average service response time, aver-
age packet delay and average service response time
and packet hops (data and request packets). Our
integrated protocol gives almost 100% packet
delivery ratio with a minor increase in the average
packet delay. This is much better than the stand-
ard performance of AODV as a routing protocol
in such environments. We also observe that reus-
ing service discovery paths often results in reduced
data path length. Drawback of our protocol is in
the increase in the average packet delay for
GSR-S. This is mostly due to the buffering and
retransmission caused due to session redirection
by GSR-S. However, an analysis of delay distribu-
tions shows that majority of the packets have de-
lays comparable to AODV packet delay. We
chose AODV as a baseline for comparison over
other protocols because link-state/distance-vector

D. Chakraborty et al. / Ad Hoc Networks 4 (2006) 204–224 207
protocols [6,7] have sufficiently more routing over-
head than on-demand protocols (AODV, DSR).
2. Background

There has been ample amount of work in devel-
opment of routing protocols in ad-hoc networks.
Protocols like DSR [5], AODV [4], TORA [7],
DSDV [6] are only a few of the routing protocols
that have come up over the last 10 years. However,
all these protocols are node-centric and the source
has to know the destination address before ensuing
an interaction. Standard node-centric routing pro-
tocols cannot be used for service discovery. This is
primarily due to couple of reasons: (1) Discovery
protocols do not assume that they know the node
addresses of the devices in the vicinity to be able to
use standard routing protocols to reach the devices
and check whether the required service exists on
those devices; (2) Unique Address assumption:
Routing protocols assume device addresses are
unique. However, services are not unique and
there could be multiple instances of the same serv-
ice in a network. However, routing protocols have
been traditionally used to route service invocation
data once the service has been discovered.

Work in the field of service discovery in ad-hoc
networks is relatively new. There exists a spectrum
of distributed approaches [1,2,10,12] to enable
service discovery. On one end of the spectrum lies
a request-broadcast-based solution where a service
request is globally broadcast to all nodes in the
network. Nodes having the particular service reply
to a request. On the other end of the spectrum lies
an advertisement-broadcast-based solution where
a service advertisement is broadcast to all nodes
in the network. Each node interested in discover-
ing services caches the advertisements. The adver-
tisements are matched with service requests locally
and a result is returned.

Apart from the fact that these protocols are inef-
ficient in terms of bandwidth and resource usage
(since the requests/advertisements have to be proc-
essed by all the nodes which have limited processing
capability and battery power), global broadcasting
of messages is a very non-scalable solution, espe-
cially for large-scale ad-hoc networks [13]. Caching
of all advertisements is another bottleneck since
many of the nodes have limited memory and are
unable to store all the advertisements and soon
the cache gets filled up. Our service discovery pro-
tocol (referred to as Group-based Service Discov-
ery protocol––GSD) [3] is based on bounded
broadcasting of advertisements in the vicinity,
peer-to-peer caching of advertisements and intelli-
gent request routing (to ensure maximum reach-
ability) based on service group information that is
propagated with an advertisement. It avoids global
broadcasting of requests or advertisements and de-
creases the network load to a large extent. Moreo-
ver, network-wide reachability is not compromised
too. It is worthwhile to note that even though there
is a plethora of work in wired-network based serv-
ice discovery architectures and protocols [14–17],
centralized/semi-centralized architecture of these
protocols, registry-based working model and
dependence on a stable underlying network con-
nection make them unsuitable for service discovery
in ad-hoc environments.

The idea of integrating routing with service dis-
covery has been discussed earlier in [8,18]. There
has been work [8] in looking at the issues and
benefits involved in cross-layer optimizations in
Bluetooth scatternets. The principal idea is to inte-
grate the link, routing and service discovery layer
so that efficient handling of power is possible. This
body of work calls for a unified network stack
instead of the traditional protocol design. Our
work also follows along these lines except that
our integrated protocol is general for any ad-hoc
network. It also develops on the concept of a ‘‘bot-
tom–up’’ integration where the routing layer is inte-
grated into the discovery infrastructure above it.
We also show that careful design of the service dis-
covery protocol can provide better routing support.

In [18], Balakrishnan et al., present an inte-
grated message routing and service discovery
architecture. However, this solution assumes an
underlying wired network infrastructure support
and solutions like DNS for bootstrap. Moreover,
message routing is done by piggybacking service
data along with discovery request. Thus, the dis-
covery is in some sense tied to the routing layer.
GSR does not rely on any wired network infra-
structure and also supports use of the discovery

208 D. Chakraborty et al. / Ad Hoc Networks 4 (2006) 204–224
layer as a separate protocol along with other tradi-
tional routing protocols if needed.

Content-based Networking [11] mentions about
message routing based on message content rather
than node-address. They employ a publish-sub-
scribe-based middleware solution for data routing
and in some sense is geared towards wired net-
works. In essence, this is similar to service-driven
routing. However, publish-subscribe or middle-
ware solutions do not perform well in a distributed
ad-hoc environment due to their centralized/semi-
centralized architecture.

Ad-hoc On-Demand Distance Vector Protocol
(AODV) [4,19] has defined an extension that is
based on the idea of enhancing the routing protocol
by adding a service discovery extension to it. It uses
the AODV_RREQ message as a service discovery
request when its �S� flag is set. The IP address field
contains the service address and port number. Even
though this is one way of performing service dis-
covery and enables service-based routing, the key
limitations/differences from GSR are: (1) It as-
sumes only one service per node whereas GSR does
not have any such assumption. (2) The discovery
protocol is dependent on the broadcast-based
architecture of AODV. GSR on the other hand,
uses selective forwarding based on the service
group information (discussed in Section 4) and is
more efficient than simple broadcasting used by
AODV. This reduces network overhead in the inte-
grated protocol.

The remaining part of the paper is organized as
follows: Section 3 defines some key terms used in
GSR and GSR-S. In Section 4, we briefly cover
our Group-based Service Discovery protocol
(GSD). Section 5 describes the design and various
features of GSR. Section 6 describes implementa-
tion components of GSR. We present our experi-
mental evaluation of GSR, GSR-S and compare
it with AODV in Section 7. We finally conclude
in Section 8.
1 We use the term service invocation data and service data

interchangeably in the rest of the paper.
3. GSR protocol key terms

In this section, we define some key terms and
concepts associated with GSR. GSR uses GSD
as the service discovery protocol and incorporates
routing support to it by enabling service invoca-
tion and data transmission. Some of the definitions
in this section are intuitive and well-known. We
define them for the purpose of clarity with respect
to our work.

• Request Source (RS): Node from where a partic-
ular service discovery and invocation request
originates. Note that a node is referred to as
the Request Source only with respect to the
request that it has originated.

• Service Provider (SP): Nodes that contains serv-
ices that are accessible from other peer nodes.

• Intermediate Node (IN): For a particular discov-
ery request, a node where the discovery request
finds out a matching service.

• ADVERTISEMENT_PATH: Path traversed by
a service advertisement starting from a particular
SP to an IN. It is measured in number of hops.

• REQUEST_PATH: Path traversed by a service
discovery request starting from the RS. It is also
measured in number of hops.

• RESPONSE_PATH: Path traversed by a
service reply that is generated in response to a
service discovery request. It is measured in num-

ber of hops.

• DATA_PATH: Path formed by combining an
ADVERTISEMENT_PATH and a REQUES-
T_PATH that meet at an IN. The IN could as
well be the SP or the RS (in which case the length
of either the ADVERTISEMENT_PATH or
the REQUEST_PATH would be 0).

• ACTIVE_PATH: It is defined as the DATA_
PATH actually employed to transmit service
invocation data 1 to the discovered SP. Out of
multiple DATA_PATHs, a single path is cho-
sen to be the ACTIVE_PATH for a service
invocation.

• Service-Consistent Session: It refers to a session
that requires all data to be sent to a particular
service but does not require it to be sent to a
particular node. In case of service-node or link
failures, such sessions could be redirected to
another node hosting the same service.

D. Chakraborty et al. / Ad Hoc Networks 4 (2006) 204–224 209
• Service-consistent Discovery Request: Service
discovery request that just specifies the service
description and does not contain any node spe-
cific information.

• Node-Consistent Session: A Node-Consistent
Session requires service invocation data to be
sent to a particular service at a particular node.

• Node-Consistent Discovery Request: Service dis-
covery request that contains node specific infor-
mation apart from the service that it is trying to
discover.
4. GSD: Group-based Service Discovery

For the purpose of completeness, we give a brief
description of our Group-based Service Discovery
Protocol (GSD) [3]. GSD is based on the concepts
of (1) Bounded advertising of services in the vicin-
ity; (2) Peer-to-Peer dynamic caching of service
advertisements; (3) Service group-based selective
forwarding of discovery requests.

GSD exploits the semantic capabilities offered
by DARPA Agent Markup Language [20] to effec-
tively describe services/resources present on nodes
in the MANET. Services are described using an
ontology developed using DAML+OIL [21].
Semantic Service description has two purposes in
GSD: (1) Services are classified into hierarchical
groups depending on their functionalities. This
Service

Software

Input/
Output

Computation
Require-

Input
No-Input

Printer

InkJet Laser

Hardware

Fig. 1. Hierarchical service group based on functionality.
information is used to selectively forward a service
request to other nodes in the MANET thus pre-
venting request broadcast. (2) Apart from various
advantages provided by semantic service descrip-
tion [22], it enables us to discover services that
are functionally identical or similar to the service
specified in the discovery request even if they have
different names or invocation mechanisms. Fig. 1
shows a snapshot of the extended hierarchical
service group used in GSD.

Each Service Provider (SP) periodically adver-
tises a list of its services to all the nodes in its radio
range. An advertisement message consists of the
following fields:

hPacket-type; Source-Address;

Service-Description; Service-Groups;

Other-Groups; Hop-Count; Lifetime;

ADV JDIAi:

A monotonically increasing identifier called
broadcast-id along with the source-address un-
iquely identify a broadcast and detects duplicate
advertisements. The Service-description and Serv-
ice-groups contain information about the local
service(s) and their corresponding service groups.

Additionally, each IN receiving the advertise-
ment can forward it to all other nodes in its radio
range. The field ADV_DIAMETER determines
the number of hops each advertisement travels.
Each IN increments the Hop-Count when it for-
wards an advertisement that is in turn used to
compute whether the advertisement can be for-
warded any further. ADVERTISEMENT_PATH
in this context is the path formed by service adver-
tisements from the SP to an IN. Hence, a single
advertisement creates multiple ADVERTISE-
MENT_PATHs starting from the SP. Each node
on receipt of an advertisement stores it in its Serv-
ice Cache. Each entry in the Service Cache con-
tains the following fields:

hSource-Address; local; Service-Description;

Service-Groups; Other-Groups; Lifetimei:

Apart from storing advertisements, a Service
Cache also stores descriptions of local services in
the node (identified by the local field in each cache
entry). The field Other-Groups contain a list of the

210 D. Chakraborty et al. / Ad Hoc Networks 4 (2006) 204–224
groups that the corresponding Source-Address

(sender of the advertisement) has seen in its vicin-
ity. We follow a lowest-remaining-lifetime replace-
ment policy to replace entries when the cache
is full. The advertisement frequency, advertisement
diameter and advertisement lifetime are user-
controlled parameters that enables GSD to be
adapted to the necessities of the device and the
environment.

Advertising Service Groups: Apart from adver-
tising its own services, GSD also uses the same
advertisements to advertise functional group infor-
mation of services a node has seen in its vicinity.
The field Other-Groups in an advertisement con-
tains an enumerated list of the service groups of
all the non-local services seen by sender node. This
information is obtained from the advertisements
stored by the IN in its service cache. This service
group information gets propagated from one IN
to another and may potentially cover the whole
network (if the network is partition free). Func-
tional group information provides a good abstrac-
tion to represent services and is enough to divert a
discovery request towards the appropriate region.
They also provide a good measure to aggregate
the service descriptions and hence save on network
bandwidth. Fig. 2 shows an example of propaga-
tion of service advertisements and the associated
service group information for a simple ad-hoc
network.
Service Advertisement

S1(G1)
Service S1 belongs to Group

G1

[S1(G1) - - > N1]

S2(G2)S1(G1)

N1 N2 N3

N4

[S1(G1) - - > N1]

Service Cache Entry at N2

Local Service at Node 2

(a)

Fig. 2. Service advertisements and propagation of service group info
group information being propagated by node N2 during its advertise
Request Routing: A service discovery request
originates from a Request Source (RS) whose
application layer requests the service. A request
consists of our ontology based description of the
service requested that also optionally includes
descriptions of service groups to which the re-
quested service belongs. The request is matched
with the services present in the local cache of the
RS (that might also be a SP). A service discovery
request is formed on a local cache miss. A service
discovery request contains the following fields:

hPacket-type; broadcastId; Service-Description;

Request-Groups; Source-Address;

Last-Address; Hop-Counti:

The field Request-Groups contains the service
group(s) to which the requested service belongs.
Hop-Count, a user-controlled parameter specifies
the maximum propagation limit of the request. We
use the information regardingOther-Groups present
in the service cache of each node to selectively for-
ward a discovery request in case of a local cache
miss. We recall that each entry in the service cache
of a node contains a field Other-Groups. Thus, if
the request belongs to one of those groups, then
there is a chance that the requested service might
be available near the IN that sent the advertisement.
Consequently, instead of broadcasting the request
GSDselectively forwards the request to those nodes.
[S1(G1) - - > N1]

[S2(G2),G1 - - >N2]

S2(G2),G1 - - > N2
S2(G2)S1(G1)

N1 N2 N3

N4

Service Advertisement

S1(G1)
Service S1 belongs to Group

G1

[S1(G1) - - > N1]

Service Cache Entry at N3

Local Service at Node 2

(b)

rmation: (a) advertisements being sent by node Nl, (b) service
ment phase.

D. Chakraborty et al. / Ad Hoc Networks 4 (2006) 204–224 211
The selective forwarding process is explained in
Fig. 3 for a simple ad-hoc network. It shows a se-
quence of nodes (that are all INs) connected to
each other with RS being the requesting source
and SP being the service provider where the re-
quested service (S1) is available. For the sake of
simplicity, we only display a linear connection of
nodes and do not show other nodes that might
be present in the vicinity. We do not show the ex-
change of advertisements in the figure. Assuming
that each node has advertised its own services
and other remote service groups, Fig. 3 shows
the partial service cache entries in each node. For
example, the entry

S2ðG2Þ;G1 ! N1

means that node N1 has service S2 belonging to
group G2 and it has seen a service belonging to
group G1 in its vicinity. When a request belonging
to group Gl comes to N3, then instead of broad-
casting it to all nodes in its vicinity (N4,N5), N3
selectively forwards it to node N2. This is because
only N2 claims to have seen a service belonging to
group Gl in its vicinity. This process continues in
all other nodes until the request has reached N1
where it finds a direct match of the requested serv-
ice (present in the service cache of N1).The request
is by default broadcast to other nodes when the
algorithm fails to determine a set of nodes to selec-
tively forward the request to.
S3(G2)

[S2(G2),G1 - - > N
……

S2(G2)S1(G1)

SP N1 N2

Service Discovery
Request

[…...] Service Cache Entries

[S1(G1) - - > SP]
…...

Request matches at node
N1

Radio Range of N3

Fig. 3. Group-based selective forward
A Service Reply is generated by the IN once a
service request matches a service advertisement.
The reply is transmitted back to the source using
either the reverse route used by the discovery re-
quest or any standard ad-hoc routing protocol in
case of a route failure. We describe the protocol
in detail in [3,13]. In the next section we describe
how we incorporate service invocation and service
data routing using the discovery infrastructure.
5. GSR protocol design

GSR uses the discovery infrastructure of GSD
to support service invocation and transmission of
service data instead of using a separate ad-hoc
routing protocol. The central idea in GSR is to uti-
lize the ADVERTISEMENT_PATH and the
REQUEST_PATH (or the RESPONSE_PATH)
to transmit service invocation data. Like AODV
[4], we assume link reversals on the underlying
ad-hoc connection. Hence if a node A is reachable
from node B, then node B is also reachable from
node A under identical conditions. GSR creates
several DATA_PATHs after a service has been
discovered by appropriately combining the
ADVERTISEMENT_PATH and the REQUEST_
PATH. It selects a suitable DATA_PATH for
transmission of service data. This becomes the
ACTIVE_PATH. It also maintains end-to-end
session over the ACTIVE_PATH to detect link
S4(G3)

S5(G3)

1]

N3

Service Cache Entries at N3

RS

[S3(G2),G1,G2 - - > N2]
[S4(G3) - - > N4]
[S5(G3) - - > N5]

……...

N4

N5

{S1(G1)}

Discovery Request Content

ing of service discovery request.

212 D. Chakraborty et al. / Ad Hoc Networks 4 (2006) 204–224
failures or service-node failures. We employ the
technique of partial path reconstruction that ena-
bles session redirection to a different node or
reconnection to the same node through a different
path depending on service guarantee requirements.
We explain the various salient components of
GSR in the following subsections.

5.1. Dependence on GSD

Current implementation of GSR depends on
GSD for its successful operation. However, the de-
sign of the routing protocol is not dependent on
GSD. GSR could as well be integrated with any
other ad-hoc service discovery protocol. This is be-
cause the only condition that GSR imposes on the
underlying discovery protocol is the ability to dis-
cover a service. However as explained in Section 4,
using GSD as the driver protocol enables GSR
with the following advantages: (1) Efficient usage

of network bandwidth: GSD performs selective for-
warding (instead of broadcasting) and efficiently
discovers routes to the discovered service. This is
again mostly due to the hierarchical grouping of
services in GSD.(2) Semantic Session Redirection:
GSD performs semantic service matching that ena-
bles loose or near matches of services. Thus, if a
service request tries discovering service S1 belong-
ing to groups Gl, GSD enables the discovery re-
quest to match with a service S2 belonging to
group Gl that matches most of the functional
requirements of service S1. This lets GSR to redi-
rect a session to another service having similar
functionality in case of service-node failure. We
note that, a hierarchical grouping of services could
be replaced by a flat grouping (where there is only
one level in the hierarchical tree). However, a hier-
archical approach simply enhances the chances of
GSD to discover services that are farther and far-
ther away from the specified description and hence
enables graceful degradation in case of service
unavailability.

5.2. Data path setup

A service discovery request matches service
descriptions at several intermediate nodes (IN).
On a successful match, a service reply is generated
by the IN and transmitted back through the
REQUEST_PATH in the reverse direction. Each
node in the REQUEST_PATH maintains a poin-
ter to its previous hop in the path leading back
to the RS. This is setup when the discovery request
reaches the nodes. However, REQUEST_PATH
only contains the path from the RS to the IN. In
GSD, service advertisements are broadcast. GSD
maintains no information about the route from
the IN to the SP. We have enhanced service adver-
tisements in GSR where in each node receiving an
advertisement maintains a pointer to its previous
hop leading to the SP.

The service reply is dropped in case of discon-
nections or link failures. Link failures result when
the node upstream in the path has either moved or
shut itself down. RESPONSE_PATH refers to the
actual path that the reply traverses to reach the RS
from the INs. Each node in the RESPONSE_
PATH maintains a forward pointer to the node
leading to the IN. This is done when the service re-
ply traverses the corresponding node. Note that
these two paths could be different if a standard
routing protocol was used to transmit the service
reply back to the source. Our protocol reuses the
path that was already traversed by the service re-
quest instead of having to discover another new
one. A DATA_PATH is formed by combining
the RESPONSE_PATH with the ADVERTISE-
MENT_PATH to establish a complete route from
the RS to an SP. Fig. 4 shows the various steps in
involved in the creation of the DATA_PATH.

We note that for a certain discovery request,
there could be DATA_PATHs established to
different similar services or multiple instances of
the same service. There could also be multiple
DATA_PATHs to the same service through vari-
ous INs. The IN bridges the RESPONSE_PATH
with the ADVERTISEMENT_PATH.

Each node in the paths maintains time outs cor-
responding to the paths. A DATA_PATH thus ex-
pires if either the ADVERTISEMENT_PATH or
the RESPONSE_PATH times out.

5.3. Active path selection

We have observed in the previous section that
various DATA_PATHs are formed after service

RS

Node

Node

Node

IN

Node

Node

SP

Pointer maintained by Forward Route Table

to form ADVERTISEMENT_PATH

Service Advertisement

(a)

RS

Node

Node

Node

IN

Node

Node

SP

ADVERTISEMENT_PATH

Pointer maintained by Reverse Route Table
to form REQUEST_PATH

Service Discovery Request

(b)

RS

Node

Node

Node

IN

Node

Node

SP

ADVERTISEMENT_PATH

Pointer maintained by Forward Route Table
to form RESPONSE_PATH

Service Reply

(c)

RS

Node

Node

Node

IN

Node

Node

SP

ADVERTISEMENT_PATH

RESPONSE_PATH

DATA_PATH = ADVERTISEMENT_PATH +
RESPONSE_PATH

(d)

Fig. 4. Creation of a single DATA_PATH in GSR. The ADVERTISEMENT_PATH is set up first when service advertisement is sent
by the SP (a). The REQUEST_PATH is set up after that (b). The service reply propagates back to the RS using the REQUEST_PATH
and in turn sets up the RESPONSE_PATH (c). The ADVERTISEMENT_PATH and the RESPONSE_PATH form the
DATA_PATH (d).

D. Chakraborty et al. / Ad Hoc Networks 4 (2006) 204–224 213
discovery due to the presence of potentially multi-
ple instances of the same service. Once the RS re-
ceives a service reply, it determines the best service
to perform the service invocation. The details of
the best service selection can be found in [22]. In
this paper, we are concerned with routing service
invocation data to the selected service. However,
multiple DATA_PATHs could also be formed
with the same instance of the selected service. This
is because:

1. Service Requests propagate through multiple
outgoing links (since they are selectively for-
warded) and could potentially be answered by
the same INs leading to formation of multiple
DATA_PATHs. Please note that an IN detects
duplicate requests. However, the RS might send
out multiple discovery requests for the same
service.

2. There could be multiple instances of a single
unique service cached on different INs. These
INs could reply to a service request thus result-
ing in multiple RESPONSE_PATHs and hence
multiple DATA_PATHs.

One of the DATA_PATHs is chosen to be the
ACTIVE_PATH for the corresponding service
invocation. Currently, an ACTIVE_PATH is

214 D. Chakraborty et al. / Ad Hoc Networks 4 (2006) 204–224
chosen from available DATA_PATHs based on
minimal hop count from the RS to the SP. This
information is obtained from the service reply from
the IN. The service reply while traversing the
RESPONSE_PATH computes the length of the
RESPONSE_PATH (in hops). However, it does
not know the length of the ADVERTISE-
MENT_PATH. To accommodate for this, we en-
hanced each service advertisement to compute the
length of the current path and store it in each IN
it traverses. An IN, while replying to a discovery re-
quest conveys the ADVERTISEMENT_PATH
length to the service reply. This is used to compute
the final DATA_PATH length by the RS.

Once an ACTIVE_PATH has been selected, the
RS uses it to transmit service invocation data. All
other DATA_PATHs constructed during the dis-
covery phase time out if they are kept unused
and all route information is deleted.

5.4. End-to-end session maintenance

GSR uses the selected ACTIVE_PATH to
transmit service invocation data. Service invoca-
tion in ad-hoc networks requires various kinds of
service guarantees. For example, the request might
require that all the data be sent to one instance of
the discovered service. One example of such service
invocation could be data streaming applications in
sensor networks where all data of a particular type
needs to be sent to one instance of a service only.
On the other hand, the request could be also specify
that the data could potentially go to multiple in-
stances of a particular service. An example of such
service could be audio streaming applications
where the audio is sent to the music service nearest
to a person. Service guarantees could also be re-
laxed to service groups where the data could poten-
tially go to any service belonging to a particular
functional group. Example of such services could
be music streaming service where the music could
potentially be sent to any ‘‘speaker’’ in a given loca-
tion. GSD protocol by virtue of its semantic service
matching features is capable of discovering services
based on required service guarantees. Further-
more, we have incorporated session management
into GSR to provide various levels of service guar-
antees during service invocation too.
GSR supports two kinds of session, namely:
Service-Consistent session and Node-Consistent

session. A Node-Consistent session (as defined pre-
viously) requires that all data in a particular invo-
cation be sent to one instance of the discovered
service. A Service-Consistent session on the other
hand only requires that the data be sent to the par-
ticular service. It does not impose any restriction
on the service instance. In Section 5.5, we discuss
how these strict and relaxed guarantees are en-
forced in case of failures.

Each node in the ACTIVE_PATH maintains
a session for an open connection. A session is initi-
ated by the RS at the time of sending service invo-
cation data. The RS specifies the type of session it
desires. Each node in the ACTIVE_ PATH main-
tains a Session-Handler for each connection going
through it. A Session-Handler keeps the following
information for each connection:

hService-Description; Current-SessionId;

ACTIVE PATH Source;

ACTIVE PATH Destination; Next Hop;

Previous Hop; Session LifeTime;

Session State; Session Strictness;

Session Bufferi:

Session_Buffer is used to buffer packets during
failures. A Session-Handler is initiated when a
service invocation data packet is received by a
node. Thus Session-Handlers are initiated at differ-
ent times at different nodes in the ACTIVE_
PATH. Each data packet piggybacks along with
it session related information. Session related
information include SessionId, Service_Description
of the service to which this session belongs to,
ACTIVE_PATH_Destination, Session_LifeTime

and Session_Strictness. The parameter Ses-

sion_Strictness specifies whether the session has
to be node-consistent or the session could be serv-
ice-consistent. ACTIVE_PATH_Destination refers
to the address of the selected SP.
5.5. Path breakage and session redirection

End-to-end session management in GSR pro-
vides it with connection monitoring to detect link

D. Chakraborty et al. / Ad Hoc Networks 4 (2006) 204–224 215
failures and node failures. A Link Failure might
happen due to disconnections or mobility of nodes
in the ACTIVE_PATH. The node that is upstream
in the ACTIVE_PATH detects this when it fails to
transmit data packets to the next hop. A Service-
Node Failure on the other hand refers to the failure
due to shutting down of the SP or the SP becoming
unreachable. We detect this at the node just ahead
of the SP in the ACTIVE_PATH when it fails to
transmit data packets to the SP.

GSR takes corresponding actions depending on
the type of session. Intermediate nodes are not
able to distinguish between a Link Failure and a
Service-Node Failure. This is because, both the
failures are triggered from failure to transmit data
packets successfully. Thus, for a Node-Consistent
session, the intermediate node that detects the fail-
ure uses the discovery infrastructure to discover
another route to the required SP. A Node-Consist-
ent discovery request is sent out during this type of
failure. All packets coming into the node during
this period are buffered in the corresponding Ses-

sion_Buffer. If an alternate route is discovered,
then all buffered packets are transmitted through
the new path that becomes augmented to the al-
ready existing ACTIVE_PATH. Fig. 5 describes
the redirection of the ACTIVE_PATH. The ses-
sion is dropped if the node fails to discover a route
to the required SP.

GSR resorts to service-centric session redirec-
tion in case of link or service-node failures for a
RS

Node1

Node2

Node3

IN

Node

Node6

SP

ACTIVE_PATH being redirected through Node4
and Node5

Node5

Node4

IN moves away

Link Failure

Fig. 5. ACTIVE_PATH redirection in GSR.
Service-Consistent session. The node that detects
the failure tries using GSD to discover a service
that has the same specification as of the service
in the ongoing session. The discovery request sent
out during this period is Service-Consistent. On a
successful discovery, the session is redirected to
the new SP. Note that the node detecting the fail-
ure redirects the session. This does not impose any
load on the RS. Moreover, the part of the ACTI-
VE_PATH that is usable remains intact. The
ACTIVE_PATH from the RS to the new SP is
established by combining the old ACTIVE_PATH
from the RS to the node that detects the failure
and the new ACTIVE_PATH formed from that
node to the new SP. This novelty of our routing
protocol enables service invocation data to be rou-
ted based on service descriptions, thus enabling
GSR to be service-centric. Currently, GSR tries
discovering services exactly matching the descrip-
tion of the service in the ongoing session. How-
ever, we could also redirect a session to a service
belonging to the group of the service in the session
by utilizing the semantic service matching features
and the hierarchical service groups. Fig. 6 de-
scribes session redirection in GSR. By buffering
packets and retransmitting them, GSR tries to im-
prove the reliability of the protocol. However, it
does not guarantee delivery of all the packets in
the service invocation data. We show in Section
7 that GSR performs reasonably well compared
to other routing protocols in terms of data
delivery.
6. GSR implementation components

We have employed the use of several existing
and new techniques to augment our discovery
infrastructure to enable service-centric data rout-
ing. We employ the use of Forward Route Tables

and Reverse Route Tables to maintain path specific
information during service discovery and invoca-
tion. Additionally, we also maintain a Session

Table that stores information about ongoing ses-
sions through a node. A Session_Handler in each
node maintains session data corresponding to each
session. A Session_Handler could belong to any of

RS

Node1

Node2

Node3

IN

Node

Node6

SP1

ACTIVE_PATH being redirected to the new
Service Provider SP2 providing the same service

Node5

Node4

IN moves away

Link Failure

SP2

Node3 performs service-centric session
redirection

Fig. 6. Service-centric session redirection in GSR.

216 D. Chakraborty et al. / Ad Hoc Networks 4 (2006) 204–224
the four session states, Session_Discovery, Ses-

sion_Active, Session_Dropped and Session_Fin-
ished. In this section, we describe the various
implementation level components of GSR.

6.1. Reverse Route Table

Each node in addition to maintaining a Serv-

ice Cache (for GSD) also maintains a Reverse

Route Table. It is a node-centric route table
indexed by the source address of a node. Impor-
tant fields in the Reverse Route Table (RR Table)
are

hSource-Address; Previous-Address;

Life-Time;Hops-To-Sourcei:

Reverse Route Table performs the function of
reverse routing a service reply back to the source
of the request using the REQUEST_PATH. This
makes the REQUEST_PATH same as the
RESPONSE_PATH in GSR but in the reverse
direction. The RR table is updated during the time
a service request arrives at a node. Each service re-
quest packet contains a Last-Address field. Each
node seeing a service request changes this field to
reflect its own address before forwarding it to
other nodes in its vicinity. This value is stored in
the RR Table (as Previous-Address) of each node
the request traverses. The RR Table is used to send
a service reply back to the RS. Our protocol offers
updating of the RR Table based on shortest route
or recency of the request:

• Shortest Route updation: The RR Table for a
source address is updated only when it has
received a request that has lesser value of
Hops-To-Source than the existing entry (if there
is one).

• Recency-based updation: The RR Table is
updated whenever a request received from a
source is more recent than the previously stored
value. Recency is determined using the time-
stamp of the service request and the Life-Time

of the entry.

These actions are performed only after the dis-
covery layer has handled duplicate requests and
replies. The entry in the table is kept for REV_
ROUTE_TIMEOUT time units. The REV_
ROUTE_TIMEOUT value thus determines the
time limit for which intermediate nodes maintains
the REQUEST_PATH. Shortest Route updation
could be used for relatively stable ad-hoc networks
where as recency-based updation could be used for
fast-moving ad-hoc networks where the recency of
the route is very important.

D. Chakraborty et al. / Ad Hoc Networks 4 (2006) 204–224 217
6.2. Forward Route Table

It is a node-centric route table indexed by the
Destination Address of nodes. Important entries
in the Forward Route Table (FR Table) are

hDestination-Address; nextHop-Address;

Life-Time; Hops-To-Destinationi:

FR Table performs the role of forming the DA-
TA_PATH by combining RESPONSE_PATH
and ADVERTISEMENT_PATH. Service Invoca-
tion Data is routed through the selected DATA_
PATH using FR Table. FR Table determines
the nextHop-Address when data packets reach a
certain node in the path. FR Table is updated in
when a service reply or an advertisement arrives
a node.

• Service Reply based updation: A service reply
packet contains two fields (apart from others)
namely: Last-Address and Service-Source-

Address. The Last-Address identifies the next
hop required for a data packet to reach Serv-

ice-Source-Address. These values are stored in
the FR Table. Each node, before forwarding a
service reply changes the Last-Address field to
reflect its own node address.

• Advertisement based updation: The FR Table is
also updated when a service advertisement
reaches a node. The Source Address of the
advertisement and the Last-Address from where
it has been forwarded are stored in the FR
Table. This forms the ADVERTISEMENT_
PATH. Thus each node on the ADVERTISE-
MENT_PATH knows the next hop neighbor
in case it has to forward data to the source of
the service advertisement.

FR Table updation is based on shortest route to
destination as well as recency of advertisement and
service reply. This is analogous to the updating on
RR Table. Each entry is kept for FOR_ROUTE_
TIMEOUT time units and that determines the
duration of the time the DATA_PATH remains
idle. The DATA_PATH is destroyed if it has not
been used within this time interval. Apart from
the above mentioned updations, the timeout value
of entries in the FR Table that participate in an
ACTIVE_PATH is updated whenever a session
is initiated in an ACTIVE_PATH.
6.3. Session maintenance

Session_Handlers at each node manage sessions
for each connection through the node. Data trans-
fer is performed by forwarding the data packets
through the ACTIVE_PATH using the FR Table.
After a Session_Handler is initiated, it constructs
an entry in the Session Table. It obtains the re-
quired information from the session-related infor-
mation piggybacked in an invocation packet
(explained before) and from the FR and RR
Tables. As mentioned before, the Session_Handler
can possibly have four states. A session after being
initiated belongs to either Session_Discovery or
Session_Active state. The states of the Ses-
sion_Handler and the corresponding actions per-
formed it are explained in detail in this subsection.

• Session_Discovery: This is the state when the
required service has not yet been discovered
and the Session_Handler is waiting for the
requested service. Session_Handler on entering
this state initiates a service discovery using
GSD. The Session_Handler also buffers incom-
ing data packets in the Session_Buffer. A Ses-

sion_Handler can go into this state from either
Session_Active state (explained below) or right
at the inception of the session at the source of
the request. During the inception of the session,
the discovery request sent out by the Ses-

sion_Handler is always Service-Consistent. How-
ever, if this state has been reached from
Session_Active state, the discovery request sent
out depends on the type of the currently existing
session. The state goes either into Session_Active
state if a servicemeeting the session specifications
was discovered, or goes into Session_Dropped in
case of a discovery failure after repeated trials.

• Session_Active: This is the state when a Ses-

sion_Handler engages in transferring data pack-
ets in an ACTIVE_PATH. A Session_Handler

No

Yes

Yes

Yes

No

Yes

No

Yes

Session_Discovery

Session_Active

Session_Dropped

Session_Finished

Session
Initiation

Discovery
Information
available?

Service
Discovered

?

Max
Attempts

over?

Failure
Detected?

Transmission
over?

No

Fig. 7. Session state transition diagram.

218 D. Chakraborty et al. / Ad Hoc Networks 4 (2006) 204–224
monitors the outgoing link for a certain connec-
tion. Whenever, it receives a data packet, it
checks the FR Table to determine the next
hop for it. It then forwards the data packet to
the next hop. In the event of a link failure or
node failure, the outgoing packet is buffered.
The Session_Handler immediately goes back to
the Session_Discovery phase on detecting this.
This state can be reached from either a Ses-

sion_Discovery state or during the creation of
the session at a node. A node other than the
source node or the destination node, but
belonging to the ACTIVE_PATH can go into
this state right at the creation of the session.
This is because the node already belongs to a
DATA_PATH and hence knows a route to
the particular service/destination. Hence it can
actively participate in data transfer without
having to go into the Session_Discovery state.
It transitions to the Session_Finished state in
case of a successful transfer or to the Session_
Dropped state in case of an unsuccessful
transfer.

• Session_Dropped: This is the state when either
the Session_Handler has failed in transmitting
all the packets to the destination. This may
result due to the failure of a node to discover
the required service. All session-related infor-
mation is purged from the participating nodes.
Pending data packets for a dropped session
are dropped too. A Session_Handler that goes
from the Session_Discovery to this state, has
not succeeded in discovering the required serv-
ice. A session buffer overflow may lead to a ses-
sion being dropped too. The session then
transitions into the Session_Finished state at
the end.

• Session_Finished: This is the end state reached
by the Session_Handler once it has finished a
successful or an unsuccessful session. It is
reached either from the Session_Active or Ses-

sion_Dropped state.

Fig. 7 depicts the session state changes. Our ses-
sion maintenance and failure handling detects
most failures and resorts to appropriate fault han-
dling mechanisms depending on the session type
(as explained in Section 5). However, there are cer-
tain instances where the node failure might go
undetected. For example, if a node is in Ses-

sion_Discovery state, and it goes down after having
buffered all incoming packets, it wont be detected
by its upstream neighbor in the Active_Path. How-
ever, if some packets were still being transmitted
by the upstream node, it would be able to detect
the failure due to packet drops and take necessary
actions.
7. Experimental evaluation

We implemented GSR on the ad-hoc network
simulator Glomosim [23] under various mobility
conditions and different node topologies. We com-
pared GSR with our basic model where we had
our service discovery architecture as a layer on
top of AODV. We had two versions of our inte-
grated protocol. The basic version does not do
any session management. We call this GSR
(Group-based Service Routing). The version of
our protocol that performs end-to-end session
management is termed as GSR-S (Group-based
Service Routing with Session Management). We
compare these two versions with the basic version
where the discovery layer uses AODV for all
routing purposes. We call this GSD+AODV
(Group-based Service Discovery+AODV).

We implemented the integrated protocol as a
routing layer in the Glomosim protocol stack.
We used CBR (Constant Bit Rate) messages from

Fig. 8. Experiment parameters.

D. Chakraborty et al. / Ad Hoc Networks 4 (2006) 204–224 219
the application layer as triggers to invoke discov-
ery and routing in our protocol. Simulation Envi-
ronment consisted of node topologies ranging
from a topology with 25 nodes to a topology with
64 nodes. In this paper, we present results for the
two extremes (25 nodes and 64 nodes). We used
a random way-point mobility pattern for all the
nodes. The initial setup followed a grid structure
where all the nodes were distributed in a grid over
the terrain. For the purposes of the simulation, we
used representative services S0–S64 to represent
actual services and groups G1–G10 to represent
service groups with G10 being equivalent to the
parent service group called ‘‘Service’’. Through
out all the experiments, we used a pessimistic eval-
uation strategy by keeping the requested service
only on 8% of the nodes. This is because, intui-
tively with the increase in the availability of the
service, the performance of the protocol will im-
prove. All the simulation parameters including
the various timeouts used for different tables and
link and radio layer parameters have been enumer-
ated in Fig. 8.

We compared GSR, GSR-S and GSD+AODV
with respect to packet delivery ratio, average re-
sponse time for request, average response hops,
average packet delay and average packet hops.
We define mobility of nodes by P ðSm; SMaxÞ where
P=Pause (in s) after the node has moved to a new
position, Sm=Minimum speed (m/s) of movement
5(1.1) 5(3.3) 5(5.5) 5(7.7) 5(9.9)
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

P
ac

ke
t D

el
iv

er
y

R
at

io

Mobility

Average Packet Delivery Ratio vs. Mobility (No. of Nodes=25)

AODV+GSD
GSR
GSR-S

P
ac

ke
t D

el
iv

er
y

R
at

io

Fig. 9. Average packet delivery ratio comparison
of the node, SMax= Maximum speed (m/s) of
movement of the node.

The node moves with a speed within the range
(Sm, SMax). In our simulations, we have varied
node speed ranging from 1 to 9 m/s with a pause
time of 5 s for all the experiments. All the time cal-
culations (packet delay, response time) are in
seconds:

• Experiment 1: packet delivery ratio vs. mobility

Average packet delivery ratio is defined as the
number of data packets received by the final
destination as a fraction of the number of data
packets transmitted by the source. In Fig. 9 we
plot the average packet delivery ratio as a func-
tion of mobility. GSR-S quite predictably
5(1.1) 5(3.3) 5(5.5) 5(7.7) 5(9.9)
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Mobility

Packet Delivery Ratio vs. Mobility(No. of Nodes=64)

AODV+GSD
GSR
GSR-S

graph of GSD+AODV, GSR and GSR-S.

220 D. Chakraborty et al. / Ad Hoc Networks 4 (2006) 204–224
shows a packet delivery ratio of almost 1 which
is significantly higher than AODV+GSD or
GSR. This is mainly due to the end-to-end ses-
sion management. This shows that integrating
session management along with routing pro-
vides with improved efficiency in packet deliv-
ery. However, it is also noticed that packet
delivery ratio of GSR is more than AODV+
GSD in low mobility situations. However,
AODV seems to be performing somewhat bet-
ter in high mobility situations (9 m/s) for net-
works consisting of large number of nodes (64
nodes in the graph). This is because often times
in high mobility scenarios, the reverse routes
break due to node mobility contributing to the
decrease in the delivery ratio. AODV, on the
other hand discovers a fresher route each time
it transfers service data.

• Experiment 2: average data delay vs. mobility

We calculated the average packet delay for data
received in Experiment 1. Logically, packet de-
lay should increase in GSR-S since GSR-S buff-
ers dropped packets, and again retransmits them
after the session has been re-established. The re-
sults have been plotted in Fig. 10. As expected,
we see that packet delay inGSR-S is greater than
delay in GSR or AODV+GSD. However, we
also observed that the distribution of delay for
GSR-S shows a high proportion of packets
(about 75%) being delivered with delays almost
5(1.1) 5(3.3) 5(5.5) 5(7.7) 5(9.9)
0

5

10

15

20

25

30

A
vg

. P
ac

ke
t D

el
ay

Mobility

Avg. Packet Delay vs. Mobility(No. of Nodes=25)

AODV+GSD
GSR
GSR-S

A
vg

. P
ac

ke
t D

el
ay

Fig. 10. Average packet delay of GSD+AODV, GSR
similar to AODV or GSR. The average data de-
lay is strongly affected by a small fraction of the
packets which take a very long time to be deliv-
ered. These are packets that had been buffered
by a session during a node or link failure. Fig.
11 shows the delay distribution. We also observe
that GSR performs consistently better than
AODV in terms of packet delay. This is because
GSR uses one of the DATA_PATHs to transmit
data whereas AODV transmits data only after
having finished its route discovery process. This
result along with results from Experiment 1
shows that reusing the path already obtained
during discovery would result in faster data
transmission with a minor decrease in the deliv-
ery ratio. The delivery ratio on the other hand
drastically improves with session maintenance.

• Experiment 3: average data hops vs. mobility

The average hops traveled by data packets give
an idea of the efficiency of the routing protocol
in terms of discovering shorter routes. Our re-
sults show that GSR performs best in terms of
average data hops both in low mobility as well
as high mobility situations with small and large
node topologies. GSR-S performs a little worse
than GSR. This is again attributed to the fact
that some of the data packets are redirected
via a different path (these packets are dropped
in GSR), resulting in increased hop count.
AODV+GSD perform even worse than GSR-
5(1.1) 5(3.3) 5(5.5) 5(7.7) 5(9.9)
0

5

10

15

20

25

30

Mobility

Avg. Packet Delay vs. Mobility(No. of Nodes=64)

AODV+GSD
GSR
GSR-S

and GSR-S with respect to varying mobility.

0-5 >5-20 >20-30 >30-40 >40-50 >50-80
0

50

100

150

200

250

300

350

D
at

a
P

ac
ke

t F
re

qu
en

cy

Data Packet Delay (seconds)

Delay Distribution for GSR-S with Mobility 5(9,9). (No. of Nodes=25)

0-5 >5-20 >20-30 >30-40 >40-50 >50-80
0

50

100

150

200

250

300

350

D
at

a
P

ac
ke

t F
re

qu
en

cy

Data Packet Delay (seconds)

Delay Distribution for GSR-S with Mobility 5(9,9). (No. of Nodes=64)

Fig. 11. Delay distribution for GSR-S with mobility 5(9,9).

D. Chakraborty et al. / Ad Hoc Networks 4 (2006) 204–224 221
S. However, under high mobility conditions (9
m/s) in a large node topology (64 nodes),
AODV performs comparatively better than
both the other protocols. We believe this is be-
cause high mobility often breaks the reverse
routes. AODV, in such situations discovers
fresher routes from the RS to the SP. GSR-S,
on the other hand employs partial path recon-
struction from an intermediate node. In high
mobility scenarios, this often results in GSR-S
discovering a longer path than what AODV dis-
5(1.1) 5(3.3) 5(5.5) 5(7.7) 5(9.9)
1

1.5

2

2.5

3

3.5

4

4.5

A
vg

.
P

a
ck

e
t
H

o
p
 C

o
u
n
t

Mobility

Avg. Packet Hop Count vs. Mobility(No. of Nodes=25)

AODV+GSD
GSR
GSR-S

A
vg

.
P

a
ck

e
t
H

o
p
 C

o
u
n
t

Fig. 12. Average data packet hop count registered in GSD+A
covers from RS to the SP. The results have been
shown in Fig. 12.

• Experiment 4: average request response time vs.

mobility

Request Response Time refers to the time taken
for a service reply to reach the source after a
service request had been sent out. This result
gives us an estimate of how long AODV takes
to transmit a service reply back to the source
vis-a-vis our protocol where the reply is re-
verse-routed back to the source. In Fig. 13,
5(1.1) 5(3.3) 5(5.5) 5(7.7) 5(9.9)
1

1.5

2

2.5

3

3.5

4

4.5

Mobility

Avg. Packet Hop Count vs. Mobility(No. of Nodes=64)

AODV+GSD
GSR
GSR-S

ODV, GSR and GSR-S with respect to varying mobility.

5(1.1) 5(3.3) 5(5.5) 5(7.7) 5(9.9)
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

A
vg

. R
es

po
ns

e
T

im
e

fo
r

S
er

vi
ce

 R
eq

ue
st

Mobility

Avg. Response Time for Service Request vs. Mobility(No. of Nodes=25)

AODV+GSD
GSR
GSR-S

5(1.1) 5(3.3) 5(5.5) 5(7.7) 5(9.9)
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

A
vg

. R
es

po
ns

e
T

im
e

fo
r

S
er

vi
ce

 R
eq

ue
st

Mobility

Avg. Response Time for Service Requests vs. Mobility(No. of Nodes=64)

AODV+GSD
GSR
GSR-S

Fig. 13. Average request response time in GSD+AODV, GSR and GSR-S with respect to varying mobility.

5(1.1) 5(3.3) 5(5.5) 5(7.7) 5(9.9)
1.5

2

2.5

3

3.5

4

4.5

A
vg

. H
op

s
T

ra
ve

lle
d

by
 a

 S
er

vi
ce

 R
es

po
ns

e

Mobility

Avg. Service Response Hops vs. Mobility(No. of Nodes=25)

AODV+GSD
GSR
GSR-S

5(1.1) 5(3.3) 5(5.5) 5(7.7) 5(9.9)
1.5

2

2.5

3

3.5

4

4.5

A
vg

. H
op

s
T

ra
ve

lle
d

by
 a

 S
er

vi
ce

 R
es

po
ns

e

Mobility

Avg. Service Response Hops vs. Mobility(No. of Nodes=64)

AODV+GSD
GSR
GSR-S

Fig. 14. Average response hops in GSD+AODV, GSR and GSR-S with respect to varying mobility.

222 D. Chakraborty et al. / Ad Hoc Networks 4 (2006) 204–224
we observer that with less number of nodes (25
nodes), GSR/GSR-S performs significantly bet-
ter than AODV. We also observe that with 64
nodes, the response time decreases with increas-
ing mobility. This is corroborated in Fig. 14
where we see a decrease in the average response
hops (thus resulting in decreased response time)
for large nodes under high mobility conditions.
However, with small number of nodes (25)
there is no significant decrease in the average
response time. GSR/GSR-S, as expected is
more efficient in utilizing a shorter route than
AODV.
8. Conclusions and future work

We have presented the design of an integrated
service discovery and routing protocol (GSR).
Our integrated protocol has the capability to do
both node-centric as well as service-centric rout-
ing. Service Discovery is a key component for
the development of distributed applications. We
show that an integration of service discovery with
routing in ad-hoc networks offers greater system
efficiency.

Integrating different layers of the protocol stack
has well-known shortcomings. The integrated

D. Chakraborty et al. / Ad Hoc Networks 4 (2006) 204–224 223
protocol becomes non-modular and difficult to
upgrade. Correctness checks also become compli-
cated and code reuse becomes difficult. While the
benefits offered by modularity in wired networked
systems outweigh the need for integration, in ad-
hoc networks, integration of the two layers offers
greater justification in terms of the benefits
obtained.

Several minor enhancements are possible in our
proposed protocol. For example, currently, a serv-
ice reply is dropped if it does not have a route to
the source node. On detection of such a message
drop, the node immediate upstream could broad-
cast the packet to the limited vicinity and expect
some node to route the reply to the source node.
This enhancement makes the REQUEST_PATH
and RESPONSE_PATH different and we have to
handle it accordingly. The Session_Handler could
also be enhanced by providing it with multiple
possible destinations where the particular session
could be forwarded. Right now, it goes into the
Session_Discovery state and tries to recover/redi-
rect the session in a reactive manner. We could
make a Session_Handler cache service replies from
multiple nodes and hence pre-calculate possible
destinations for an active session. Our future work
plan is to integrate these features and try to make
the integrated protocol more robust for upper-
level applications.
References

[1] S. Helal, N. Desai, C. Lee, Konark––A service discovery
and delivery protocol for ad-hoc networks, in: Third IEEE
Conference on Wireless Communication Networks
(WCNC), New Orleans, USA, March 2003.

[2] D. Tang, C. Chang, K. Tanaka, M. Baker, Resource
discovery in ad hoc networks, Tech. Rep., Stanford
University, August 1998, CSL-TR-98-769.

[3] D. Chakraborty, A. Joshi, GSD: A novel group-based
service discovery protocol for MANETS, in: IEEE Con-
ference on Mobile and Wireless Communications Net-
works, Stockholm, Sweden, September 2002.

[4] C.E. Perkins, E.M. Royer, Ad-hoc on-demand distance
vector routing, in: 2nd IEEE Workshop on Mobile
Computing Systems and Applications, February 1999,
pp. 90–100.

[5] D.B. Johnson, D.A Maltz, The Dynamic Source Routing
Protocol for Mobile Ad-hoc Networks, Mobile Comput-
ing, Kluwer Academic Publishers, Boston, 1996, pp. 153–
181.

[6] C.E Perkins, P. Bhagwat, Highly dynamic destination-
sequenced distance-vector routing (DSDV) for mobile
computers, Computer Communication Review 24 (4)
(1994) 234–244.

[7] V.D. Park, M.S. Corson, A highly adaptive distributed
routing algorithm for mobile wireless networks, in: Six-
teenth Annual Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM), Kobe,
Japan, April 1997.

[8] P. Bhagwat B. Raman, S. Seshan, Arguments for cross-
layer optimizations in Bluetooth scatternets, in: The 2001
Symposium on Applications and the Internet (SAINT),
January 2001.

[9] V. Kawadia P.R. Kumar, A cautionary perspective on
cross layer design, IEEE Wireless Communications Mag-
azine, to appear.

[10] M. Balazinska, H. Balakrishnan, D. Karger, Instwine: A
scalable peer-to-peer architecture for intentional resource
discovery, in: International Conference on Pervasive
Computing, Zurich, Switzerland, August 2002.

[11] A. Carzaniga, A.L. Wolf, Content-based Networking: a
new communication infrastructure, in: NSF Workshop on
an Infrastructure for Mobile and Wireless Systems. In
conjunction with the International Conference on Compu-
ter Communications and Networks (ICCCN), Arizona,
USA, October 2001.

[12] S. Motegi, K. Yoshihara, S. Obana, H. Horiuchi, Proposal
of service discovery for wireless ad-hoc networks, IPSJ
Journal 43 (12) (2002).

[13] D. Chakraborty, A. Joshi, T. Finin, Y. Yesha, Towards
distributed service discovery in pervasive computing envi-
ronments, Technical Report, TR-CS-03-26, University of
Maryland Baltimore County, April 2003.

[14] K. Arnold, B. Osullivan, R.W. Scheifler, J. Waldo, A.
Wollrath, The Jini Specification (The Jini Technology),
Addison-Wesley, Reading, MA, 1999.

[15] The Salutation Consortium Inc 1999, Salutation Architec-
ture Specification (Part 1), Version 2.1 Edition. Available
from: <http://www.salutation.org>.

[16] R. John, UPnP, Jini and salutation––a look at some popular
coordination frameworks for future network devices, Tech.
Rep., California Software Labs, 1999. Available from:
<http://www.cswl.com/whiteppr/tech/upnp.html>.

[17] Universal Description Discovery and Integration Platform,
September 2000. Available from: <http://www.uddi.org/
pubs/Iru_UDDI_Technical_White_Paper.pdf>.

[18] E. Schwartz W. Adjie-Winoto, H. Balakrishnan, The
Design and Implementation of an Intentional Naming
System, in: Proceedings of the Symposium on Operating
Systems Principles, South Carolina, USA, December 1999.

[19] C.E Perkins, E.M. Royer, S. Das, Ad hoc on-demand
distance vector protocol, IETF Internet Draft, Version 12,
November 2002.

[20] DARPA Agent Markup Language. Available from:
<http://www.daml.org>.

http://www.salutation.org
http://www.cswl.com/whiteppr/tech/upnp.html
http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf
http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf
http://www.daml.org

224 D. Chakraborty et al. / Ad Hoc Networks 4 (2006) 204–224
[21] DARPA Agent Markup Language and Ontology Inference
Layer. Available from: <http://www.daml.org/2001/03/
daml+oil.daml>.

[22] D. Chakraborty, F. Perich, S. Avancha, A. Joshi, DReggie:
A smart service discovery technique for e-commerce
applications, in: Workshop in conjunction with 20th
Symposium on Reliable Distributed Systems, October
2001.

[23] R. Bagrodia, X. Zeng, M. Gerla, GloMoSim: a library for
parallel simulation of large-scale wireless networks, in: 12th
Workshop on Parallel and Distributed Simulations,
Alberta, Canada, 1998.

Dipanjan Chakraborty is a Ph.D. can-
didate and a research member of
ebiquity research group at University
of Maryland, Baltimore County
(UMBC). His research is in the areas
of mobile and pervasive computing
environments, mobile and e-com-
merce, peer-to-peer systems with spe-
cial interests in the fields of service
discovery, information aggregation
and composition, ad-hoc network
application-centric routing, agent-
based systems. He specializes in the

development and modeling of distributed architectures to ena-

ble mobile and pervasive commerce in ubiquitous environ-
ments. His thesis is in the area of service discovery and
composition for pervasive environments. He has been a fellow
of IBM during the 3 years of his Ph.D. candidacy.

Anupam Joshi is an Associate Profes-
sor of Computer Science and Electrical
Engineering at UMBC. Earlier, he was
an Assistant Professor in the CECS
department at the University of Mis-
souri, Columbia. He obtained a
B.Tech degree in Electrical Engineer-
ing from IIT Delhi in 1989, and a
Masters and Ph.D. in Computer Sci-
ence from Purdue University in 1991
and 1993 respectively. His research
interests are in the broad area of net-
worked computing and intelligent sys-
tems. His primary focus has been on data management for
mobile computing systems in general, and most recently on data
management and security in pervasive computing and sensor
environments. He has created agent based middleware to sup-
port discovery, composition, and secure access of services/data
over both infrastructure based (e.g. 802.11, cellular) and ad-hoc
wireless networks (e.g. Bluetooth). He is also interested in
Semantic Web and Data/Web Mining, where he has worked on
personalizing the web space using a combination of agents and
soft computing. His other interests include networked HPCC.
He has published over 50 technical papers, and has obtained
research support from NSF, NASA, DARPA, DoD, IBM,
AetherSystens, HP, AT&T and Intel. He has presented tutorials
in conferences, served as guest editor for special issues for IEEE
Personal Comm., Comm. ACM etc., and served as an Associate
Editor of IEEE Transactions of Fuzzy Systems from 99-03. At
UMBC, he teaches courses in Operating Systems, Mobile
Computing, Networking, and Web Mining. He is a member of
IEEE, IEEE-CS, and ACM.

Yelena Yesha received the B.Sc. degree
in Computer Science from York Uni-
versity, Toronto, Canada in 1984, and
the M.Sc. and Ph.D. degrees in Com-
puter and Information Science from
The Ohio State University in 1986 and
1989, respectively. Since 1989 she has
been with the Department of Compu-
ter Science and Electrical Engineering
at the University of Maryland Balti-
more County, where she is presently a
Verizon Professor. In addition, from
December, 1994 through August, 1999

she served as the Director of the Center of Excellence in Space

Data and Information Sciences at NASA. Her research inter-
ests are in the areas of distributed databases, distributed sys-
tems, mobile computing, digital libraries, electronic commerce,
and trusted information systems. She published 8 books and
over 100 refereed articles in these areas. She was a program
chair and general co-chair of the ACM International Confer-
ence on Information and Knowledge Management and a
member of the program committees of many prestigious con-
ferences. She is a member of the editorial board of the Very
Large Databases Journal, and the IEEE Transactions on
Knowledge and Data Engineering, and is editor-in-chief of the
International Journal of Digital Libraries. During 1994, she was
the Director of the Center for Applied Information Technology
at the National Institute of Standards and Technology. She is a
senior member of IEEE, and a member of the ACM.

http://www.daml.org/2001/03/daml+oil.daml
http://www.daml.org/2001/03/daml+oil.daml

	Integrating service discovery with routing and session management for ad-hoc networks
	Introduction
	Background
	GSR protocol key terms
	GSD: Group-based Service Discovery
	GSR protocol design
	Dependence on GSD
	Data path setup
	Active path selection
	End-to-end session maintenance
	Path breakage and session redirection

	GSR implementation components
	Reverse Route Table
	Forward Route Table
	Session maintenance

	Experimental evaluation
	Conclusions and future work
	References

