Towards a Well-Behaved Web

Lalana Kagal
University of Maryland
Baltimore County
CSEE Department
1000 Hilltop Circle
Baltimore, MD 21250

lkagall@cs.umbc.edu

ABSTRACT

In order to realize the full potential of the World Wide Web as
an open and dynamic network of information, it is important
to govern how web entities (e.g., web services and agents) be-
have in terms of what resources they access (security), how
their information is used by others (privacy), whether they
are reliable (trust), and how they establish and fulfill social
and business obligations and contracts (obligation manage-
ment).

We propose that a declarative policy-based approach be
used, where the norms or rules of ideal behavior of web enti-
ties are described in a machine-understandable specification
language and web protocols are modified to include policy
exchange, negotiation, compliance checking, and possibly en-
forcement. Web entities can define policies for several aspects
of both their own behavior and the expected behavior of en-
tities they will interact with, including security, privacy, col-
laboration, and commitments. These policies can be easily
updated causing the behavior of the entities to be modified
but without affecting the underlying protocols, mechanisms,
or architecture. Along with providing the openness required,
these policies also provide greater autonomy as they help
interacting entities understand each others capabilities, re-
quirements, limitations, and obligations and infer what their
ideal behavior should be and act accordingly.

In this paper, we describe Rei, a policy specification lan-
guage represented in an extension of OWL-Lite, which can be
used to describe and regulate different kinds of behavior in
a wide range of domains. Along with using a rule-based ap-
proach for greater expressivity, it also models several aspects
of social policies including consequences of violating policies
and conditional permissions that grant certain permissions
on the condition that the authorized entities take on certain
additional responsibilities. We illustrate the applicability of
Rei for policy management of the web through two prototype
applications namely (i) web privacy, and (ii) security, privacy,
and confidentiality for semantic web services.

1. INTRODUCTION AND MOTIVATION

The Web is a dynamic network of information that has
to accommodate a wide range of domain knowledge due to
Copyright is held by the author/owner(s).

Tim Finin
University of Maryland
Baltimore County
CSEE Department
1000 Hilltop Circle
Baltimore, MD 21250

finin@cs.umbc.edu

Anupam Joshi
University of Maryland
Baltimore County
CSEE Department
1000 Hilltop Circle
Baltimore, MD 21250

joshi@cs.umbc.edu

diverse organizational boundaries, adapt to heterogeneous
and semi-autonomous entities, and manage variations caused
by ambiguous boundaries and permutable services and re-
sources. It enables entities to interact and share information
and resources dynamically across organizations and domains.
However, the probability of entities misbehaving is high lead-
ing to low reliability and trust. This reduces the usefulness
of the web as entities are less willing to share information if
they do not have control over who uses their information and
how it is used, stored, and distributed. In order to realize
the full potential of the World Wide Web as an open and dy-
namic network of information, it is important for entities to
be able to understand the behavior of entities they interact
with in terms of access control, fulfilling their obligations,
accountability, etc. As the web is inherently decentralized
and as entities are semi-autonomous, each entity should be
able to describe how it behaves and the behavior it expects
from entities it will interact with, and there should be appro-
priate decentralized mechanisms for matching descriptions of
interacting entities and for ensuring (or verifying) that the
behavioral specifications are (or were) followed.

Until recently, research in regulating the behavior of enti-
ties has been focused on distributed environments that were
fairly static. In this model, though clients, services, and data
were physically distributed, they were static, pre-determined
and shared the same domain knowledge. In general, we be-
lieve that traditional mechanisms for governing behavior have
the following characteristics that make them inappropriate
for the web : (i) They are inflexible as they are tightly inte-
grated with the security mechanisms. This implies that they
can be only used in a restricted set of domains and their ap-
plicability to dynamic environments with fluctuating bound-
aries that involve a range of different domains is limited. (ii)
They are not very expressive; in general, they cannot express
all aspects of resources, users, and context. For example,
RBAC usually allows permissions and responsibilities to be
associated only with roles and does not take any other at-
tributes into consideration. (iii) They are unable to adapt
quickly to changes or provide schemes for dynamic modifi-
cation. Few mechanisms provide any automated schemes for
run-time modification such as delegation and revocation. (iv)
They tend to decrease the autonomy of the entities as the
actions of entities are actually restricted according to the se-
curity specifications without giving them the choice to govern
their own behavior.

The characteristics of the Web that make behavior man-

Characteristic

Restriction

Solution

Resources and clients cannot be
pre-determined

Scheme should not include hard-
coded mechanisms that list access
rights of individuals

Declarative policies described over differ-
ent attributes of entities

The web is constantly evolving

Run-time modification should be
possible

Speech acts are used for dynamic modifi-
cation of policies

Entities are not always known
or cannot always be authenti-
cated

Scheme should not be based solely
on identity of either the client or the
service

Policies are based on attributes associated
with entities and the environment

Very large number of resources,
services, and clients

It should be possible to control sets
of entities

Group policies are possible

No central control or repository

Decentralized control should be
possible

Decentralized control possible where every
entity follows its own policy

Presence of semi-autonomous
entities

Scheme should be understandable
and usable by humans and semi-
autonomous entities

Policy specification language is represented
in machine-understandable ontology lan-
guage

The web spans several domains

Scheme should be usable for any
domain-specific information

Policy engine can reason over different do-
main knowledge described in ontology lan-
guages

Entities are overconstrained

Scheme should provide mechanism
for either resolving conflicts or for
deciding which policy to deviate

Policy language provides meta policies for
automated conflict resolution and models
sanctions allowing entities to understand

from

the penalties of violating a policy

Table 1: Characteristics of the Web

agement difficult along with the reasons for our proposed so-
lution are highlighted in Table 1. We propose that declarative
policies, represented in a machine understandable format, be
used to guide the behavior of web entities and web protocols
be modified to include policy exchange, negotiation, compli-
ance checking, and fulfillment. The policy framework should
include support for dynamic policy modification in order to
adapt to constantly changing requirements and meta policies
to help resolve policy conflicts. The policy system should also
include support for more autonomous web entities like web
services and agents.

In this paper, we describe Rei, a policy specification lan-
guage and framework, for rule-based regulation of entities
in dynamic distributed environments [22, 19]. We propose
that Rei be used for describing policies of web entities and
the Rei policy engine be used to understand the behavior of
entities and for checking compliance and fulfillment of poli-
cies. Rei provides a novel combination of six features that
makes it suitable for the web: (i) it provides the extensibil-
ity required as policies can be described over different kinds
of domain knowledge at different levels of abstractions, (ii)
it can describe both positive and negative authorization and
obligation policies that can be used to appropriately model
different kinds of behavior, (iii) it includes a policy engine
and analysis tools, (iv) it uses a rule-based approach and al-
lows policies to be described in terms of attributes of users,
actions, and other context, (v) it supports meta-policies for
automated conflict resolution, and (vi) it supports dynamic
policy modification via speech acts.

2. REIPOLICY MANAGEMENT SYSTEM
The Rei policy language, represented in OWL-Lite, al-
lows different kinds of policies (security, privacy, conversa-
tion, etc.) to be specified as restrictions over allowable and
obligated actions in terms of attributes of the actor, action
and the general context. Though its classes and properties

are represented in OWL, Rei also includes logic-like variables
giving it the flexibility to specify constraints that are not di-
rectly possible in OWL e.g., the uncle relation, the same age
as relation etc.

As most entities on the web will have several overlapping
policies of behavioral norms, constraints, and rules acting
on them, they will be over-constrained. This means that
they cannot always satisfy all of the policies, but deviating
too much or too often has its consequences - loss of reputa-
tion, penalty clauses, imposition of sanctions, etc. Rei allows
these consequences to be modeled as ’sanctions’ so that au-
tonomous entities or providers can reason over them to decide
whether or not to deviate from a certain policy. These ’sanc-
tions’ describe the penalties of violating the policy and are
attached to prohibitions and obligations. A ’sanction’ is ca-
pable of expressing common penalties of violating policies in
human societies : retracting a permission, granting an addi-
tional obligation, or reducing a reputation measure. Rei also
provides meta-policies for automated conflict resolution.

Rei can be used to express conditional permissions, which
are common in human societies. These permissions allow an
entity to perform a certain action or set of actions under the
condition that it will take on certain additional responsibil-
ities. These conditional permissions impose additional obli-
gations on the entity after the permission is exercised. For
example, You can use the BravoAir service if you fill out the
comments form.

Rei provides two forms of analysis : use-cases (also known
as test-case analysis) and what-if analysis (also known as re-
gression testing). The policy engine includes analysis tools in
the form of a Java interface that can be executed by policy
engineers to check the consistency and validity of the policies
and ontologies.

Rei has been used for policy management is several dy-
namic distributed applications including, (i) authorization in
supply chain management systems [23, 24], (ii) access control
in pervasive computing environments [21, 34], (iii) security,

privacy, and confidentiality for semantic web services [6, 25],
(iv) collaborative multi-agent system [4], (v) web privacy [26],
(vi) enforcing domain policy on handheld devices [32], (vii)
security for Fujitsu’s Task Computing project [27], and (viii)
modeling conversation policies in multi-agent systems [20].

Though Rei has been mostly used for controlling what
actors can/must do, it is also possible to model behaviors
like ”digital rights management”, which typically focus not
so much on actors can/must do but on objects and what
can/must be done to/with them. For example, the purchaser
of this song is permitted to make copies that can only be played
on a computer on which his private key is installed. Rei can
be used to represent and reason over DRM policies and even
licenses like the Creative Commons Licenses !.

2.1 Specifications

Rei specifications include policies, deontic objects, con-
straints, actions, speech acts, and policy analysis.

2.1.1 Policy

Rei policies are basically rules of behavior described over
different attributes of the requester, service/action and the
context. They are defined by a set of deontic objects where
the relation that links the deontic concepts to the policies is
’grants’. The property grants can either be a deontic object
or a granting.

Consider a student policy for the CS Department. It states
that students have the permission to print on black and white

printers. It uses a previously defined deontic, Perm_StudentPrintingy

and adds a constraint that checks whether the printer is black
and white using the requirement property.

<!-- Rei variables -->

<entity:Variable rdf:ID="#PersonVar"/>
<entity:Variable rdf:ID="#ActionVar"/>
<entity:Variable rdf:ID="#TargetVar"/>

<constraint:SimpleConstraint rdf:ID="IsCSStudent"
constraint:subject="#PersonVar"
constraint:predicate="&rdf;type"
constraint:object="&univ;CSStudent"/>

<constraint:SimpleConstraint rdf:ID="GetTargetOfAction"
constraint:subject="#ActionVar"
constraint:predicate="&action;target"
constraint:object="#TargetVar"/>

<constraint:SimpleConstraint rdf:ID="IsBWPrinter"
constraint:subject="#TargetVar"
constraint:predicate="&rdf;type"
constraint:object="&univ;BlackWhitePrinter"/>

<constraint:And rdf:ID="And_Constraint">
<constraint:first rdf:resource="#GetTargetOfAction"/>
<constraint:second rdf:resource="#IsBWPrinter"/>
</constraint:And>

<policy:Granting rdf:ID="Granting_PermToBWPrinter">
<policy:to rdf:resource="#PersonVar"/>
<policy:deontic rdf:resource="#Perm_StudentPrinting"/>
<policy:requirement rdf:resource="#And_Constraint"/>
</policy:Granting>

<policy:Policy rdf:ID="CS_Policy">
<policy:context rdf:resource="#IsCSStudent"/>

<policy:grants rdf:resource="#Granting_PermToBWPrinter"/>

</policy:Policy>

"http://creativecommons.org/

Also associated with a policy is its context, which defines
the environment under which the policy is applicable as a
set of additional constraints. In the above case, the context
states that the actor must be a CS student.

2.1.2 Granting

A granting adds a set of constraints to an existing deon-
tic object to form a new policy rule. This allows reuse of
deontic objects in different policies with varied constraints
and actors and helps modularize the policy making process.
More technical policy makers can develop deontic objects
over applicable domain action with generic constraints at-
tached. Then domain administrators will create policies by
integrating the pre-defined deontic concepts and adding more
domain-specific constraints. For example, the following pol-
icy:Granting uses an existing deontic:Permission and defines
additional constraints on the actor and actor. The following
granting example gives all PhD students the permission to
use laser printers where 'IsLaserPrinter AndPhD’ is a boolean
constraint.

<policy:Granting rdf:ID="Granting_StudentLaserPrinting">
<policy:to rdf:resource="#PersonVar"/>
<policy:deontic rdf:resource="#Perm_StudentPrinting"/>

<policy:requirement rdf:resource="#IsLaserPrinterAndPhD"/>

</policy:Granting>

2.1.3 DeonticObject

This class is used to create rules that make up policies.
includes constructs for describing what action (or set of
actions) the deontic is described over, who the potential actor
(or set of actors) of the action is, and under what conditions
is the deontic object applicable. Consider as an example,
a deontic object that permits students to print on certain
printers

<deontic:Permission rdf:ID="Perm_StudentPrinting">
<deontic:actor rdf:resource="#PersonVar"/>
<deontic:action rdf:resource="#ActionVar"/>

<deontic:constraint rdf:resource="#IsStudentAndBWPrinter"/>

</deontic:Permission>

As the deontic:actor and deontic:action are both entity:Variables,

the permission is applicable to all entities and actions that
satisfy deontic:constraint. Two optional properties, starting-
Constraint and endingConstraint can be used together to de-
fine the window within which the deontic object is valid or
must be completed in case of an obligation. DeonticObject
has 4 subclasses : Permission, Prohibition, Obligation and
Dispensation. Permission has an additional property called
provision, which is an obligation. It is used to grant con-
ditional permissions. The defined obligation only becomes
active after the permission is exercised. For example, You
can use my car, if you return it with a full gas tank. Prohi-
bitions and Obligations have a sanction property associated
with them that describes the penalties that will be imposed
on the actor if the prohibition or obligation is violated. A
sanction is usually an action or a set of actions that may be
performed if the prohibition is violated. For example, You
are prohibited from cheating in an exam. If you do you will
be suspended.

Other deontic objects including power, claims, and liability
can also be modeled in the Rei framework but are currently
not included.

2.1.4 Constraint

A constraint is used to define sets of objects like the set of
graduate students, the set of actions whose targets are laser
printers, the set of users that belong to the same lab as ’John-
Doe’, and the set of students whose advisors are assigned to
the lab in which the target of the printer is located. There are
two subclasses of constraints: SimpleConstraint and Boolean-
Constraint.

2.1.4.1 SimpleConstraint.

As any expression in RDF is a collection of triples, a Sim-
pleConstraint is modeled as a triple consisting of subject,
predicate and object.

For example, a set of objects of that have ’affiliation’ prop-
erty set to ’CSDept’ is defined as

<constraint:SimpleConstraint rdf:ID="IsMember0fCS">
<constraint:subject rdf:resource="#PersonVar"/>

<constraint:predicate rdf:resource="&univ;affiliation"/>

<constraint:object rdf:resource="&univ;CSDept"/>
</constraint:SimpleConstraint>

2.1.4.2 BooleanConstraint.

Constraints (both Simple and Boolean) can be combined in
pairs using operators of And, Or, and Not (which is assumed
to be negation as failure). Each operator is a subclass of
BooleanConstraint. For example, an ’And’ operation over
two constraints can be defined as

<constraint:And rdf:ID="IsLaserPrinterAndPhStudent">
<constraint:first rdf:resource="#IsPhDStudent"/>
<constraint:second rdf:resource="#IsLaserPrinter"/>
</constraint:And>

2.1.5 MetaPolicy

As we are developing Rei as a policy language for dynamic
environments, we believe that meta policies are very impor-
tant as the likelihood of conflicts between policies in these
environments is high. Meta policies describe how policies are
interpreted and how conflicts are resolved. Rei models two
main types of meta policies to handle different requirements
of policies (i) defaults and (ii) conflict resolution. Depending
on the conflict resolution required, the appropriate meta pol-
icy should be selected. Some policies may require a higher
level meta policy and can use default behaviors or modality
precedences. However, for tighter control, priorities are more
suitable but are tougher to define and maintain.

2.1.5.1 Defaults.

These include behavior and meta-meta policies. Behavior
is made up of three instances that describe what the default
behavior or mode of the policy is, whether everything that
is not explicitly permitted is prohibited, everything that is
not explicitly prohibited is permitted, or everything has to
be explicitly defined. As there can be more than one meta
policy defined, In order to resolve a conflict between meta
policies, a meta-meta policy can be set that decides the order
in which meta policies are invoked.

2.1.5.2 Conflict Resolution.

Meta policies for conflict resolution include priorities and
modality precedence. Priorities can be set either between
policies and rules. For example, you can say that the Federal
policy always overrides the State policy in case of conflict and
you can also state that rulel has greater priority that rule2
in the Federal policy.

It is also possible to set preferred modality e.g. negative
modality is preferred for the CS department policy. So if a
student has both a permission and a prohibition, the negative
rule i.e. the prohibition will be given preference.

2.1.6 Speech Acts

Rei defines four speech acts namely Delegation, Revoca-
tion, Request and Cancel that are primarily used for dynamic
modification of policies. Delegations are very important to
dynamic environments because the entities may not be able
to project who will use them or pre-establish all the desirable
requirements of the entities who should use them. Delega-
tions allow permissions to a resource to be propagated to a
set of trusted entities, without explicitly changing the policy.
Consider a web service that is only accessible by users of a
certain role in a certain organization. These users also have
the permission to delegate the ability to use this service to
other users in the organizations for a certain time period. A
delegation from one of these users to another employee of the
organization permits the latter to use the web service without
any explicit modification of the policy or code of the service
as long as the constraints associated with the delegation are
met. Thus a valid delegation leads to a new permission. Sim-
ilarly, a revocation speech act nullifies an existing permission
(whether policy based or delegation based) causing a prohi-
bition. An entity can request another entity for a permission,
which if accepted causes a delegation, or to perform an action
on its behalf, which if accepted causes an obligation. An en-
tity can also cancel any previously made request, which leads
to a revocation and/or a dispensation.

As an example, consider a delegation speech act from George
to Marty giving Marty the permission to use a service, BravoAir
ReservationAgent.

<action:Delegation rdf:ID="Del_GeorgeToMarty">
<action:sender rdf:resource="#George"/>
<action:receiver rdf:resource="#Marty"/>
<action:deontic>
<deontic:Permission>
<deontic:actor rdf:resource="#Marty"/>
<deontic:action rdf:resource=

"&bravo-service;BravoAir_ReservationAger

</deontic:Permission>
</action:deontic>
</action:Delegation>

As with all actions, an entity must have the permission to
perform a speech act in order for it to be valid or allowed.
This means that in order to perform a delegation that adds a
permission, the entity must have the permission to delegate.
For example, Susan, a professor delegates to Alice, her stu-
dent, the permission to write a review for a paper and also
delegates the permission to further delegate the permission to
write the review to any other student belonging to the same
group. This implies that Alice now has the permission to
delegate the permission to review Susan’s paper. The ini-
tial permission to delegate and the following speech acts add
constraints to the sender of the speech act, the recipient, the
action and to how the permission can be further delegated.
Speech acts are tightly integrated into the framework as they
affect policies that in turn affect speech acts. For example,
Tim revokes George’s permission to delegate the permission
to use BravoAir_ReservationAgent.

2.2 Tools

Along with providing an expressive policy language, Rei
also includes a policy engine and analysis tools.

2.2.1 Policy engine

We have developed a policy engine that reasons over poli-
cies in Rei, domain information and the context to answer
queries about the current permissions and obligations of en-
tities in the environment. It is able to answer several types
of queries including, (i) Does X have the permission to per-
form Y on resource Z, (ii) What are the current obligations
of X, (ili) What actions can X perform on resource Z, (iv)
What are all of X’s permissions in the current policy domain,
and (v) Under what conditions does X have the permission
to perform Y on resource Z. While answering these queries,
the Rei engine takes into account all applicable policies and
speech acts and tries to resolve any conflicts detected using
the defined meta policies.

The engine is developed in Flora?, an F-logic extension
of XSB, and includes F-OWL [39], a reasoner for RDF and
OWL. This allows policies to be described over ontologies in
both RDF and OWL. The Rei engine has a Java wrapper
for integration into different domains. The engine is modular
and easy to extend with new deontic concepts (e.g. claims,
privileges) and speech acts (e.g. promise, command).

As the policy engine is developed in Prolog, it is also pos-
sible to ask interesting queries through the prolog interface
like, (i) Does John have the right perform any action that
causes the room to become brighter, (ii) Can a student per-
form any action on a faculty printer, and (iii) Can Marty
access any document that is of high priority. However, the
Java interface for Rei does not currently support these kinds
of queries.

In order to use Rei policies within an environment, the en-
gine is usually queried by the enforcement mechanism before
allowing/denying actions in the environment and for obliga-
tion management or used by an autonomous entity to decide
what it should do next. However, having a policy described
in Rei does not require the use of the Rei policy engine to
enforce it. In some cases it is possible to compile such poli-
cies into another form that can more easily be enforced by a
simple procedural mechanism [32].

2.2.2 Policy Analysis

To enable the development of consistent and valid policies,
Rei provides two specifications: use-case management (also
known as test-case analysis) and what-if analysis (also known
as regression testing). The policy engine supports these two
forms of analysis on policies and ontologies via a Java API
that can be executed by policy engineers. In use-case man-
agement, the policy maker can specify a set of use cases that
are verified against a set of policies. For example, the Dean of
the CS department should always have the permission to print
to the HPColorPrinter. This is defined as a use case and can
be tested against the CS policy, the Lait lab policy and the
school policy. If the policies and ontologies are consistent, the
use case will be true. If the use case is false, the policy maker
is aware that there is an error in specifications of the poli-
cies. On the other hand, what-if analysis is used to help the
policy maker decide what changes to make to the policy or
ontology. For example, if I delete Rulel, will John still have
the permission to print ¢ or if I add ’thesis-topic’ property
of value Al to George, will he still be prohibited from using

http://flora.sourceforge.net

the CS fax machine are some examples of what-if analysis a
policy maker may describe.

<analysis:WhatIfIRemoveRule rdf:ID="RemovingRulel">
<analysis:policy rdf:resource="&dept;CSPolicy"/>
<analysis:granting rdf:resource="&dept;Rulel"/>

</analysis:WhatIfIRemovePolicyRule>

<analysis:PermissionUseCase rdf:ID="CanJohnPrint">
<analysis:actor rdf:resource="&inst;John"/>
<analysis:action rdf:resource="&inst;Print"/>
<analysis:target rdf:resource="&inst;LabPrinter"/>

</analysis:PermissionUseCase>

3. CASE STUDIES

Though Rei has been used in several research applications
for policy management, we describe two that are most rele-
vant to managing the behavior of entities on the web, (i) se-
curity, privacy, and confidentiality for semantic web services,
and (ii) web privacy.

3.1 Security, Privacy, and Confidentiality for
Semantic Web Services

Rei is used to define authorization, privacy and confiden-
tiality policies for entities (both requesters and services) in
the Semantic Web Services infrastructure. Based on our ear-
lier work [6], a property called policyEnforced is defined as a
subproperty of serviceParameter of OWL-S profile. This pol-
icyEnforced property is used to describe the different policies
that have to be enforced for the correct execution of ser-
vice. We use the same property for requesters, which could
be agents, services or humans.

Access to services can be restricted through the use of au-
thorization policies. These policies are made up of permis-
sions and prohibitions over attributes of the requester, service
and the context at the time of invocation. For example, an
authorization policy of a printer web service could state that
only students have the permission to access it.These policies
constrain access to the service to only certain clients and un-
der certain circumstances.

Assume the BravoAirService® as described on the OWL-
S Web site has the following authorization policy Only re-
questers who are in the same project as John or known to
Tim have the right to access me if they fill out the comments.
We describe it in Rei as a permission over accessing Bra-
vAirService and define appropriate constraints.

<!-- some variables used for building the constraints -->
<entity:Variable rdf:ID="RequesterVar"/>
<entity:Variable rdf:ID="ProjectVar"/>

<!-- Get John’s project -->

<constraint:SimpleConstraint rdf:ID="GetJohnProject"
constraint:subject="&john;John"
constraint:predicate="&foaf;currentProject"
constraint:object="#ProjectVar"/>

<!--Is requester in the same project as John -->

<constraint:SimpleConstraint rdf:ID="SameProjectAsJohn"
constraint:subject="#RequesterVar"
constraint:predicate="&foaf;currentProject"
constraint:object="#ProjectVar"/>

<!-- constraints combined -->
<constraint:And rdf:ID="AndConditionl"

3http://www.daml.org/services/owl-
s/1.0/BravoAirService.owl

constraint:first="#GetJohnProject"
constraint:second="#SameProjectAsJohn"/>

<!-- Is requester known to Tim -->

<constraint:SimpleConstraint rdf:ID="IsKnownToTim"
constraint:subject="&tim;Tim"
constraint:predicate="&foaf;knows"
constraint:object="#RequesterVar"/>

<!-- constraints combined -->

<constraint:0r rdf:ID="0rConditionl"
constraint:first="#AndConditionl"
constraint:second="#IsKnownToTim" />

<!-- obligation to fill in the comments form -->
<deontic:0Obligation rdf:ID="BravoProvision">
<deontic:actor rdf:resource="#RequesterVar"/>
<deontic:action rdf:resource="#FillComments"/>
</deontic:0bligation>

<!-- permission to use BravoService -->

<deontic:Permission rdf:ID="BravoPermission">
<deontic:actor rdf:resource="#RequesterVar"/>
<deontic:action

rdf:resource="&bravo-service;BravoAir_ReservationAgent"/3

<deontic:constraint rdf:resource="#0rConditionl"/>
<deontic:provision rdf:resource="#BravoProvision"/>
</deontic:Permission>

<sws:AuthorizationPolicy rdf:ID="AuthPolicy">
<policy:grants rdf:resource="#BravoPermission"/>
</sws:AuthorizationPolicy>

<!-- BravoAir-ReservationAgent enforces the AuthPolicy -->
<rdf:Description
rdf :about="&bravo-service;BravoAir_ReservationAgent">
<sws:policyEnforced rdf:resource="#AuthPolicy"/>
</rdf :Description>

In order to verify this policy and check whether a request
is valid, FOAF descriptions of either John or Tim as well as
that of the requester is required to be input to the Rei engine.

In this framework, we view privacy policies as restricting
access to those services that satisfy certain input/output con-
ditions. Information leakage is prevented through the use of
privacy policies. For example, if a user does not want her
SSN number disclosed, her privacy policy will restrict access
to all those services that use SSN as output parameters.

Similarly it is possible to describe policies over input pa-
rameters of services. These are privacy policies associated
with the requester. However, the privacy policies associated
with a service describes how the information gathered by the
service is utilized. This is similar to the P3P effort [5] and in
our context we call these policies privacy enforcement poli-
cies. These policies are a set of obligations on the service
regarding the usage of the information it collects from the
requester. For example, the privacy enforcement policy of a
book selling Web site could be that it will not provide contact
information of the requester to any third party and will only
use it for statistical analysis. This is translated into Rei as
’Obligation to not provide any contact information to third
parties’. The requester could also define its privacy policy
based on the privacy enforcement policy of the service. Con-
sider a user whose privacy policy states that the user want
to only use services that guarantee that they will not provide
his contact information to third parties. In Rei, this privacy
policy will be defined as 'Permission to access service that
has an obligation to not provide contact information to third
parties’.

Closely linked to privacy policies are confidentiality poli-
cies that describe cryptographic characteristics of the input
and output parameters of the service. The problem of repre-
senting data confidentiality in the markup of semantic web
services such as OWL-S is that encrypted data by its very
nature does not reveal its internal value or structure because
it is just a byte string. We therefore use a semantic markup
that specifies the security characteristics of input and output
parameters of web services while keeping information about
the structure of the data without revealing its value and de-
velop Rei policies over this markup. The markup includes the
type of encryption/signing etc. and the base object. Consider
as an example of a user who requires her SSN be encrypted.
This means the user requires any service that needs her SSN
as input parameters to use encryption. The user’s policy will
state that there the user is prohibited from using those web
services whose input parameter type is SSN and is permit-
ted to use those services whose input parameter type is ’en-
crypted’ as described by the encryption ontology and whose
base object is SSN.

We have developed an algorithm for testing policy compli-
nce between requesters and services that can be integrated
into the service selection process of the OWL-S MatchMaker
[31]. This integration will allow the requester to invoke only
those services that match the formers policies and whose poli-
cies are met by the requester.

3.2 Web Privacy

Though P3P is a very popular architecture, its deployment
has been slow. We attribute it to two primary reasons. While
one reason is the low adoption of P3P policy by websites, the
other more direct reason is the inadequacy of APPEL. The
limitations with APPEL include its notion of logical connec-
tives, rule ordering and matching criteria. [1]. Due to these
reasons APPEL can specify only what is unacceptable and
not what is acceptable for a user. XPref, an XPath based lan-
guage, tries to overcome some of these issues. Though XPref
solves the issues with rule matching in APPEL, it does not
solve the problem of restrictive expression capabilities of AP-
PEL. Hence we propose the use of privacy policies described
in an RDF based policy language, Rei, which can make pol-
icy decisions over actions and associated restrictions modeled
using a Web privacy ontology. Rei not only allows expressive
policies to be described over domain specific information but
also provides explicit meta policies for rule ordering. These
user policies can be evaluated over website policies published
in P3P-RDFS[30] or over other website information. Through
the use of Rei, a user’s privacy preferences can be enforced
even in the absence of a P3P policy of the website if the user
specifies other constraints that the website fulfills.

As part of our attempt at improving client-side privacy
protection, we have integrated the Rei policy engine into the
P3P JRC proxy %. The proxy now reads P3P specifications of
website and loads them into Rei if they are in RDF otherwise,
using XSLT, converts them into RDF and then loads them
into Rei. The Rei engine infers from the user’s policy, the
context information of the user, the trust information a user
procures, and the P3P policy of a website, whether access to
the website should be allowed or denied [26]. For example, a
user can define a Rei privacy policy over P8P RDF concepts
and her context that states that access to a website that col-
lects her clickstream data is only allowed if (i) she is in the

“http://jrc.p3p.it

office and the policy is certified, (ii) the data is collected for
improving the website and deleted after the current session,
or (iti) the website is trusted by one of her colleagues. We
describe this example using several well known ontologies in-
cluding FOAF and P3P and a few of our own ontologies. The
policy’s default behavior is that everything that is not permit-
ted is prohibited. We assume that the appropriate marked
up information including the FOAF descriptions of the user
and of her colleagues and the website description (that is ei-
ther scraped off the website or obtained from a recommender
network) are input to the Rei engine.

<!-- some variables used for building the constraints -->
<entity:Variable rdf:ID="WebsiteVar"/>

<entity:Variable rdf:ID="PolicyVar"/>

<entity:Variable rdf:ID="UserVar"/>

<entity:Variable rdf:ID="Someone"/>

<!-- privacy policy -->
<!-- everything that is not permitted is prohibited -->
<policy:Policy rdf:ID="PrivacyPolicy">
<policy:grants rdf:resource="#Perm_AccessWebsite"/>
<policy:defaultBehavior
rdf :resource="&metapolicy;ExplicitPermImplicitProh"/>
</policy:Policy>

<deontic:Permission rdf:ID="Perm_AccessWebsite">
<deontic:actor rdf:resource="#UserVar"/>
<deontic:action rdf:resource="WP_Request"/>
<deontic:constraint rdf:resource="#0rCondition2" />
</deontic:Permission>

<appel:Request rdf:ID="WP_Request">
<action:actor rdf:resource="#User"/>

constraint:first="#IsColleague"
constraint:second="#IsWebsiteTrusted"/>

<!-- Get the website’s P3P policy -->

<constraint:SimpleConstraint rdf:ID="P3PPolicy"
constraint:object=
"http://www.w3.org/TR/p3p-rdfschema/p3p-rdf-schema.xml#policy"
constraint:predicate="http://www.w3.0rg/2002/01/P3Pvistatement"
constraint:subject="#PolicyVar" />

<!-- Does the website collect clickstream data -->

<constraint:SimpleConstraint rdf:ID="SiteCollectCS"
constraint:subject="#PolicyVar"
constraint:predicate="&p3p;data"
constraint:object="&p3p;dynamic.clickstream"/>

<!--Is user in the office -->

<constraint:SimpleConstraint rdf:ID="IsUserInOffice"
constraint:subject="#UserVar"
constraint:predicate="&user;location"
constraint:object="&user;AtWork"/>

<!-- Is the policy certified -->

<constraint:SimpleConstraint rdf:about="IsPolicyCertified"
constraint:subject="#PolicyVar"
constraint:predicate="&p3p;disputes"
constraint:object="http://www.truste.org" />

<!-- Is the purpose for tailoring the website -->

<constraint:SimpleConstraint rdf:ID="IsPurposeForTailoring"
constraint:subject="#PolicyVar"
constraint:predicate="&p3p;purpose"
constraint:object="&p3p;Purpose-tailoring" />

<!-- What is the retention period -->

<action:constraint rdf:resource="#DoesSiteCollectClickStre&fopstraint:SimpleConstraint rdf:ID="IsNoRetention"

</appel:Request>

<!-- Or condition -->

<constraint:And rdf:ID="0OrConditionl"
constraint:first="#IsUserInOfficeAndP3PCert"
constraint:second="#NoRetentionAndTailoring"/>

<!-- Or condition -->

<constraint:And rdf:ID="OrCondition2"
constraint:first="#0rConditionl"
constraint:second="#IsWebsiteTrustedByColleague"/>

<!-- And constraint to check if website collects clickstream -->

<constraint:And rdf:ID="DoesSiteCollectClickStream"
constraint:first="#P3PPolicy"
constraint:second="#SiteCollectCS"/>

<!-- Is user in office and p3p policy is certified -->

<constraint:And rdf:ID="IsUserInOfficeAndP3PCert"
constraint:first="#IsUserInOffice"
constraint:second="#AndCondition3"/>

<!-- Get policy and check if its certified -->

<constraint:And rdf:ID="AndCondition3"
constraint:first="#P3PPolicy"
constraint:second="#IsPolicyCertified"/>

<!-- If no retention and purpose is tailoring -->

<constraint:And rdf:ID="NoRetentionAndTailoring"
constraint:first="#AndConditionl"
constraint:second="#IsNoRetention"/>

<constraint:And rdf:ID="AndConditionl"
constraint:first="#DoesSiteCollectClickStream"
constraint:second="#IsPurposeForTailoring"/>

constraint:subject="#PolicyVar"
constraint:predicate="&p3p;usage"
constraint:object="&p3p;Retention-no-retention" />

<!-- Is colleague -->

<constraint:SimpleConstraint rdf:ID="IsColleague"
constraint:subject="#UserVar"
constraint:predicate="&foaf ;knows"
constraint:object="#Someone" />

<!-- Is website trusted -->
<constraint:SimpleConstraint rdf:ID="IsWebsiteTrusted"
constraint:subject="#Someone"
constraint:predicate="&user;trusts"
constraint:object="#WebsiteVar" />

4. RELATED WORK

Role Based Access Control (RBAC) [9, 13, 33, 38] is one of
the better known methods for access control, in which ‘rela-
tions are established between users - roles, and permissions -
roles’. It is difficult, however, to apply the RBAC model for
systems in which it is not possible to assign roles to all users in
advance. In addition, it is typically not possible to change ac-
cess rights of a particular entity without modifying the roles.
More sophisticated RBAC models include delegation between
roles [2] and allow role assignments to users who are outside
the system [14, 15]. The denomination for role-based delega-
tion is the entire set of access rights associated with any one
role that the delegator is in. In our work, however, the policy
dictates what subset of permissions a delegator is allowed to
delegate, to whom and under what conditions. Rei can actu-
ally be used to completely model RBAC. As of now, RBAC

<l-- find colleague and check if he/she trusts the website --> does not include an ontology language representation and is

<constraint:And rdf:ID="IsWebsiteTrustedByColleague"

not easily extensible to different kinds of domain knowledge.

RBAC associates entities with roles and roles with permis-
sions and so it does not take into account any other attributes
of the entities or the environment in general.

Though they are both elegant solutions, PolicyMaker [28,
29] and KeyNote [3] work best in certificate-based systems
and are not easily extensible. Delegation is controlled by a
delegation depth and simple conditions on delegation. On the
other hand, in Rei the permission to delegate is a separate
permission and includes constraints not only on who can del-
egate, but whom they can delegate to. As Rei is capable of
reasoning over domain knowledge in ontology languages, it is
possible to develop constraints over attributes of requesters,
actions, and the environment at different levels of abstrac-
tion. This is not possible in either PolicyMaker or KeyNote
as they use a programming language for describing assertions.
Rei is also capable of modeling both authorization and obli-
gation policies, whereas KeyNote and PolicyMaker can only
be used for authorization.

Extensible Access Control Markup Language (XACML)
[10] is a language in XML for expressing access control poli-
cies. This work is similar to ours in that it allows control over
actions and supports resolution of conflicts. On the other
hand, it does not utilize, and thus does not benefit from,
the interoperability and extensibility provided by semantic
web ontology languages like RDF and OWL. It also does not
model speech acts. Furthermore, its handling of conflict res-
olution across policies is more limited in expressiveness than
Rei’s.

There have been some efforts in adapting data exchange
formats and protocols related to security in distributed sys-
tems to the Semantic Web like XML digital signatures [§],
XML encryption [7], and X.509 Public Key Certificates [17].
These systems, based on XML [37], tend to be for authenti-
cation and accountability rather than authorization that our
framework addresses. Though XML is probably the best ex-
change format for the Web, it only provides limited interop-
erability and scalability. Nevertheless, as these XML-based
frameworks address issues different from our system, it is pos-
sible to use them in parallel with ours.

Lately there has been a significant body of standardization
efforts for XML-based security, such as WS-security, -trust,
and -policy at W3C, or SAML of the OASIS Security Ser-
vices Technical Committee, and the Security Specifications
of the Liberty Alliance Project. These standards support
low-level security or policy markups that concern formats of
credentials or supported character sets for encoding. They
do not address semantic user- or application-specific trust
tokens and their relations nor do they allow for expressive
policies. These standards have been developed to support
controlled B2B applications where both client and service can
be mutually authenticated and recognized. These standards
are not extensible to more dynamic environments in which
simple authentication is not enough, but authentication on
user-defined attributes needs to be considered. For this, a
semantic approach like ours is a possible solution. Our work
is not intended to replace the existing standardization efforts,
rather we propose it as a semantic layer on top of the syn-
tactically oriented standardization efforts. Future work will
investigate algorithms that map our high-level descriptions
into selected XML-based techniques.

KAoS is a policy language based in OWL [35]. It is simi-
lar to Rei and can be used to develop positive and negative
authorization and obligation policies over actions. There are

both advantages and disadvantages of the KAoS approach.
KAoS policies are OWL descriptions of actions that are per-
mitted (or not) or obligated (or not). This limits the expres-
sive power, so that there are policies that Rei can describe
that KAoS cannot. Using OWL, however, allows the clas-
sification of policy statements, enabling conflicts to be dis-
covered from the rules themselves. On the other hand, the
Rei engine can only discover conflicts (and resolve them using
meta-policies) with respect to a particular situation and can-
not pre-determine them statically. Another advantage that
KAoS has is that if policy descriptions stay within OWL-Lite
or OWL-DL, then the computation is decidable and has well
understood complexity results. Also, KAoS includes mecha-
nisms to ease enforcement, whereas the Rei system assumes
that enforcement is handled separately from the policy en-
gine. In terms of speech acts, however, KAoS only models
simple delegations, whereas, Rei includes an integrated ap-
proach to speech acts for dynamic policy management, which
is useful in autonomous distributed systems. Rei also pro-
vides specifications and tools for policy analysis and consis-
tency checking that KAoS does not.

5. DISCUSSION

In this section, we discuss various aspects of Rei includ-
ing why it uses a web ontology language, its usability, its
computational complexity, and its relationship to OWL and
SWRL.

5.1 Why Semantics ?

The web spans several domains, each of which use heteroge-
nous domain-specific information. The policy management
system used for governing the behavior of entities across the
web should be easily extensible to be usable for any domain-
specific information. As Rei uses OWL, it allows policies to
be defined over different domain knowledge described in sev-
eral ontology languages, without any change. The presence
of semi-autonomous entities such as agents and web services,
require that the policy management not only be understand-
able by humans, but should also be more automated, allowing
these semi-autonomous entities to understand and use them
appropriately. Rei is based on OWL that allows for greater
machine understandability.

5.2 Usability

Rei has been used in several prototype research applica-
tions, both at UMBC and other research organizations, and
has proved to be useful in a wide range of domains includ-
ing semantic web services, pervasive computing, supply chain
management systems, and multi-agent systems. The Rei pol-
icy engine is usually used as a querying engine and is encap-
sulated within another component that provides appropriate
integration into the domain. For example, in the semantic
web services domain, the Rei policy engine is integrated into
the Matchmaker, which provides brokering between clients
and web services. The domain policies and ontologies are
loaded into the Rei engine via the encapsulating component
at appropriate times. For example, during service discovery,
the Matchmaker loads the policies associated with the ser-
vice and client into the Rei engine and asks whether they are
compatible. Depending on the application, the component
queries the Rei engine about the permissions and obligations
of entities in the system and uses these answers to manage
their behavior.

As Rei does not restrict the domain knowledge, the com-
munication protocols, or the manner in which the Rei engine
can be used, it can be used in different domains to provide
policy management for a wide range of applications.

5.3 Formal Semantics and Computational Com-

plexity

Due to the complexity of the language and our focus on im-
plementation and deploying applications, we have only just
started looking at formal semantics and computational com-
plexity for Rei. We intend to develop semantics largely in
terms of courteous logic programs [11, 12]. In this section,
we informally discuss some aspects of formal semantics and
computational complexity.

Rei rules permit negation in the body and the form of nega-
tion is negation-as-failure (NAF). For the semantics of Reli,
we adopt the well founded semantics (WFS) [36] for NAF as
WES always has a unique set of sanctioned conclusions, which
is tractably computable (worst-case quadratic complexity) for
the propositional case. We also make the assumption that
the appearance of NAF in the rules satisfies the expressive
restriction of dynamic stratifiability. Another aspect is the
semantics of Rei’s interaction with OWL reasoning over the
domain ontologies. Rei treats OWL (i.e., Description Logic)
inferencing essentially as an oracle and treats inferences from
OWL axioms as virtual fact base. The body of a Rei rule in
general is a boolean combination of triples. This is similar
to the Lloyd-Topor extension of declarative logic programs,
which is known to be tractably reducible to the ordinary case
of rules (a.k.a. normal or ordinary logic programs) in which
the body is a conjunction of atoms and/or negated atom [18].
Rei rules themselves do not result in new conclusions being
drawn about the domain ontologies’ predicates (classes and
properties) as only a special set of predicates can appear in
the head. Rei rules, like OWL, satisfy the Datalog (a.k.a.
function-free) expressive restriction, i.e., there are no logical
functions of more than zero arity. When ordinary or courte-
ous logic program rules obey the Datalog restriction, together
with the VB (number of distinct logical variables per rule is
bounded) restriction, then the set of conclusions can be com-
puted tractably; their qualitative computational complexity
is similar to that of relational algebra and thus relational
databases. We conjecture that Rei rules inferencing, modulo
the OWL oracle/inferences, has similarly tractable compu-
tational complexity, perhaps under some additional relevant
expressive restrictions.

5.4 Relationship between Rei and OWL

Though OWL-Full is not able to represent role-value maps
such as ’uncle of” and ’same group as’, it is able to describe
a subset of Rei policies whose constraints involve checking
the presence of common properties. A policy that states that
all graduate students who are married are permitted to ap-
ply for on-campus housing can be represented in OWL-Full.
This is possible by adding restrictions to properties of classes
and by using classes as individuals and properties. For ex-
ample, the above permission is described using an OWL-Full
policy instance that has its actor property restricted to the
class of "Married GraduateStudent’ and its action property re-
stricted to the class of ’ApplyForOnCampusHousing’ actions.
"MarriedGraduateStudent’ is defined by restricting the 'mar-
ital status’ property of graduate students to 'married’. In
Rei, this permission would be defined by a boolean combina-

tion of constraints that would check whether the actor was
of type 'GraduateStudent’, if the actor had a property 'mar-
ital status’ that was set to 'married’, and if the action was of
type ’ApplyForOnCampusHousing’. However, if contextual
information is required, then a new property must be added.
For example, to restrict the previous permission to during
school hours, a new property called context is added to the
action class and a restriction over context is defined. Using
OWL-Full in this way increases the complexity of the policy
and computation becomes undecidable. Also, there are very
few reasoners are able to correctly interpret all the test cases
associated with OWL-Full.

Rei uses OWL-Lite to describe its essential classes, prop-
erties, and relationships. The Rei policy engine reasons over
these classes and properties to support the description of pos-
itive and negative rule-based policies. OWL-Lite is decidable
and has lower formal complexity than OWL-DL and OWL-
Full. The OWL-Lite constructs used in Rei are supported
by most existing reasoners. Though we use variables to de-
scribe constraints, the reasoning required is provided by XSB
and the computability is tractable. We believe it is easier
and more intuitive to develop constraints as defined by Rei
(as boolean combinations of Subject, Predicate and Object)
than to create OWL-Full instances using restricted classes.
Rei also supports the definition of relations between classes
that give it greater expressivity than OWL.

SWRL is a a rule language based on OWL-Lite, OWL-
DL, and RuleML [16]. SWRL includes a high-level abstract
syntax for Horn-like rules in both the OWL DL and OWL
Lite sublanguages of OWL. Rei uses OWL-Lite to describe
its classes and properties and also allows variables to be
used for developing constraints that are not possible in RDF,
DAML+OIL or OIL. This adhoc extension of OWL is able to
define constraints associated with instances, whereas SWRL
is a language for defining rules. We are considering redo-
ing Rei in SWRL in a few months when SWRL and some
supporting tools are more mature. This will probably be an
improvement and will strengthen Rei because we will not be
introducing our own way of encoding rules.

6. SUMMARY

Though the web is already a vast network of shareable in-
formation, in order to realize its full potential, regulating the
behavior of web entities is essential. We propose that declar-
ative policies be used to describe the behavior of web entities
and web protocols be modified for policy exchange, nego-
tiation, compliance checking, and for checking whether the
specified policies were fulfilled. Rei attempts to meet some of
the requirements imposed by the characteristics of the web
by (i) including a machine-understandable specification lan-
guage, a policy engine analysis tools, (ii) allowing policies
to be described in terms of attributes of users, actions, and
other context and supporting meta-policies for conflict reso-
lution, (iii) providing greater extensibility as policies can be
described over domain knowledge at different levels of ab-
stractions, and (iv) supporting the dynamic policy modifi-
cation via speech acts. While Rei policies can be used to
describe different kinds of behavior of web entities, the pol-
icy engine can be used for policy compliance, fulfillment, and
enforcement. We’ve developed two research applications that
explore the utility of Rei for policy management for the web,
namely web privacy and security and privacy for web services.
Though, there still is work to be done in order to provide a

complete policy management framework for the web, we be-
lieve Rei has proved to be a good starting point.

7.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. Benjamin Grosof for
his help on the formal semantics and computational complex-
ity of Rei.

8.

(1]

2]

3]

(4]

(5]

[6]

[7]

8

(9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

REFERENCES

R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. An
XPath-based preference language for P3P. In Proceedings of
the Twelfth International Conference on World Wide Web,
pages 629-639. ACM Press, 2003.

E. Barka and R. Sandhu. Framework for Role-Based
Delegation Models. In Annual Computer Security
Applications Conference, 2000.

M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis.
The KeyNote Trust Management System Version. Internet
RFC 2704, September 1999., 1999.

M. Cornwell, J. Just, L. Kagal, and T. Finin. A Policy
Based Collaboration Infrastructure for P2P Networking. In
Twelfth International Conference on Telecommunication
Systems, Modeling and Analysis, July 2004, 2004.

L. Cranor, M. Langheinrich, M. Marchiori,

M. Presler-Marshall, and J. Reagle. Platform for Privacy
Preferences (P3P). http://www.w3.org/P3P, 2002.

G. Denker, L. Kagal, T. Finin, M. Paolucci, and K. Sycara.
Security for DAML Web Services: Annotation and
Matchmaking. In Second Int. Semantic Web Conference
(ISWC2003), Sanibel Island FL, October 2003, 2003.

D. Eastlake and J. Reagle. XML Encryption Syntax and
Processing. W3C Candidate Recommendation, August 2002.
D. Eastlake, J. Reagle, and D. Solo. XML-Signature Syntax
and Processing. RFC 3275, March 2002.

D. Ferraiolo and R. Kuhn. Role-based access controls. In
15th NIST-NCSC National Computer Security Conference,
pages 554-563, 1992.

S. Godik and T. Moses. OASIS eXtensible Access Control
Markup Language (XACML). OASIS Committee
Secification cs-xacml-specification-1.0, November 2002.

B. Grosof. Courteous Logic Programs: Prioritized Conflict
Handling for Rules. IBM Research Report RC20836, May
1997, Revised December 1997.

B. N. Grosof. A Courteous Compiler From Generalized
Courteous Logic Programs To Ordinary Logic Programs.
Report included as part of documentation in the IBM
CommonRules 1.0 alpha prototype Web release of July 30,
1999 on AlphaWorks, July 20 1999.

L. Guiri. A New Model for Role-based Access Control. In
11th Annual Computer Security Application Conference,
pages 249-255, New Orleans, LA, December 11-15, 1995.
A. Herzberg, Y. Mass, J.Mihaeli, D.Naor, and Y. Ravid.
Access Control meets Public Key Infrastructure : Or
Assigning roles to strangers. In 2000 IEEE Symposium on
Security and Privacy, Oakland, May 2000, 2000.

T. Hildmann and J. Barholdt. Managing trust between
collaborating companies using outsourced role based access
control. In Fourth ACM workshop on Role-based access
control, Fairfax, Virginia, United States, 1999.

I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet,

B. Grosof, and M. Dean. SWRL: Semantic Web Rule
Language Combining OWL and RuleML. Version 0.6 of 30
April 2004. http://www.daml.org/rules/proposal/, 2004.
R. Housley, W. Polk, W. Ford, and D. Solo. Internet X.509
Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile. RFC 3280, April 2002.

J. W. Lloyd. Foundations of logic programming; (2nd
extended ed.). Springer-Verlag New York, Inc., 1987.

L. Kagal. A Policy-Based Approach to Governing
Autonomous Behavior in Distributed Environments.

20]

21]

(22]

23]

24]

[25]

[26]

27]

(28]

29]

(30]

(31]

(32]

(33]

34]

35]

(36]

37]

(38]

(39]

Dissertation, September 2004.

L. Kagal and T. Finin. Modeling Conversation Policies using
Permissions and Obligations. In AAMAS 2004 Workshop on
Agent Communication (AC2004), July 2004.

L. Kagal, T. Finin, and A. Joshi. Trust Based Security for
Pervasive Computing Enviroments. In IEEE
Communications, December 2001, 2001.

L. Kagal, T. Finin, and A. Joshi. A Policy Based Approach
to Security for the Semantic Web. In Second Int. Semantic
Web Conference (ISWC2003), Sanibel Island FL, October
2003, 2003.

L. Kagal, T. Finin, and Y. Peng. A Delegation Based Model
for Distributed Trust. In Workshop on Autonomy,
Delegation, and Control: Interacting with Autonomous
Agents, International Joint Conferences on Artificial
Intelligence, 2001.

L. Kagal, T. Finin, and Y. Peng. A Framework for
Distributed Trust Management. In IJCAI-01 Workshop on
Autonomy, Delegation and Control, 2001.

L. Kagal, M. Paolucci, N. Srinivasan, G. Denker, T. Finin,
and K. Sycara. Authorization and Privacy in Semantic Web
Services. In IEEE Intelligent Systems (Special Issue on
Semantic Web Services), 2004.

P. Kolari, L. Kagal, A. Joshi, and T. Finin. Enhacing P3P
Framework with Policies and Trust. UMBC Technical
Report and under review, 2004.

R. Masuoka, B. Parsia, and Y. Labrou. Task Computing -
the Semantic Web meets Pervasive Computing. In 2nd
International Semantic Web Conference (ISWC2003), 2003.
M.Blaze, J.Feigenbaum, and J.Lacy. Decentralized Trust
Management. Proceedings of IEEE Conference on Privacy
and Security, 1996.

M.Blaze, J.Feigenbaum, and M.Stauss. Compliance
Checking in the Policy Maker Trust Management System. In
Proceedings of Financial Crypto’98, Lecture Notes in
Computer Sciences vol.1465, Springer Berlin, 1998, 1998.
B. McBride, R. Wenning, and L. Cranor. An RDF Schema
for P3P. W3C Note 25 January 2002.

M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara.
Semantic Matching of Web Services Capabilities. In
ISWC2002, 2002.

A. Patwardhan, V. Korolev, L. Kagal, and A. Joshi.
Enforcing policies in Pervasive Environments. In
International Conference on Mobile and Ubiquitous
Systems: Networking and Services, 2004.

R. S. Sandhu. Role-based access control. In M. Zerkowitz,
editor, Advances in Computers, volume 48. Academic Press,
1998.

J. Undercoffer, F. Perich, A. Cedilnik, L. Kagal, A. Joshi,
and T. Finin. A Secure Infrastructure for Service Discovery
and Management in Pervasive Computing. The Journal of
Special Issues on Mobility of Systems, Users, Data and
Computing, 2003.

A. Uszok, J. Bradshaw, P. Hayes, R. Jeffers, M. Johnson,

S. Kulkarni, M. Breedy, J. Lott, and L. Bunch. DAML
reality check: A case study of KAoS domain and policy
services. In International Semantic Web Conference (ISWC
08). Sanibel Island, Florida, 2003.

A. van Gelder, K. Ross, and J. S. Schlipf. The Well-Founded
Semantics for General Logic Programs. Journal of the ACM,
38(3):620-650, 1991.

W3C. Extensible Markup Language. W3C Recommendation,
http://www.w3c.org/XML/.

N. Yialelis, E. Lupu, and M. Sloman. Role-based Security
for Distributed Object Systems. In Fifth IEEE Workshops
on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WET ICE °96) (1996), pp. 80-85, 1996.

Y. Zou, H. Chan, and T. Finin. F-OWL: an Inference Engine
for Semantic Web. In Third NASA-Goddard/IEEE
Workshop on Formal Approaches to Agent-Based Systems
(FAABS III), 26-28 April 2004, Greenbelt MD, 2004.

