
1

Project Centaurus : A Framework for Indoor
Mobile Services

Lalana Kagal, Vlad Korolev, Harry Chen, Anupam Joshi, Timothy Finin

Computer Science and Electrical Engineering Department

University of Maryland Baltimore County

1000 Hilltop Circle, Baltimore, MD 21250

email : flkagal1,vkorol1,hchen4g@cs.umbc.edu
phone : 410-455-3971

fax : 410-455-3969

Abstract|In an age where wirelessly networked appliances
and devices are becoming commonplace, there is a necessity
for connecting them to work together for a mobile user.
The design outlined in this paper provides an infrastruc-
ture and communication protocol for providing services to
these mobile devices. This
exible framework allows any
medium to be used for communication between the system
and the portable device, including infra-red, radio frequency
and Bluetooth. Using Extensible Markup Language for in-
formation passing, gives the system a uniform and easily
adaptable interface. We explain our trade-o�s in implemen-
tation and through experiments we show that the design is
feasible and that it indeed provides a
exible structure for
providing services.

I. Introduction

As the world moves towards greater automation in homes
and oÆces, we enter the realm of `SmartHomes' and
`SmartOÆces' controlled by sensors and/or portable de-
vices, where not only has mobility been incorporated, but
where intelligence has become an inherent part of provid-
ing services. With Bluetooth [4] just upon us, wirelessly
networked appliances and devices will soon be a reality of
the future. Now-a-days, we see a lot of `intelligent' services,
that use some kind of logical reasoning to provide better
and more relevant support to individual users. These de-
vices and services will have to be integrated seamlessly into
the environment that the user is familiar with and provide
a uniform interface to any device that the user might want
to use.

Our goal is to provide an infrastructure and communica-
tion protocol for providing wireless services, that minimizes
the load on the portable device. While within a con�ned
space, the Client can access the services provided by the
nearest Centaurus System (CS) via some short-range com-
munication. The CS is responsible for maintaining a list
of services available, and executing them on behalf of any
Client that requests them. This minimizes the resource
consumption on the Client and also avoids having the ser-
vices installed on each Client that wishes to use them,
which is a blessing for most resource-poor mobile clients.

We also expect all Services to communicate via Extensi-
ble Markup Language (XML). We found this W3C Stan-

dard [3] to be very useful in de�ning ontologies and describ-
ing properties and interfaces of Services. As this is already
being widely used, we think that it will help in integrating
Centaurus with already existing systems.

To verify the feasibility of our infrastructure, we will use
IR [10] for communication between the Client and the CS
in our �rst stage of the development. One of the main
drawbacks is the limitation of the infrared architecture.
However, we believe that the simplicity and the a�ordabil-
ity of the infrared devices can overcome these limitations.
We would like to emphasize that any other medium could
be used for communication including Bluetooth; all we pro-
vide is the framework.

This paper is organized as follows: Section II discusses
other technologies, and compares Centaurus with one such
technology, Section III gives a brief overview of our design.
In Section IV, the design and modeling issues are covered.
The actual implementation is detailed in Section V, with
the protocol illustrated in Section VII. The results of the
experiments are described in Section VIII, and Section IX
concludes the paper with a summary of our results and a
discussion of future research directions.

II. Related Work

In the last couple of years, a number of technologies have
emerged that deal with `Smart' Homes and OÆces. Among
them we were particularly interested in the UC Berkeley
Ninja Project [1].

The Ninja project tries to link di�erent services, through
a range of devices devices ranging from PCs to cell phones
and Personal Digital Assistants [1]. It has incorporated
intelligence into the infrastructure and has the ability to
adapt the content to a speci�c device.

Some di�erences lie in the implementation of the applica-
tion, and the security infrastructure [2]. Currently we have
not included security in our framework. But due to our

exible design, controlling access to services by means of
Access Control Lists will be easy to integrate into the Ser-
vice Manager. Ninja tends to concentrate on Web-based
Services, whereas our system is able to support Services

2

based on any platform, as long they can communicate with
either the Service Manager through sockets, or one of the
Communication Managers through the native protocol and
possess the ability to process CCML messages. We also do
not distinguish between hardware and software Services,
allowing the user to use either in the same way. Unlike
the Ninja project, Centaurus infrastructure delegates the
state management to the Services themselves with the Ser-
vice Manager serving as the cache. The advantage of such
approach is the decreased complexity of distributed state
management and increased fault tolerance. Even in the
event of Service Manager going down, the state information
is still preserved, and it will be uploaded back to the Service
Manager after it comes back up. This happens because the
Services send regular status updates to the Service Man-
ager. Since all of the communication between Services and
Clients in the Centaurus project are done with the use of
CCML, there is no need for complicated Operators and
Paths used by the Ninja project to convert between di�er-
ent data representations.

Though both the Ninja project and Centaurus are aimed
at providing a uniform infrastructure for a multitude of
devices to use heterogeneous services, Centaurus is more
applicable for `SmartHomes' and `SmartOÆces' because of
its independence of any kind of speci�c communication in-
frastructure; so it could be easily implemented in the wide
range of environments. In addition, Centaurus architec-
ture is less prone to the failures of its components because
of the use of multiple communication managers and auto-
matic state recovery in the event of the Service Manager
failure.

III. Overview

The main design goal of Centaurus is to develop a frame-
work for building portals, using various types of mobile
devices, to the world of `things' that users can communi-
cate with and control. Centaurus provides a uniform in-
frastructure for heterogeneous services, both hardware and
software services, to be made available to the users every-
where where they are needed.

The research and development of Centaurus falls in the
categories of the service/resource discovery and intelligent
room/space. Centaurus di�ers from many of the existing
architectures like the Service Location Protocol (SLP) [8],
Jini [6], E-Speak [5] and the `universal interaction' archi-
tecture by UC Berkeley in the several ways. Some of the
key features of Centaurus are the following:

� The Service interface and communication protocols al-
low users to use di�erent types of mobile devices as
the portals to the world of `things' that they can com-
municate with and control. These devices may di�er
in the form of user interface, computation power, re-
source availability and size.

� Centaurus uses XML as the sole data exchange format
between the service requester and service provider.

The Centaurus infrastructure de�nes the Centaurus
Capability Markup Language (CCML), which pro-
vides a
exible and simple content description that
enables the creation of content UI (not limited to
Graphical User Interface only) that scale across a wide
range of devices, like laptop, PDA, cellular phones etc.
The infrastructure also de�nes the Centaurus Interface
De�nition Markup Language (CIML), which provides
a machine-understandable description that allows ap-
plications to validate and interpret service descriptions
and capabilities. This information can be used in var-
ious inference processes.

� The Service Manager is designed to be decentralized.
Services can dynamically join and leave the system in
a robust and
exible fashion.

� A Service Requester, a user of a service, can either be
an end-user or another service. This hybrid architec-
ture allows one service to be a composition of many
services.

IV. Design

A. Scenario

A `SmartRoom' is equipped with a Centaurus Commu-
nication Manager, which continuously broadcasts ,through
some medium, a client application. A person with a
portable device who enters the room for the �rst time is
given the option to install the software. Once the applica-
tion is installed, it continuously reads the updated list of
services. The person is able to choose a service, select a
function, �ll in the related options and execute the func-
tion. These services may be provided by Centaurus systems
other than the one the portable device is connected to.

B. Centaurus protocol

Centaurus protocol is used to communicate with mobile
clients and services. The Centaurus protocol consists of
Centaurus Level1 protocol and Centaurus Level2 proto-
cols. Centaurus Level1 Protocol is used as a glue between
some existing communication architecture such as IrDA
stack, Bluetooth, or TCP/IP and the generic Centaurus
Level2 protocol. The Centaurus Level1 protocol handles
connection and disconnection issues, identi�cation and au-
thentication of the clients and interaction with architecture
speci�c protocols such as IrLAP and IrLMP or Bluetooth.
The Centaurus Level2 protocol handles transmission of the
XML messages, time synchronization, message fragmenta-
tion and re-assembly. The Centaurus Level2 protocol is
designed to be insensitive to disconnections, handle multi-
ple clients, provide minimal turnaround times and be easily
portable. In fact in current implementation all communica-
tion managers and client communication modules use the
exactly the same codebase.

3

Clients

Services

Service Managers

Communication Managers

Service Manager 1

IR Communication
Manager

Bluetooth
Communication Manager

HTTP Communication
Manager

Service Manager 2

Workstation

Lamp Service
Whiteboard

Service
Coffee Pot

ServiceRecommender
Service

Fig. 1. Centaurus Components

C. Components

There are four main components in a Centaurus System;
the Service Managers, the Services, the Communication
Managers, and the Clients.

The Communication Managers handle all the communi-
cation with the Centaurus Client. There can be more than
one Communication Manager, each implementing a di�er-
ent protocol, for example, one that handles IR, another
that works with Bluetooth, one that works with HTTP to
provide a web interface etc.

The Service Managers are the controllers of the sys-
tem that co-ordinate the message passing protocol between
Clients and Services. The Service Managers, arranged in a
hierarchy, also interact with each other, so that the Services
on each are available to all the Service Managers.

The Services are objects that o�er certain services to
the Centaurus Client. By querying the Service Manager
on the top of the hierarchy, the Services are able to locate
the closet Service Manager and register themselves with
it. Once registered, the Services can be requested by any
Client talking to any Communication Manager.

The Centaurus Client provides a user interface for ac-
cessing and executing Services.

Fig. 1 shows the di�erent components and the relation-
ships between them.

C.1 Service Manager

The Service Manager(SM) acts as a mediator between
the Services and the Client. This is disregarding the fact
that the Client sends the information to its Communication
Manager that forwards it to the Service Manager. When a
Service starts up, it has to register with the Service Man-
ager, sending its CCML �le. This �le contains its name, id
and the interfaces it implements. When a new Client comes
along, the Service Manager sends it a ServiceList Object.
This ServiceList object changes dynamically, according to
the services registered with the Service Manager. So the
Client always has the updated list of services. The Client
can select a service, which causes the Service Manager to
send the CCML �le for the service. The Service Manager
then updates its database to re
ect that the speci�c Client
is interested in the requested Service. Whenever the Ser-
vice Manager gets a status update of the Service, it will
send it to all interested Clients. The Client will continue to
receive status reports from the Service, until it de-registers
itself. The Client sends the new CCML �le to the Ser-
vice Manager, after invoking the interfaces of the Service.
On receiving this CCML, the Service Manager validates
the Client and the CCML. If the Service is still available,
the Service Manager sends the CCML to it, otherwise it
is queued for a certain amount of time. Once this timeout
expires, an error is returned to the Client. The SM is also
responsible for service discovery and leasing. It allows Ser-
vices to register for a certain amount of time. If it does not
receive any status update within that time, the registra-
tion is deleted. The SM implements an intelligent lookup
for Services, enabling the Clients to search for Services that
provide a certain kind of or related function.

In the current design, the main task of the Centaurus
Service Manager can be described as the following:

1. Communicate with the Client through CCML
2. Inspect the incoming `command' or `update'
3. Dispatch the command to the appropriate services or
the Service Management sub-components

4. Handle all status updates, and make sure all inter-
ested parties are informed of the updates

5. Interact with Services using CCML
6. Provide service registration services and discovery ser-
vices

C.2 Communication Manager

This is responsible for the communication between the
Client and the Centaurus system. As mentioned earlier,
the system can have one Communication Manager for every
type of communication it desires to implement. Each Com-
munication Manager queries the highest Service Manager,
and retrieves information about the Service Manager clos-
est to it. Then it uses this Service Manager for client ser-
vicing, for a certain period of time. After which, it queries
the topmost Service Manager again. Every time the Com-
munication Manager receives information from a Client, it

4

sends this information directly to the Service Manager that
it is currently attached to. When it receives data from a
Service Manager, it validates the data and looks at the
header to decide which Client to send it to.

C.3 Services

A Service performs a certain action on behalf of the
Client. These Services could range from controlling a light
switch or a co�ee pot to controlling a printer or even a
memo pad service, where Clients can leave messages for
each other. Each Service has to register with at least one
Service Manager, preferably the one closest to it. It sends
its CCML �le, along with its name, id and a brief descrip-
tion to each Service Manager it wants to register with and it
only accepts requests from those Service Managers. Every
time its status changes, it informs all the Service Managers
that it is currently registered with.

One of the services provided by the Centaurus system is
the Recommendation Service. Instead of returning a list
of all possible services that are available to a Client, this
service recommends a list of services that might be in the
interest of the Client based on the existing environment
context. For example, the system returns a co�ee-maker
control service during the morning to the user, and in the
evening it returns a light control service to the user.

C.4 Client

A Client is a special kind of Service and is treated as
a Service. It has to respond to commands and regularly
send status updates. A Client talks to the appropriate
Communication Manager and registers itself with a Service
Manager. This registration is similar to the registration of
Services. On registering, it receives the ServiceList Service,
which contains the current list of Services. The ServiceList
causes the Service Manager to send the list of Services,
whenever a new Service registers, or a Service de-registers.

By choosing a Service, the Client expresses interest in it.
It is then sent the CCML �le describing the Service. The
Client can invoke the speci�ed functions on the Service,
by choosing one of its interface. After changing values of
certain variables, speci�ed in the CCML for the particular
Service, it sends the �le to the Service Manager to per-
form that action. It will receive status updates from all
Services that it is interested in through the Service Man-
ager, until it speci�cally informs the Service Manager that
it no longer wants to receive these messages. Every time it
wants to perform a certain action on a Service, it retrieves
the current CCML �le from its list, changes the appropri-
ate values and returns the changed CCML to the Service
Manager, which forwards it to the selected Service.

D. Centaurus Capability Markup Language (CCML)

The CCML is divided into `system' , `data', `addons',
`interfaces', and `info', as shown in �g. 2.

The `system' portion contains the header information,
the id, timestamp, origin, etc. There are two opposing
variables, `update' or `command'. An `update' variable is
used to inform other Centaurus components about status
updates of Services and Clients, whereas the `command'
is only used by Clients to send a command to a certain
Service. The system also contains the listening section for a
Service or Client. It speci�es all the Services that a Service
or Client is interested in.

Using the `addons' section, we can add a related Service
to another Service, for example, add an Alarm Clock Ser-
vice to a Lamp-Control Service. We are not currently using
this section.

All information regarding the variables and their types
are contained in the `data' section.

The CCML for a Client always has one or more `actions'
in its data section that a Service Manager can invoke on it.
This is used by the SM to change the state of the device.

Actions

� AddService : When this action is set, the Client adds
the value of this variable to its InterestList; i.e. the
list of services that it is interested in.

� RemoveService : This is set by the Service Manager,
if the Service that the Client is interested in, is no
longer available. It causes the Client to stop listening
or using the Service and remove the Service from its
InterestList.

The `interface' section contains information about the
interfaces that the object (Service/Client) implements.

Other details like the description, and icon for represen-
tation are in the `info' section.

V. Implementation

The previous section outlines our overall design, but to
facilitate the implementation, we had to make some as-
sumptions and sacri�ce some of the features and
exibility.
These assumptions in no way compromise the design or
results, they only helped in quicker implementation.

To verify the feasibility of our infrastructure, we use IR
[10] for communication between the Client and the Com-
munication Manager in the �rst stage of the development.
We have a single Communication Manager that uses IR.
The IR Communication Manager carries out the Client dis-
covery. Once discovered, the Client is polled regularly for
information. This polling completely eliminates the prob-
lem with collision, that occurs in a client push method,
when more than one Client sends information at the same
time. We also have a single Service Manager and two Ser-
vices for testing. We assume that the client application
is installed on the PDA before it enters the `SmartRoom'.
Communication between any two components in the Cen-
taurus System is done via sockets. The Service Manager
and the IR Base Manager have two dedicated sockets each,

5

<!-- Entities -->

<!ENTITY % name "name CDATA #REQUIRED" > <!ENTITY
% value "value CDATA #REQUIRED" >
<!ENTITY % type "type CDATA #REQUIRED" >

<!-- Top level element -->

<!ELEMENT ccml
(system , data?, addons?, interfaces?, info) >

<!ATTLIST ccml version CDATA #REQUIRED >

<!-- system declarations -->

<!ELEMENT system (
 (full, (command|update), valid?, public?,

interactive?,
 id, manager, time, origin, location, parent?, listening?)

 |
 (diff, (command|update), valid?, public?,

interactive?,
 id, time, origin, location,parent?, listening?)

) >

<!ELEMENT command EMPTY>
<!ELEMENT update EMPTY>
<!ELEMENT full EMPTY>
<!ELEMENT diff EMPTY>
<!ELEMENT valid EMPTY>
<!ELEMENT public EMPTY>
<!ELEMENT interactive EMPTY>
<!ELEMENT id EMPTY>
<!ELEMENT manager EMPTY>

<!ELEMENT time EMPTY>
<!ELEMENT origin EMPTY>
<!ELEMENT location EMPTY>
<!ELEMENT parent EMPTY>
<!ELEMENT listening (id)*>

-1-

<!ATTLIST id %name; >
<!ATTLIST manager %name; >
<!ATTLIST time %value;>
<!ATTLIST origin %name; >
<!ATTLIST location %name; >
<!ATTLIST parent %name; >

<!--- data declaration -->

<!ELEMENT data (attrib)*>
<!ELEMENT addons (addon)*>

<!ELEMENT addon EMPTY>
<!ELEMENT attrib EMPTY>

<!ELEMENT service (#PCDATA)>

<!ATTLIST addon %name; >
<!ATTLIST attrib %name; %type; %value;>

<!--- Interfaces declaration -->

<!ELEMENT interfaces (interface)*>
<!ELEMENT interface EMPTY>

<!ATTLIST interface %name; >

<!--- info declaration -->

<!ELEMENT info (description?,icon?) >
<!ELEMENT description (#PCDATA)>

<!ELEMENT icon (#PCDATA)>

-2-

Fig. 2. ccml.dtd

one for listening and one for sending information. As the
Service Manager and the IR Communication Manager are
at the heart of all communication, we wanted to speed up
this process. By giving them a dedicated socket for each
type of communication, we reduced the time spent in the
creation of a new socket for each connection. Each Service
also has a dedicated port for information from the Service
Manager. The Service Manager listens to a certain socket
for receiving CCML from all the Services. All these sock-
ets are prede�ned in the Properties �le for each component
. The information
owing in the system is strictly in the
form of CCML (Centaurus Capability Markup Language).

The Service Manager and the Services have been imple-
mented in Java, whereas we chose C, for eÆciency in re-
source management, for the IR Communication Manager
and the Client. We found that most of the service discov-
ery architectures are implemented in Java, like Jini and
E-Speak. So, if we decide to move to another service dis-
covery system, integration will be relatively easy as the
Service Manager and Services are already in Java.

A. Implemented Components

A.1 Service Manager

As mentioned earlier, the Service Manager has to listen
to two ports, one for incoming messages from Services and
one for messages from the IR Communication Manager.
When a Service registers itself, the Service Manager adds
it to its list of Services by recording the CCML and the

port number the Service listens to. Every new Client is
added to the Clients list. All the Services it is interested in
are added to the Service-Client list with both the Service
and Client IDs. Whenever the Service Manager receives
an update from a Service, it updates its Services list and
reads its Service-Client list and sends the new CCML to
every Client in that list. When a Client sends an update,
the Service Manager changes the Clients list. It then reads
the list of Services that the Client is now interested in, and
appropriately modi�es the Service-Client list.

A.2 Client

Our Client waits till it is discovered by the IR Commu-
nication Manager, then engages in our IR Protocol to send
its CCML to the Manager. It has a list of Services that it
is interested in, called InterestList. Whenever it receives
a command from the Service Manager, its checks its ac-
tion, AddService or RemoveService, and adds or removes
Services accordingly from its InterestList. If it receives an
update, it checks if the Service is in its InterestList. If it is
not a Service that it is interested in, the Client discards the
message. If it is, then it displays the CCML and waits for
user input. If the user changes any variables, it modi�es
the Service's CCML and sends it to the IR Communication
Manager, which in turns forwards it to the Service Man-
ager. The Service Manager makes sure that the CCML is
sent to the appropriate Service.

A.3 IR Communication Manager

We have one Communication Manager that handles
infra-red communication. It has a port that it listens to,
for updates from the Service Manager. The Communica-
tion Manager is currently a channel between the Client
and the Service Manager, and implements a complicated
IR protocol.

In our current implementation, the Communication
Manager supports Centaurus Level1 and Centaurus Level2
protocols running on top of modi�ed Linux IrDA stack.
Modi�cations to IrDA stack were necessary for better han-
dling of disconnections and discovery. The IR communica-
tion manger is the gateway between Service Manager and
mobile Clients. On one side it maintains open TCP/IP
connection with Service Manager and on the other side
it communicates with mobile Clients. The IR Communi-
cation manager listens to both sides for incoming CCML
messages and transmits them to appropriate destination.

A.4 Services

We have developed one hardware related service for con-
trolling a lamp and one software service for playing MP3
�les. There is another Service, ServiceList, that is an in-
herent part of the protocol, and is used for providing an
updated list of services to the Client.

We have implemented a Service class and ServiceInter-
face class, that handle validation of the CCML, the reg-

6

istering of the Service with the Service Manager and the
sending of the updates. All Services implemented in Java
should, for conformity, extend the Service class, and imple-
ment the ServiceInterface class. The ServiceInterface class
contains a commandHandler function that has to be im-
plemented by every Service that implements the interface.
This is the function that handles changes to the CCML �le
of the Service. A Java Service need only implement a con-
structor and this commandHandler to be integrated into a
Centaurus system.

As mentioned earlier, the Centaurus system also handles
non-Java Services as long they can use CCML and either
communicate via sockets with the Service Manager or with
a Communication Manager through some native protocol.

� ServiceList
Each time, a Service registers or is no longer available,
the ServiceList triggers the Service Manager to send
the updated list of Services to all the Clients. This
does not use the Service class or the ServiceInterface
class. It is contained completely in the Service Man-
ager. It is a special Service because it is handled in
same way as other Services are, but within the Service
Manager itself.

� Lamp-Control
Using X10 [12] devices and FireCracker [11], we were
able to control a lamp in the room. We can extend
this to control any device because X10 is a power-line
carrier protocol that allows compatible devices to com-
municate with each other via the existing 110V wiring.
FireCracker is a Java class that allows a computer to
communicate with the X10 device. The Service con-
structor makes sure that the X-10 device works. The
commandHandler function looks for the value of the
interfaces. If the `Powered' interface has a value that
is di�erent from the status of the Power variable, then
the commandHandler proceeds, otherwise the com-
mand is discarded. If the value is true, the lamp is
set on, otherwise the lamp is set o�. The CCML �le
is changed and an `update' is sent to the Service Man-
ager. As we see in �g. 3, the update propagates all
the way back to all the Clients that are interested in
the lamp service.

� MP3-Player
Fig. 4 illustrates the working of the MP3-Player ser-
vice included in our system. We are using a popular
MP3 player for Unix, mpg123 [13], that has a Java
wrapper around it to allow us to plug it into the rest of
the system. The constructor for the Service, reads all
the .mp3 �les from a speci�ed directory and creates its
CCML �les. It has a number of CCML interfaces, one
for each song it can play. The commandHandler func-
tion checks the CCML interface and reads the songs
selected. These songs are checked against the current
list of songs. If they are valid, they are fed into mpg123
[13]. The new CCML �le is created and sent to the
Service Manager.

Clients
interested in

Lamp-
Control

’command’
CCML

’command’
CCML

status
update

status
update to
Client2

status
update to
Client1

status
update

IR Communication Manager

Service Manager

Lamp-Control Service

Client1

status
update

Client2

’command’
CCML

Fire
Crac
ker

checks if command
is different from

status & sends signal
to FireCracker

Service-
Client List

Fig. 3. Lamp-Control Service

’command’
CCML

music files

’command’
CCML

status
update to
Client1

status
update to
Client1

status
update to
Client1

status
update to
Client1

IR Communication Manager

Service Manager

MP3-Player

Client1

Music Directory

status
update

Clients
interested
in MP3-
Player

Client2

’command’
CCML

Service-
Client List

music files

Mpeg123

Fig. 4. MP3-Player Service

7

Service name,
desc, CCML

Service
Manager’s

socket number

CCML, socket

Service Manager

Service

Services
List

Properties file

IR
socket

serv
socket

socket

Fig. 5. Registration of Services

B. Functions

B.1 Registration

Both Services and Clients have to register with the Cen-
taurus system to be visible.

� Services
As seen in �g.5, a Service on starting up, reads its
properties �le and retrieves the Service Manager's port
number. After creating its CCML �le, it sends its
CCML and the port number that it is listening to,
to the Service Manager's Service port. The Service
Manager validates the CCML and adds the Service to
its Services list.

� Client
When a PDA enters the `SmartRoom', we assume that
it has the Client application installed on it, as men-
tioned in the beginning of this section. It is eventually
discovered by the IR Communication Manager, and
carries out the IR level protocol. Then it sends its
pre-de�ned CCML �le. The IR Communication Man-
ager sends this to the Service Manager's port. The
Service Manager after validating the CCML checks if
the Client already exists in its Clients list. If it does,
then the Service Manager updates its list, otherwise it
adds the Client to its Clients list. The Service Man-
ager, sets the ServiceList action and sends the CCML
back to the Client.

B.2 Using the Service List

The
owchart in �g. 7 shows in great detail how the
ServiceList is used to provide an updated list of Services to
the Clients. When the Service Manager gets the CCML of
a new Client, it sets the AddService action in data section
of the CCML to ServiceList.

< data >
< attribname = "AddService00type = "action00value =
"ServiceList00= >
< =data >
It also sets the `command' variable in the header.

CCML
(2)

Updated CCML
(6)

Updated CCML
(5)

CCML
(3)

discovery protocol
(1)

Updated CCML
(4)

Service Manager

Client

Client List

IR
socket

IR Communication Manager

Serv
socket

socket

Fig. 6. Registration of Clients

This new CCML is sent back to the Client. The Client re-
alizes that it is a command and checks the actions. It adds
the ServiceList to its currently empty list, InterestList; the
list of Services that it is interested in.

< listening >
< idname = "ServiceList00= >
< =listening >
When the Client is polled next by the IR Communication
Manager, it sends its updated CCML. The Service Manager
reads the listening section, and �nds the ServiceList. It up-
dates its Service-Client list and sends the list of Services in
CCML to the Client. Whenever the list of Services changes,
the Service Manager goes through its Service-Client list and
sends the new list to all the Clients that are interested in
the ServiceList. In this way, the ServiceList works like any
other Service, except that it is contained within the Service
Manager.

If both our Services have registered then the data portion
of the ServiceList would look like

< data >
< attribname = "MP3P layer1:000type = "bool00value =
"false00= >
< attribname = "Lamp � 00100type = "bool00value =
"false00= >
< =data >

B.3 Requesting a Service

When a Client receives the list of Services, it displays
this list for the user. The user can select a Service to use.
The Client then creates a command for the ServiceList. It
changes the data portion of the ServiceList, with the value
of the Service selected as `true'. This is sent back to the
Service Manager. As it is a command for the ServiceList,
which is part of the Service Manager, the Service Manager
handles it. From the system section, the Service Manager
retrieves the name of the Client and checks the data section
for the Services. It then retrieves the latest CCML for
the Client from its Clients list and creates a command for
the Client. It sets the AddService action to the Services

8

SM - Service Manager

ICM - IR Communication Manager

Start

End

ICM discovers
new Client

ICM sends CCML
to SM

SM creates new id,
sets AddService to

ServiceList, updates
Clients List

Client sends
CCML to ICM

SM sends updated
CCML to ICM

ICM sends
updated CCML to

Client

ICM sends CCML
to Client

Client adds
ServiceList to

InterestList

SM sends updated
CCML to ICM

ICM polls Client
Client sends new

CCML

ICM sends new
CCML to SM

SM adds ServiceList
and Client to

Service-Client list

SM sends
ServiceList CCML

to ICM

ICM sends
ServiceList CCML

to Client

Client displays list
and waits for user

input

User selects a
Service

Client adds sets
value of Service

to true

Clients sends new
CCML, next time

ICM polls it

ICM sends CCML
to SM

SM contains
ServiceList

SM sets
AddService for to

true Service

SM sends updated
CCML to ICM

ICM sends CCML
to Client

Client updates its
InterestList

Fig. 7. ServiceList

selected and sends the CCML back to the Client. The
Client processes this CCML as it would any AddService
action by adding the Service to its listening section. It also
adds the Service to its InterestList. When the Client is
next polled it sends its updated CCML.

The Service Manager reads the list of Services that the
Client is listening to, and picks out the new Services, ones
that the Client was not previously listening to. It sends
their CCML to the Client via the IR Communication Man-
ager. It then, adds the new Service-Client pair to its
Service-Client list.

Once the Client gets the CCML of the Service, it displays
it for the user. The user can use the interfaces to perform
actions. The Client modi�es the Service's CCML to make
a command, sets the new values and sends when polled.

The Service Manager realizes that it is a command and
sends it to the appropriate Service. The Service carries out
the command and sends the update to the Service Manager.
Fig. 8 details the steps in the requesting of a Service.

B.4 Status Update

If a Service Manager receives an update from a Service, it
checks its Service-Client list for all the Clients interested in
this Service. It sends the updated CCML to these Clients.

When a Service Manager receives an update from a
Client, it carries out certain functions on it. It checks
the listening section and retrieves the list of Services that
the Client is listening to. It picks out the new Services,

NoYes

NoYes

Yes No

SM - Service Manager

ICM - IR Communication Manager

Start ICM polls Client

ICM sends CCML
to SM

Client sends ’update’
CCML or ’command’

CCML

Is ’command’
CCML for valid

Service

SM sends
’command’ CCML to

Service

Is command diff
from current status

End

Service carries out
command

Service returns
status update to SM

Service returns
status update to

SM

End

Is it a
’command’

SM sends update for
all interested Clients

to ICM

ICM sends update
to Clients

Fig. 8. Requesting a Service

ones that the Client was not previously listening to. It
sends their CCML to the Client via the IR Communica-
tion Manager. Then for each new Service, it adds a new
Service-Client pair to its Service-Client list.

Fig. 8 shows how a status update propagates through
the Centaurus system.

VI. Protocol

A. Overview

� Every couple of minutes IR Communication Manager
does a discovery via its infra-red transceiver, to locate
the new PDAs in the room.

� Once a new PDA has been located, the Service Man-
ager is contacted. The CCML �le for the PDA is
sent to the Service Manager through a pre-de�ned
port number. The Service Manager creates a new ID
and sets the action, AddService to ServiceList in the
CCML �le for the PDA and returns this CCML to the
IR Communication Manager.

� Whenever the IR Communication Manager receives in-
formation on its reading port, it checks the header to
�nd the Client id and then forwards it to the correct
Client via infra-red.

� The IR Communication Manager polls all the PDAs
in the room at regular intervals. A PDA responds
by sending its own CCML as an `update' or sending
the CCML of a service it wants to use by issuing a
`command' .

� When the Service Manager receives any CCML from

9

NoYes

NoYes

NoYes

SM - Service Manager

ICM - IR Communication Manager

Start
SM gets status

update

Is update from
Client

SM sets Clients
List to new CCML

Any new
listening
Services

Add to Service-
Client List

Send CCML for new
Services to ICM

Any Services
been removed

Remove from
Service-Client List

End

SM checks Service-
Client list for Clients
interested in Service

SM sends the
update for interested

Clients to ICM

SM validates
CCML

ICM sends
’update’ CCML to

Client

Fig. 9. Status Update

a Client, the CCML is �rst validated and the Service
Manager makes sure that it came from an authorized
Client. Then it checks the header to decide whether
the CCML is an `update' or a `command'.

� If it is an `update', it reads the list of Services that the
Client is listening to, and picks out the new Services,
ones that the Client was not previously listening to. It
sends their CCML to the Client via the IR Communi-
cation Manager. It then, adds the Service-Client pair
to its InterestList.

� On the other hand, if it is a `command', it extracts the
name of the Service, and sends it to the appropriate
Service.

� If a Client receives an `update', it is the status update
of a Service that the Client is interested in.

� If a Client receives a `command', if knows that the
Service Manager has set an action on it. Following
this, the Client validates the CCML, and if there is
any AddService action, adds the value to the listening
list in its CCML. It also sets the `update' variable in
its CCML header.
If the action is RemoveService, it removes the Service
from its list.

� After starting up, a Service has to register with the
Service Manager, by sending its CCML �le and its
port number to the Service Manager. The `update'
variable is always set in a Service's CCML.

� When a Service receives a `command' from a Service
Manager, it tries to carry out the command. It then
updates its CCML to re
ect the new changes and

sends it to the Service Manager.
� Whenever a Service Manager, receives an 'update'
from a Service, it forwards this update to all Clients in
the Service-Client list that are interested in this par-
ticular Service.

B. Centaurus Communication Protocol

The Centaurus Level1 protocol is running on top of
IRDA's IrLAP and IrLMP protocols. [10] IrLAP is a low
level protocol that provides device to device connection for
reliable data transfer, device discover procedures and hid-
den node handling. IrLMP works on top of IrLAP and han-
dles multiplexing of the IrLAP layer and multiple channels
above an IrLAP connection as well as protocol and ser-
vice discovery via the Information Access Service (IAS).
The Centaurus Level1 protocol provides the glue between
IRDA protocols (IRLAP and IRLMP) and Centaurs level
2 protocol.

Centaurus level 2 protocol is based on passing short com-
mand messages between the client and the server. These
command messages are used to establish the session (HELO,
HELORSP), synchronize clocks (POLL), �nd out which objects
are available for transmission(OBJ,POLL, NONE), handle
ow
control (PROCEED, DONE, ACK) and do actual data transmis-
sion (PK).

The client and server use exactly the same code for both
level 1 and level 2 protocols implementation, the only dif-
ference is the actions that are performed by the level 1
protocol to establish connection, and handling of OBJ and
NONE messages by the level 2 protocol stack.

The level 1 protocol di�erences are the following. On
the server side after connection is established and authen-
tication is performed the level 1 protocol sends 'HELO'
message and starts up the level 2 protocol. On the client
side the level 1 protocol waits for the initial HELO message,
after it receives this message it replies back with HELORSP

message and starts up the level 2 protocol as well.

The state diagram for the level 2 protocol is presented
in the �g. 10. Although most of the messages in the proto-
col are just plain text strings few messages deserve further
explanation. The POLL message, if transmitted from the
server, is followed by the current value of the server clock.
The OBJ message is followed by the object name, its time
stamp and its size. The PK message is followed by the ac-
tual data payload. The PROCEED message is followed by
the received packets bitmap, when a packet is received by
the receiver, it marks the bit corresponding to this packet
number in the received packets bitmap, when all of the
bits in a bitmap are marked the message is said to be re-
ceived and receiver sends ACK message back to the sender.
If for some reason disconnection occurs before the whole
message is sent, during the next session the receiver sends
the received packets bitmap to the sender and the sender
either proceeds to send the remaining packets or discards
the whole object if newer version is available.

10

Start

Wai t

OBJ
Received

Connected

PROCEED
Received

POLL
Received

Send
Command

N O N E
Received

Xmit

Packet
Sent

Procced
Sent

Receive

Packet
Received

ACK or REJt
Received

HELO

ACK or REJ

HELORSP

[PROCEED]

Command
Send

Conf i rmed

OBJ

N O N E

PROCEED
POLL

[REJ]

[DONE]

Data Send
Conf i rmed

STOP

ABORT

[data packet]

[NONE]

[OBJ]

Command
Send

Conf i rmed

D O N E
Received

Packet

D O N E

[ACK]

[PROCEED]

ABORT

[POLL]

[OBJ]
only if Server

[NONE]
only if Client

Legend

CAPS - command rece ived f rom
the other end

[CAPS] - command sent to the
other end.

Fig. 10. Centaurus Level 2 Protocol

VII. Results

While testing, we had 3 PDAs in the room communi-
cating with the Centaurus system. Each PDA requested
one or two Services, and executed them. We even tried si-
multaneous execution of Services by the PDAs. These were
automatically handled by the IR Communication Manager,
which polled the PDAs at regular intervals, so only one re-
quest was sent to Service at a time.

We believe that the testing was successful as we were
able to execute both the Services by any of the PDAs.

VIII. Conclusion

We have successfully developed the �rst version of Cen-
taurus. We believe that by providing a uniform infrastruc-
ture using XML-encoded data exchange we have shown
that it is appropriate and e�ective for deploying services
in an indoor environment. The �rst stage development, in-
cluding the Service Manager, IR Communication Manager,
MP3 player services, Lamp services etc. has veri�ed that
our vision is de�nitely feasible.

Our future goals are to make Centaurus project avail-
able to the public and to provide more documentation for
developing Centaurus services. Meanwhile, we are also de-
veloping the other components proposed in our design.

Although, our project is far from complete, we believe
that now that the framework is in place, adding attractive
interfaces for the portable devices, creating new services,
and enabling more intelligent brokering of Services will fol-

low easily. We believe that we have crossed all the ma-
jor hurdles, and completing the remaining portion will be
pretty straightforward.

References

[1] The Ninja Project http://ninja.cs.berkeley.edu/
[2] An Architecture for a Secure Service Discovery Service

Steven E. Czerwinski, Ben Y. Zhao, Todd D. Hodes,
Anthony D. Joseph, and Randy H. Katz
Fifth Annual International Conference on Mobile Computing
and Networks (MobiCom '99)

[3] W3C Consortium
http://www.w3.org/XML/

[4] The OÆcial Bluetooth Website
http://www.bluetooth.com/

[5] Internet Business Solutions : E-Speak
http://www.e-speak.hp.com?qt=espeak/

[6] Jini Connection Technology Executive Overview
http://www.sun.com/jini/

[7] The Jini Community
http://jini.org

[8] White Paper on Enterprise Service Discovery
http://playground.sun.com/srvloc/slp white paper.html

[9] Service Location Protocol
http://www.svrloc.org/index.html

[10] Infrared Data Association
http://www.irda.org

[11] FireCracker
http://www.x10.com/welcome/�recracker/

[12] X10 Devices
http://www.x10.com/

[13] Mpg123, MP3 Player for Linux/Unix Systems
http://mpg123.org/

