Enhancing Knowledge Graph Consistency Through Open Large Language Models: A Case Study

Ankur Padia, Francis Ferraro and Tim Finin University of Maryland, Baltimore County pankur1@umbc.edu

Textual Inconsistency in Knowledge Graph

- Information Extraction (IE) system convert text into a knowledge graph and associate provenance sentences as evidence.
- Information Extraction System are not perfect and makes mistake
- One of the error type is textual inconsistency which we refer to as Knowledge Graph Consistency

Extracted Fact:

Mauritania; org:alternate names; CPPCC

Provenance Text:

China thanked Mauritania for supporting China on Taiwan, Tibet, Xinjiang, human rights and other issues concerning the country's core interests, Yu said.

Yu said the **CPPCC** would like to work with the ESC of Mauritania to carry out exchanges and promote bilateral relations.

Table 1: An example of extracted fact with provenance text

Research Questions

- Q1: Modeling: How can a Large Language Model help identify inconsistencies in a knowledge graph?
- **Q2:** Fine-tuning: Do generic models outperform fine-tuned open models?
- Q3: Size: Does the size of the language model matter?
- **Q4: Domain**: Do language models perform well across different types of relations?
- **Q5:** Entities: How does the number of entities affect language models?
- **Q6:** Number of examples: How does the number of training examples affect performance?

Convert Knowledge Graph Extraction as a Multi-choice Question Answer Prompt

Extracted Fact:

Mauritania; org:alternate names; CPPCC

Provenance Text:

China thanked Mauritania for supporting China on Taiwan, Tibet, Xinjiang, human rights and other issues concerning the country's core interests, Yu said.

Yu said the **CPPCC** would like to work with the ESC of Mauritania to carry out exchanges and promote bilateral relations.

Context: China thanked **Mauritania** for supporting China on Taiwan, Tibet, Xinjiang, human rights and other issues concerning the country's core interests, Yu said.

Yu said that the **CPPCC** would like to work with the ESC of Mauritania to carry out exchanges and promote bilateral relations.

Question: Which of the following answers is most applicable for "Mauritania; org: alternate names; CPPCC" (a) True, or (b) False?

Expected Response from LLM: (b), "b", False

Approaches

Zero shot

 Convert each knowledge graph extracted fact with provenance as input with <u>no demonstration example</u> and collect response from LLM

Few-shot In Context Learning (ICL)

 Convert each knowledge graph extracted fact with provenance as input along with <u>two demonstration example</u> as input and collect response form LLM

Few-shot Fine-Tuning

 Convert each knowledge graph extracted fact with provenance as input with no demonstration example but <u>fine-tune the model parameters</u>

Datasets

• **Two datasets:** TAC 2015, TAC 2017

TAC is the annual <u>Text Analysis Conference</u> held by NIST since 2008

• **Five example per relation** i.e., 9% of training data to fine-tune LLM models

	Train	Validation	Test
TAC-2015	626	6859	6856
TAC-2017	552	5734	5729

Performance

Learning Approach	Model	TAC 2017			TAC 2015		
Baseline (Padia, Ferraro, and Finin 2022)		48.1	98.0	63.2	50.8	65.2	57.1
Zero Shot	GPT 3.5	41.6	46.7	43.9	40.4	41.6	41.0
	Flan-T5 (large)	50.9	37.4	43.1	63.0	29.0	39.7
In Context Learning	Flan-T5 (large)	39.3	64.8 48.9		41.2	44.9	43.0
Fine tuned Decoder Models	Galactica	34.8	40.2	37.3	29.1	64.0	40.0
	OPT	37.3	45.7	41.1	31.7	61.4	41.8
	Vicuna	35.9	95.1	52.2	27.0	83.3	40.8
Fine Tuned Encoder-Decoder Models	BART	34.3	65.1	44.9	29.9	79.9	43.6
	Flan-T5 (large)	65.3	66.5	65.9	49.5	77.5	60.5

Generic Models do not Outperform Fine-tuned Models to Identify Inconsistencies

Learning Approach	Model	TAC 2017		TAC 2015		5		
Baseline (Padia, Ferraro, and Finin 2022)		48.1	98.0	63.2	50.8	65.2	57.1	
Zero Shot	GPT 3.5	41.6	46.7	43.9	40.4	41.6	41.0	Generic model
	Flan-T5 (large)	50.9	37.4	43.1	63.0	29.0	39.7	
In Context Learning	Flan-T5 (large)	39.3	64.8	48.9	41.2	44.9	43.0	Improvement due to demo examples
	Galactica	34.8	40.2	37.3	29.1	64.0	40.0	μ
Fine tuned Decoder Models	OPT	37.3	45.7	41.1	31.7	61.4	41.8	
	Vicuna	35.9	95.1	52.2	27.0	83.3	40.8	
	BART	34.3	65.1	44.9	29.9	79.9	43.6	Improvement due
Fine Tuned Encoder-Decoder Models	Flan-T5 (large)	65.3	66.5	65.9	49.5	77.5	60.5	to fine-tuning on training dataset

Increasing Model Size does not Increase KG Consistency

- Performance changes when changing the size of the model.
- Increasing model size does not increase
 Knowledge Graph Consistency
- Lower performance can be due to
 - Quantization (8 bits)
 - Type of prompt used for fine-tuning the model
 - Number of training examples

Large Model Variants Perform Differently Based on the Relation Domain

All Models are Sensitive to Number of Entities

LLMs Initially Learn Faster with More Data points, then Slower

Conclusion

- Explored limitations and capabilities of LLMs (BART, Flan-T5, Vicuna, OPT, Galactica, GPT 3.5) on Knowledge Graph consistency task
- Findings:
 - **LLM architecture**: Encoder-Decoder based model Flan-T5 performs better
 - Size of LLM: <1 billion parameters models are sufficient for the task
 - Named entities: More named entities confuses Large Language Models
 - Training Examples: Five to ten training examples are enough to identify knowledge graph inconsistencies
 - o In context learning: Adding demonstration examples improves performance
 - **Fine-tuning**: Fine-tuning the model with few example performs better than incontext learning and zero-shot approach.