
Using Colored Petri Nets for Conversation
Modeling

R. Scott Cost, Ye Chen, Tim Finin, Yannis Labrou, Yun Peng

Department of Computer Science and Electrical Engineering
University of Maryland Baltimore County

Baltimore, Maryland 21250
cost@acm.org, {yechen,finin,jklabrou,ypeng}@cs.umbc.edu

Abstract. Conversations are a useful means of structuring communica-
tive interactions among agents. The value of a conversation-based ap-
proach is largely determined by the conversational model it uses. Finite
State Machines, used heavily to date for this purpose, are not sufficient
for complex agent interactions requiring a notion of concurrency. We pro-
pose the use of Colored Petri Nets as a model underlying a language for
conversation specification. This carries the relative simplicity and graph-
ical representation of the former approach, along with greater expressive
power and support for concurrency. The construction of such a language,
Protolingua, is currently being investigated within the framework of the
Jackal agent development environment. In this paper, we explore the use
of Colored Petri Nets in modeling agent communicative interaction.

1 Introduction

Conversations are a useful means of structuring communicative interactions
among agents, by organizing messages into relevant contexts and providing a
common guide to all parties. The value of a conversation-based approach is
largely determined by the conversational model it uses. The presence of an un-
derlying formal model supports the use of structured design techniques and
formal analysis, facilitating development, composition and reuse. Most conver-
sation modeling projects to date have used or extended finite state machines
(FSM) in various ways, and for good reason. FSMs are simple, depict the flow of
action/communication in an intuitive way, and are sufficient for many sequen-
tial interactions. However, they are not adequately expressive to model more
complex interactions, especially those with some degree of concurrency. Colored
Petri Nets (CPN) [17, 18, 19] are a well known and established model of con-
currency, and can support the expression of a greater range of interaction. In
addition, CPNs, like FSMs, have an intuitive graphical representation, are rela-
tively simple to implement, and are accompanied by a variety of techniques and
tools for formal analysis and design.

We have explored the use of model-based conversation specification in the
context of multi agent systems (MAS) supporting manufacturing integration [26].
Agents in our systems are constructed using the Jackal agent development plat-
form [8], and communicate using the KQML agent communication language

F. Dignum and M. Greaves (Eds.): Agent Communication, LNAI 1916, pp. 178−192, 2000.
 Springer-Verlag Berlin Heidelberg 2000

(ACL) [13]. Jackal, primarily a tool for communication, supports conversation-
based message management through the use of abstract conversation specifica-
tions, which are interpreted relative to some appropriate model. Conversation
specifications, or protocols, can describe anything from simple acknowledged
transactions to complex negotiations.

In the next section, we present a motivation for using conversations to model
and organize agent interaction. Next, we present CPNs, the model we propose
to use, in more detail. Following this, we discuss the implementation of these
ideas in a real MAS framework. Finally, we present two examples of CPN use:
the first, specification of a simple KQML register conversation, and the next, a
simple negotiation interaction.

2 Conversation-Based Interaction Protocols

The study of ACLs is one of the pillars of current agent research. KQML and
the FIPA ACL are the leading candidates as standards for specifying the encod-
ing and transfer of messages among agents. While KQML is good for message-
passing among agents, directly exploiting it in building a system of cooperating
agents leaves much to be desired. After all, when an agent sends a message, it
has expectations about how the recipient will respond to the message. Those
expectations are not encoded in the message itself; a higher-level structure must
be used to encode them. The need for such conversation policies (CP)is increas-
ingly recognized by the KQML community, and has been formally recognized in
the latest FIPA draft standard [14, 10].

It is common in KQML-based systems to provide a message handler that
examines the message performative to determine what action to take in response
to the message. Such a method for handling incoming messages is adequate for
very simple agents, but breaks down as the range of interactions in which an
agent might participate increases. Missing from the traditional message-level
processing is a notion of message context.

A notion growing in popularity is that the unit of communication between
agents should be the conversation. This is evidenced by the advent of a conver-
sation policies workshop at the 1999 Autonomous Agents Conference. A conver-
sation is a pattern of message exchange that two (or more) agents agree to follow
in communicating with one another. In effect, a conversation is a communica-
tions protocol, albeit one that may be initiated through negotiation, and may be
short-lived relative to the way we are accustomed to thinking about protocols.
A conversation lends context to the sending and receipt of messages, facilitat-
ing interpretation that is more meaningful. The adoption of conversation-based
communication carries with it numerous advantages to the developer. There is
a better fit with intuitive models of how agents will interact than is found in
message-based communication. There is also a closer match to the way that net-
work research approaches protocols, which allows both theoretical and practical
results from that field to be applied to agent systems. Also, conversation struc-
ture can be separated from the actions to be taken by an agent engaged in the

179Using Colored Petri Nets for Conversation Modeling

conversation, facilitating the reuse of conversations in multiple contexts.

Until recently, relatively little work has been devoted to the problem of con-
versation specification and implementation for mediated architectures. Strides
must be taken in the toward facilitating the construction and reuse of conver-
sations. An ontology of conversations and conversation libraries would advance
this goal, as would solutions to the problems of specifying conversations, sharing
these specifications, and aggregating them into meaningful ‘APIs’.

2.1 Conversation Specification

A specification of a conversation that could be shared among agents must con-
tain several kinds of information about the conversation and about the agents
that will use it. First, the sequence of messages must be specified. Tradition-
ally, deterministic finite-state automata (DFAs) have been used for this purpose;
DFAs can express a variety of behaviors while remaining conceptually simple.
For more sophisticated interactions, however, it is desirable to use a formalism
with more support for concurrency and verification. This is the motivation for
our investigation of CPNs as an alternative mechanism. Next, the set of roles
that agents engaging in a conversation may play must be enumerated. Many
conversations will be dialogues; however conversations with more than two roles
are equally important, representing the coordination of communication among
several agents in pursuit of a single common goal. For some conversations, the
set of participants may change during the course of the interaction.

DFAs and roles dictate the syntax of a conversation, but say nothing about
the conversation’s semantics. The ability of an agent to read a description of a
conversation, then engage in such a conversation, demands that the description
specify the conversation’s semantics. To be useful though, such a specification
must not rely on a full-blown, highly expressive knowledge representation lan-
guage. We believe that a simple ontology of common goals and actions, together
with a way to relate entries in the ontology to the roles, states, and transitions
of the conversation specification, will be adequate for most purposes. This ap-
proach sacrifices expressiveness for simplicity and ease of implementation. It is
nonetheless perfectly compatible with attempts to relate conversation policy to
the semantics of underlying performatives, as proposed for example by [5].

These capabilities will allow the easy specification of individual conversa-
tions. To develop systems of conversations though, developers must have the
ability to extend existing conversations through specialization and composition.
Development of these two abilities will entail the creation of syntax for express-
ing a new conversation in terms of existing conversations, and for linking the
appropriate pieces of the component conversations. It will also demand solution
of a variety of technical problems, such as naming conflicts, and the merger of
semantic descriptions of the conversations.

180 R.S. Cost et al.

2.2 Conversation Sharing

A standardized conversation language, as proposed above, dictates how conver-
sations will be represented; however, it does not say how such representations
are shared among agents. Agents must know how to map conversation names
to specifications, how to communicate the identity of a conversation being used,
and how to determine what conversations are know to other agents in their en-
vironment. While the details of how conversation sharing is accomplished are
more mundane than those of conversation representation, they are nevertheless
crucial to the viability of dynamic conversation-based systems.

2.3 Conversation Sets as APIs

The set of conversations in which an agent will participate defines an interface to
that agent. Thus, standardized sets of conversations can serve as abstract agent
interfaces (AAIs), in much the same way that standardized sets of function calls
or method invocations serve as APIs in the traditional approach to system-
building. That is, an interface to a particular class of service can be specified
by identifying a collection of one or more conversations in which the provider
of such a service agrees to participate. Any agent that wishes to provide this
class of service need only implement the appropriate set of conversations. To be
practical, a naming scheme will need to be developed for referring to such sets of
conversations, and one or more agents will be needed to track the development
and dissolution of particular AAIs. In addition to a mechanism for establishing
and maintaining AAIs, standard roles and ontologies, applicable to a variety of
applications, will need to be created.

There has been little work on communication languages from a practitioner’s
point of view. If we set aside work on network transport protocols or protocols
in distributed computing (e.g., CORBA) as being too low-level for the purposes
of intelligent agents, the remainder of the relevant research may be divided into
two categories. The first deals with theoretical constructs and formalisms that
address the issue of agency in general and communication in particular, as a
dimension of agent behavior (e.g., AOP [29]). The second addresses agent lan-
guages and associated communication languages that have evolved somewhat to
applications (e.g., TELESCRIPT [30]). In both cases, the work on communica-
tion languages has been largely part of a broader project committed to a specific
architecture.

Agent communication languages like KQML provide a much richer set of in-
teraction primitives (e.g., KQML’s performatives), support a richer set of com-
munication protocols (e.g., point-to-point, brokering, recommending, broadcast-
ing, multicasting, etc.), work with richer content languages (e.g., KIF), and are
more readily extensible than any of the systems described above. However KQML
lacks organization at the conversation level that lends context to the messages
it expresses and transmits. Until recently, limited work has been done on im-
plementing and expressing conversations for software agents. As early as 1986,

181Using Colored Petri Nets for Conversation Modeling

Winograd and Flores [32] used state transition diagrams to describe conversa-
tions. The COOL system [2] has perhaps the most detailed current FSM-based
model to describe agent conversations.

Other conversation models have been developed, using various approaches.
Extended FSM models, which, like COOL, focus more on expressivity than ad-
herence to a model, include Kuwabara et al. [20], and Elio and Haddadi [11]. A
few others have chosen to stay within the bounds of a DFA, such as Chauhan [6],
Nodine and Unruh [24], and Pitt and Mamdani [27]. Lin et al. [22] demonstrate
the use of CPNs. Parunak [25] introduces Dooley Graphs. Bradshaw [4] intro-
duces the notion of a conversation suite as a collection of commonly-used con-
versations known by many agents. Labrou [21] uses definite clause grammars
to specify conversations. While each of these works makes contributions to our
general understanding of conversations, more work needs to be done to facilitate
the sharing and use of conversation policies by agents.

2.4 Defining Common Agent Services via Conversations

A significant impediment to the development of agent systems is the lack of
basic standard agent services that can be easily built on top of the conversa-
tion architecture. Examples of such services are: name and address resolution;
authentication and security services; brokerage services; registration and group
formation; message tracking and logging; communication and interaction; visu-
alization; proxy services; auction services; workflow management; coordination
services; and performance monitoring. Services such as these have typically been
implemented as needed in individual agent development environments. Two such
examples are an agent name server and an intelligent broker.

3 Colored Petri Nets

Petri Nets (PN), or Place Transition Nets, are a well known formalism for mod-
eling concurrency. A PN is a directed, connected, bipartite graph in which each
node is either a place or a transition. Tokens occupy places. When there is at
least one token in every place connected to a transition, we say that transition
is enabled. Any enabled transition may fire, removing one token from every in-
put place, and depositing one token in each output place. Petri nets have been
used extensively in the analysis of networks and concurrent systems. For a more
complete introduction, see [1].

CPNs differ from PNs in one significant respect; tokens are not simply blank
markers, but have data associated with them. A token’s color is a schema, or
type specification. Places are then sets of tuples, called multi-sets. Arcs specify
the schema they carry, and can also specify basic boolean conditions. Specifically,
arcs exiting and entering a place may have an associated function which deter-
mines what multi-set elements are to be removed or deposited. Simple boolean
expressions, called guards, are associated with the transitions, and enforce some
constraints on tuple elements. This notation is demonstrated in examples below.

182 R.S. Cost et al.

CPNs are formally equivalent to traditional PNs; however, the richer notation
makes it possible to model interactions in CPNs where it would be impractical
to do so with PNs.

CPNs have great value for conversational modeling, in that:

– They are a relatively simple formal model, with an intuitive graphical rep-
resentation.

– They support concurrency, which is necessary for many non-trivial interac-
tions.

– They are well researched and understood, and have been applied to many
real-world applications.

– Many tools and techniques exist for the design and analysis of CPN-based
systems.

CPNs are not new, and they have been used extensively for a broad range
of applications (see [19] for a survey of current uses). Since their target domain
is distributed systems, and the line between that domain and MASs is vague at
best, there is much work on which to build. Some of the more directly related
research endeavors include Holvoet and Kielmann [15, 16], Fallah-Seghrouchni
and Mazouzi [12], Moldt and Wienberg [31, 23], Billington et al. [3], and Purvis
and Cranefield [28].

4 Putting Colored Petri Nets to Work

Currently, we are investigating the value of CPNs in a general framework for
agent interaction specification. Within this scheme, agents use a common lan-
guage, Protolingua, for manipulating CPN-based conversations. Protolingua it-
self is very sparse, and relies on the use of a basic interface definition language
(IDL) for the association of well known functions and data types with a CPN
framework. Agents use Protolingua interpreters to execute various protocols.
Protolingua itself is simple in order to facilitate the porting of interpreters to
many different platforms.

This approach allows the use of very lightweight, universal interpreters with-
out restricting the expressiveness of the protocols used. Note that the purpose of
the IDL in Protolingua however is the identification and retrieval of executable
modules, not the interaction of distributed components. If types and actions
are appropriately specified, they should be suitable for analysis, or translation
into some analyzable form. For example, we are using Design/CPN, a tool from
Aarhus University, Denmark, for high level design and analysis of protocols. This
system uses an extension of ML, CPN-ML, as its modeling language. We plan
to translate developed protocols into Protolingua and Java extensions, and re-
strict modification in such a way that CPN-ML equivalents of the extensions can
be used to facilitate analysis of the protocols. As such, CPN-ML has played a
major role in influencing the development of Protolingua. For the remainder of
this paper, we will focus on the abstract application of CPNs to conversations,
rather than their specification in Protolingua.

183Using Colored Petri Nets for Conversation Modeling

5 Example: Conversation Protocol

From its inception, Jackal has used JDFA, a loose Extended Finite State Machine
(EFSM), to model conversations [8, 26]. The base model is a DFA, but the tokens
of the system are messages and message templates, rather than simply characters
from an alphabet. Messages match template messages (with arbitrary match
complexity, including recursive matching on message content) to determine arc
selection. A local read/write store is available to the machine.

CPNs make it possible to formalize much of the extra-model extensions of
DFAs. To make this concrete, we take the example of a standard JDFA represen-
tation of a KQML Register conversation and reformulate it as a CPN. Note that
this simplified Register deviates from the [21] specification, in that it includes
a positive acknowledgment, but does not provide for a subsequent ‘unregister’
event. The graphic depiction of this JDFA specification can be seen in Figure 1.

(reply)

(sorry)

(error)(register)
START R STOP

Fig. 1. Diagrammatic DFA representation of the simplified KQML Register conversa-
tion

There are a number of ways to formulate any conversation, depending on the
requirements of use. This conversation has only one final, or accepting, state,
but in some situations, it may be desirable to have multiple accepting states,
and have the final state of the conversation denote the result of the interaction.

In demonstrating the application of CPNs here, we will first develop an in-
formal model based on the simplified Register conversation presented, and then
describe a complete, working CPN-ML model of the full Register conversation.

Some aspects of the model which are implicit under the DFA model must be
made explicit under CPNs. The DFA allows a system to be in one state at a time,
and shows the progression from one state to the next. Hence, the point to which
an input is applied is clear, and that aspect is omitted from the diagrammatic
representation. Since a CPN can always accept input at any location, we must
make that explicit in the model.

We will use an abbreviated message which contains the following compo-
nents, listed with their associated variable names: performative(p), sender(s),
receiver(r), reply-with(id), in-reply-to(re), and content(c).

We denote the two receiving states as places of the names Register and
Done (Figure 2). These place serve as a receipt locations for messages, after
processing by the transitions T1 and T2, respectively. As no message is ever
received into the initial state, we do not include a corresponding place. Instead,

184 R.S. Cost et al.

we use a a source place, called In. This is implicit in the DFA representation.
It must serve as input to every transition, and could represent the input pool
for the entire collection of conversations, or just this one. Note that the source
has links to every place, but there is no path corresponding to the flow of state
transitions, as in the DFA-based model.

The match conditions on the various arcs of the DFA are implemented by
transitions preceding each existing place. Note that this one-to-one correspon-
dence is not necessary. Transitions may conditionally place tokens in different
places, and several transitions may concurrently deposit tokens in the same place.

DoneRegister T2T1In

(p,s,r,id,re,c)

(p,s,r,id,re,c)

(p,s,r,id,re,c)

(p,s,r,id,re,c)

Fig. 2. Preliminary CPN model of a simplified KQML register conversation.

Various constants constrain the actions of the net, such as performative (Fig-
ure 3). These can be represented as color sets in CPN, rather than hard-coded
constraints. Other constraints are implemented as guards; boolean conditions as-
sociated with the transitions. Intermediate places S, R and I assure that sender,
receiver and ID fields in the response are in the correct correspondence to the
initial messages. I not only ensures that the message sequence is observed, as
prescribed by the message IDs, but that only one response is accepted, since the
ID marker is removed following the receipt of one correct reply. Not all conver-
sations follow a simple, linear thread, however. We might, for example, want to
send a message and allow an arbitrary number of asynchronous replies to the
same ID before responding (as is the case in a typical Subscribe conversation),
or allow a response to any one of a set of message IDs. In these cases, we allow
IDs to collect in a place, and remove them only when replies to them will no
longer be accepted. Places interposed between transitions to implement global
constraints, such as alternating sender and receiver, may retain their markings;
that is implied by the double arrow, a shorthand notation for two identical arcs
in opposite directions.

We add a place after the final message transaction to denote some arbitrary
action not implemented by the conversation protocol (that is, not by an arc-
association action). This may be some event internal to the interpreter, or a
signal to the executing agent itself. A procedural attachment at this location
would not violate the conversational semantics as long as it did not in turn
influence the course of the conversation.

This CPN is generally equivalent to the JDFA depicted in Figure 1. In addi-
tion to modeling what is present in the JDFA, it also models mechanisms implicit
in the machinery, such as message ordering.

185Using Colored Petri Nets for Conversation Modeling

DoneRegister T2T1In

(p,s,r,id,re,c)

(p,s,r,id,re,c) (p,s,r,id,re,c)(p,s,r,id,re,c)

register
reply,
error,
sorry

p
p

I re
id

S

R

s

s
r

r if p=reply action1
else if p=error action2
else action3 A

Fig. 3. Informal CPN model of a simplified KQML register conversation.

5.1 Register Implemented in CPN-ML

We further illustrate this example by examining a full, executable CPN im-
plementation of the complete Register conversation. Register as given in [21]
consists of an initial ‘register’ with no positive acknowledgment, but a possible
‘error’ or ‘sorry’ reply. This registration may then be followed by an unacknowl-
edged ‘unregister’, also subject to a possible ‘error’ or ‘sorry’ response. This
Register conversation (Figure 5) has been extracted from a working CPN model
of a multi-agent scenario, implemented in CPN-ML, using the Design/CPN mod-
eling tool. The model, a six agents scenario involving manufacturing integration,
uses a separate, identical instance of the register conversation, and other KQML
conversations, for each agent. They serve as sub-components to the agent models,
which communicate via a modeled network. The declarations (given in Figure 4)
have been restricted to only those elements required for the register conversa-
tion itself. The diagram is taken directly from Design/CPN. The full model uses
concepts for building hierarchical CPNs, such as place replication and the use
of sub-nets, which are beyond the scope of this paper. The interested reader is
encouraged to refer to [17, 18, 19].

The declarations specify a message format MES, a six-tuple of performative,
sender and receiver names, message IDs, and content. For simplicity, performa-
tive and agent names in the scenario are enumerated, and IDs are integers. For
the content, we have constructed a special Predicate type, which will allow us
to represent content in KIF-like expressions. The Reg type is used for registry
entries, and encodes the name and address of the registrant, the name of the
registrar, and the ID of the registration message. Finally, the Signature type is
used to bind the names of the sender and receiver with the ID for a particular
message.

The model is somewhat more complex than our informal sketch (Figure 3)
for several reasons, which will become clear as we look more closely at its oper-

186 R.S. Cost et al.

ation. For one thing, it is intended to model multiple concurrent conversations,
and so must be able to differentiate among them. Also, it implements the com-
plete registration operation, rather than simply modeling the message flow. All
messages are initially presented in the In place, and once processed by each
transition are moved to the Out place. Messages from the Out place are moved
by the agent to the model network, through which they find their way to the
In place of the same conversation in the target agent. The first transition (T4)
accepts the message for the conversation, based on the performative ‘register’,
and makes it available to the T1 transition. T1, accepts the message if correct,
and places a copy in the Out place. It also places an entry in the registry (Reg),
and a message signature in Sig1. This signature will be used to make sure that
replies to that message have the appropriate values in the sender and receiver
fields. Message ID is included in the signature in order to allow the net to model
multiple Register conversations concurrently. Note that because KQML does
not provide for an acknowledgment to a ‘register’ message, the registration is
made immediately, and is then retracted later if an ‘error’ or ‘sorry’ message is
received.

Transition T2a will fire if an ‘error’ or ‘sorry’ is received in response to
the registration. It unceremoniously removes the registration from Reg. The
message signature constrains the names in the reply message. It is also possible
for the initiating agent to send a subsequent ‘unregister’; in that case T2b will
fire (again, contingent on the constraints of the message signature being met),
also removing the registration. However, since it is possible for an ‘unregister’
to be rejected (by an ‘error’ or ‘sorry’), T2b archives the registration entry in
Arc, and constructs a new signature for the possible reply. Such a reply would
cause transition T3 to restore the registration to Reg.

6 Example: Negotiation Model

In this section we present a simple negotiation protocol proposed in [7]. The
CPN diagram in Figure 6 describes the pair-wise negotiation process in a simple
MAS, which consists of two functional agents bargaining for goods. The messages
used are based on the FIPA ACL negotiation performative set.

The diagram depicts three places places: Inactive, Waiting, and Thinking,
which reflect the states of the agents during a negotiation process1; we will use
the terms state and place interchangeably. Both agents in this simple MAS have
similar architecture, differing primarily in the number of places/states. This
difference arises from the roles they play in the negotiation process. The agent
that begins the negotiation, called the buyer agent, which is shown on the left
side of the diagram, has the responsibility of handling message failures. For this,
it has an extra ‘wait’ state (Waiting), and timing machinery not present in the
other agent, seller. For simplicity, some constraints have been omitted from this

1 It is not always the case with such a model that specific nodes correspond to states
of the system or particular agents. More often the state of the system is described
by the combined state of all places.

187Using Colored Petri Nets for Conversation Modeling

color Performative = with register | unregister | error | sorry;

color Name = with ANS | Broker | AnyName;

color ID = int;

color Address = with ans | broker | anyAddress;

color PVal = union add:Address + nam:Name;

color PVals = list PVal;

color PName = with address | agentName;

color Predicate = product PName * PVals;

color Content = union pred:Predicate + C;

color MES = product Performative * Name * Name * ID * ID * Content;

color Reg = product Name * Name * Address * ID;

color Signature = product Name * Name * ID;

var c : Content;

var message : MES;

var s, r, anyName, name : Name;

var i, j : ID;

var p : Performative;

var a : Address;

Fig. 4. Declarations for the Register Conversation.

diagram; for example, constraints on message types, as depicted in the previous
examples.

In this system, both agents are initially waiting in the Inactive places. The
buyer initiates the negotiation process by sending a call for proposals (‘CFP’)
to some seller, and its state changes from Inactive to Waiting. The buyer is
waiting for a response (‘proposal’, ‘accept-proposal’, ‘reject-proposal’ or ‘termi-
nate’). On receipt, its state changes from Inactive to Thinking, at which point
it must determine how it should reply. Once it replies, completing the cycle, it
returns to the Inactive state. We have inserted a rudimentary timeout mecha-
nism which uses a delay function to name messages which have likely failed in
the Timeout place. This enables the exception action (Throw Exception) to
stop the buyer from waiting, and forward information about this exception to
the agent in the Thinking state. Timing can be handled in a number of ways
in implementation, including delays (as above), the introduction of timer-based
interrupt messages, or the use of timestamps. CPN-ML supports the modeling
of time-dependent interactions through the later approach.

Note that this protocol models concurrent pairwise interactions between a
buyer and any number of sellers.

7 Verification

The ability to verify the properties of a specification is one of the important
benefits of applying formal methods. These benefits can be derived in two ways:

188 R.S. Cost et al.

In
MES

P In

Sig1
Signature

Sig2
Signature

Arc
Reg

T2a
[p=error orelse
p=sorry]

T2b
[p=unregister]

T3
[p=error orelse
p=sorry]

Reg
Reg

P I/O

T1
[c=pred (address,
[add a]),p=register]

Out

P Out

MES

1‘(r,s,j)

1‘(s,r,j)

1‘(r,s,j)

1‘(s,r,i) 1‘(r,s,a,i)

1‘(r,s,a,j)

1‘(r,s,a,j)

1‘(s,r,a,j) 1‘(r,s,a,j)

1‘(p,s,r,i,j,c)

1‘(p,s,r,i,j,c)

1‘(p,s,r,i,j,c)

1‘(s,r,i)

1‘(s,r,a,i)

1‘(p,s,r,i,j,c)

1‘(p,s,r,i,j,c)

1‘(p,s,r,i,j,c)

1‘(p,s,r,i,j,c)

1‘(p,s,r,i,j,c)

Fig. 5. KQML Register.

Fig. 6. Pair-wise negotiation process for a MAS constituted of two functional
agents.

Verification of conversation policies directly, and verification of agents/MASs
that are based on such protocols.

In addition to ‘proof by execution’, CPNs can be checked for a variety of
properties. This is done by way of an Occurrence Graph (OG) [9]. Each node in
an OG consists of a possible marking for the net. If another marking (B) can
be reached by the firing of a transition, the graph contains a directed arc from
the node representing the initial marking to B. All nodes in an OG are therefore

189Using Colored Petri Nets for Conversation Modeling

derived from some initial marking of the net.
The properties subject to verification are:

1. Reachability Properties: This relates to whether or not the marking denoted
by node B is reachable by some sequence of transition firings from node A.

2. Boundedness Properties: The upper or lower bound on the contents of place
X in the net, over all possible markings.

3. Home Properties: The marking or set of markings which are reachable from
all other markings in the OG define a homespace.

4. Liveness Properties: A marking from which no further markings can be de-
rived is ‘dead’. Liveness, then, relates to the possible progressions from a
given node in the OG.

5. Fairness Properties: Relates to the degree to which certain transition in-
stances (TI) will be allowed with respect to other TIs.

Many of these properties have different value depending on whether we are
regarding a CP or a MAS, and also on the complexity of the net. CPs de-
scribe/operate on a message stream, which in most cases is finite; they are
themselves static. One can imagine analyzing a CP in the context of (1) a single
message stream, or (2) in the presence of a generator for all or many repre-
sentative streams. In that sense, we may be interested in boundedness or home
properties, and possibly reachability or fairness, but not liveness. On the other
hand, liveness and fairness will often be more important in the analysis of a
system as a whole.

It is possible to verify properties even for very large and complex nets. The
version of Design/CPN used in this research supports the computation and anal-
ysis of OGs of 20,000 - 200,000 nodes and 50,000 to 2,000,000 arcs.

8 Summary

The use of conversation policies greatly facilitates the development of systems
of interacting agents. While FSMs have proven their value over time in this en-
deavor, we feel that inherent limitations necessitate the use of a model supporting
concurrency for the more complex interactions now arising. CPNs provide many
of the benefits of FSMs, while allowing greater expression and concurrency. Us-
ing the Jackal agent development platform, we hope to demonstrate the value of
CPNs as the underlying model for a protocol specification language, Protolingua.

References

1. Tilak Agerwala. Putting Petri Nets to work. Computer, pages 85–94, December
1979.

2. Mihai Barbuceanu and Mark S. Fox. COOL: A language for describing coordi-
nation in multiagent systems. In Victor Lesser, editor, Proceedings of the First
International Conference on Multi–Agent Systems, pages 17–25, San Francisco,
CA, 1995. MIT Press.

190 R.S. Cost et al.

3. J. Billington, M. Farrington, and B. B. Du. Modelling and analysis of multi-agent
communication protocols using CP-nets. In Proceedings of the third Biennial En-
gineering Mathematics and Applications Conference (EMAC’98), pages 119–122,
Adelaide, Australia, July 1998.

4. Jeffrey M. Bradshaw. KAoS: An open agent architecture supporting reuse, interop-
erability, and extensibility. In Tenth Knowledge Acquisition for Knowledge-Based
Systems Workshop, 1996.

5. Jeffrey M. Bradshaw, Stuart Dutfield, Pete Benoit, and John D. Woolley. KAoS:
Toward an industrial-strength open agent architecture. In Jeffrey M. Bradshaw,
editor, Software Agents. AAAI/MIT Press, 1998.

6. Deepika Chauhan. JAFMAS: A Java-based agent framework for multiagent sys-
tems development and implementation. Master’s thesis, ECECS Department, Uni-
versity of Cincinnati, 1997.

7. Ye Chen, Yun Peng, Tim Finin, Yannis Labrou, and Scott Cost. A negotiation-
based multi-agent system for supply chain management. In Working Notes of
the Agents ’99 Workshop on Agents for Electronic Commerce and Managing the
Internet-Enabled Supply Chain., Seattle, WA, April 1999.

8. R. Scott Cost, Tim Finin, Yannis Labrou, Xiaocheng Luan, Yun Peng, Ian Soboroff,
James Mayfield, and Akram Boughannam. Jackal: A Java-based tool for agent
development. In Jeremy Baxter and Chairs Brian Logan, editors, Working Notes
of the Workshop on Tools for Developing Agents, AAAI ’98, number WS-98-10 in
AAAI Technical Reports, pages 73–82, Minneapolis, Minnesota, July 1998. AAAI,
AAAI Press.

9. Department of Computer Science, University of Aarhus, Denmark. Design/CPN
Occurrence Graph Manual, version 3.0 edition, 1996.

10. Ian Dickenson. Agent standards. Technical report, Foundation for Intelligent
Physical Agents, October 1997.

11. Renée Elio and Afsaneh Haddadi. On abstract task models and conversation poli-
cies. In Working Notes of the Workshop on Specifying and Implementing Conver-
sation Policies, pages 89–98, Seattle, Washington, May 1999.

12. Amal El Fallah-Seghrouchni and Hamza Mazouzi. A hierarchial model for in-
teractions in multi-agent systems. In Working Notes of the Workshop on Agent
Communication Languages, IJCAI ’99, August 1999.

13. Tim Finin, Yannis Labrou, and James Mayfield. KQML as an agent communica-
tion language. In Jeff Bradshaw, editor, Software Agents. MIT Press, 1997.

14. FIPA. FIPA 97 specification part 2: Agent communication language. Technical
report, FIPA - Foundation for Intelligent Physical Agents, October 1997.

15. Tom Holvoet and Thilo Keilmann. Behavior specification of active objects in open
generative communication environments. In Hesham El-Rewini and Yale N. Patt,
editors, Proceedings of the HICSS-30 Conference, Track on Coordination Models,
Languages and Systems, pages 349–358. IEEE Computer Society Press, January,
7–10 1997.

16. Tom Holvoet and Pierre Verbaeten. Using petri nets for specifying active objects
and generative communication. In G. Agha and F. DeCindio, editors, Advances in
Petri Nets on Object-Orientation, Lecture Notes in Computer Science. Springer-
Verlag, 1998.

17. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use, volume Volume 1, Basic Concepts of Monographs in Theoretical Computer
Science. Springer-Verlag, 1992.

191Using Colored Petri Nets for Conversation Modeling

18. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use, volume Volume 2, Analysis Methods of Monographs in Theoretical Computer
Science. Springer-Verlag, 1994.

19. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practi-
cal Use, volume Volume 3, Practical Use of Monographs in Theoretical Computer
Science. Springer-Verlag, 1997.

20. Kazuhiro Kuwabara, Toru Ishida, and Nobuyasu Osato. AgenTalk: Describing
multiagent coordination protocols with inheritance. In Proceedings of the 7th IEEE
International Conference on Tools with Artificial Intelligence (ICTAI ’95), pages
460–465, 1995.

21. Yannis Labrou. Semantics for an Agent Communication Language. PhD thesis,
University of Maryland Baltimore County, 1996.

22. Fuhua Lin, Douglas H. Norrie, Weiming Shen, and Rob Kremer. Schema-based
approach to specifying conversation policies. In Working Notes of the Workshop
on Specifying and Implementing Conversation Policies, Third International Con-
ference on Autonomous Agents, pages 71–78, Seattle, Washington, May 1999.

23. Daniel Moldt and Frank Wienberg. Multi-agent-systems based on coloured petri
nets. In Proceedings of the 18th International Conference on Application and The-
ory of Petri Nets (ICATPN ’97), number 1248 in Lecture Notes in Computer
Science, pages 82–101, Toulouse, France, June 1997.

24. M. H. Nodine and A. Unruh. Facilitating open communication in agent systems:
the InfoSleuth infrastructure. In Michael Wooldridge, Munindar Singh, and Anand
Rao, editors, Intelligent Agents Volume IV – Proceedings of the 1997 Workshop on
Agent Theories, Architectures and Languages, volume 1365 of Lecture Notes in
Artificial Intelligence, pages 281–295. Springer-Verlag, Berlin, 1997.

25. H. Van Dyke Parunak. Visualizing agent conversations: Using enhanced dooley
graphs for agent design and analysis. In Proceedings of the Second International
Conference on Multi-Agent Systems (ICMAS ’96), 1996.

26. Y. Peng, T. Finin, Y. Labrou, R. S. Cost, B. Chu, J. Long, W. J. Tolone, and
A. Boughannam. An agent-based approach for manufacturing integration - the
CIIMPLEX experience. International Journal of Applied Artificial Intelligence,
13(1–2):39–64, 1999.

27. Jeremy Pitt and Abe Mamdani. Communication protocols in multi-agent systems.
In Working Notes of the Workshop on Specifying and Implementing Conversation
Policies, pages 39–48, Seattle, Washington, May 1999.

28. M. Purvis and S. Cranefield. Agent modelling with petri nets. In Proceedings of
the CESA ’96 (Computational Engineering in Systems Applications) Symposium
on Discrete Events and Manufacturing Systems, pages 602–607, Lille, France, July
1996. IMACS, IEEE-SMC.

29. Yoav Shoham. Agent–oriented programming. Artificial Intelligence, 60:51–92,
1993.

30. James White. Mobile agents. In Jeffery M. Bradshaw, editor, Software Agents.
MIT Press, 1995.

31. Frank Wienberg. Multiagentensysteme auf def Basis gefärbter Petri-Netze. PhD
thesis, Universität Hamburg Fachbereich Informatik, 1996.

32. Terry Winograd and Fernando Flores. Understanding Computers and Cognition.
Addison-Wesley, 1986.

192 R.S. Cost et al.

	Colored Petri Nets
	Introduction
	Conversation-Based Interaction Protocols
	Conversation Specification
	Conversation Sharing
	Conversation Sets as APIs
	Defining Common Agent Services via Conversations

	Colored Petri Nets
	Putting Colored Petri Nets to Work
	Example: Conversation Protocol
	Register Implemented in CPN-ML

	Example: Negotiation Model
	Verification
	Summary

