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Abstract—In the realm of IoT/CPS systems connected over
mobile networks, traditional intrusion detection methods analyze
network traffic across multiple devices using anomaly detection
techniques to flag potential security threats. However, these
methods face significant privacy challenges, particularly with
deep packet inspection and network communication analysis.
This type of monitoring is highly intrusive, as it involves ex-
amining the content of data packets, which can include personal
and sensitive information. Such data scrutiny is often governed
by stringent laws and regulations, especially in environments
like smart homes where data privacy is paramount. Synthetic
data offers a promising solution by mimicking real network
behavior without revealing sensitive details. Generative models
such as Generative Adversarial Networks (GANs) can produce
synthetic data, but they often struggle to generate realistic data
in specialized domains like network activity. This limitation
stems from insufficient training data, which impedes the model’s
ability to grasp the domain’s rules and constraints adequately.
Moreover, the scarcity of training data exacerbates the problem
of class imbalance in intrusion detection methods. To address
these challenges, we propose a Privacy-Driven framework that
utilizes a knowledge-infused Generative Adversarial Network
for generating synthetic network activity data (KiNETGAN).
This approach enhances the resilience of distributed intrusion
detection while addressing privacy concerns. Our Knowledge
Guided GAN produces realistic representations of network activ-
ity, validated through rigorous experimentation. We demonstrate
that KiNETGAN maintains minimal accuracy loss in downstream
tasks, effectively balancing data privacy and utility.

Index Terms—Synthetic data, Mobile and IoT system, Knowl-
edge Guided Learning, GAN

I. INTRODUCTION

Network intrusion detection systems (NIDS) are critical
for protecting modern enterprise systems, particularly in IoT-
based and mobile environments where attacks can lead to
both information loss and physical damage. Distributed NIDS
enable real-time monitoring across multiple devices and seg-
ments, promptly detecting anomalies and potential threats to
safeguard sensitive data. Integrating Machine Learning (ML)
models in NIDS enhances their effectiveness in preventing
cyberattacks [1]–[7].

However, sharing data across distributed systems raises pri-
vacy concerns, especially with intrusive detection methods like
deep packet inspection. Federated learning offers a solution
by allowing collaborative training without sharing raw data,
but it’s challenging to implement across diverse devices with
varying architectures and learning infrastructure.

Deep learning-based synthetic data generation emerges as
a promising solution. By creating data that mirrors authentic
network behavior while protecting sensitive details, it enables
secure data sharing and analysis. Among these methods,
generative adversarial networks (GANs) stand out for their
ability to capture and replicate the underlying distribution of
a training dataset.

However, standard GANs face limitations in generating
realistic system data, particularly for IoT and mobile networks,
due to a lack of explicit domain knowledge. For instance, they
may misconfigure attributes like port numbers associated with
specific attacks, leading to misleading synthetic data. More-
over, class imbalance in training data can bias models towards
prevalent classes, hindering accurate intrusion detection.

To address these challenges, leveraging domain knowledge
to guide generative models is crucial. By incorporating specific
characteristics of the data into the training process, such as
rules governing network traffic, generative models can produce
more accurate synthetic data. This approach enhances the effi-
cacy of generative models in specialized domains like network
security by ensuring that synthetic data closely resembles real-
world scenarios.

This paper introduces a novel Privacy-Driven knowledge-
infused Generative Adversarial Network (KiNETGAN) model
designed to tackle the obstacles related to synthetic data gener-
ation for privacy preservation in distributed network intrusion
detection systems. Our innovative approach leverages domain
knowledge and employs enhanced GAN training to create
realistic representations of network activities on individual
devices. The KiNETGAN model addresses the limitations
of standard generative models, ensuring a comprehensive
understanding of the domain’s rules and restrictions. We
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demonstrate the effectiveness of our approach by synthesizing
network activity data, validating the synthetic dataset against
network-specific constraints, and confirming its suitability
through likelihood fitness and high efficacy in downstream
intrusion detection tasks.

II. BACKGROUND

Generative Adversarial Networks (GANs) are powerful
models widely used for generating synthetic data that closely
resembles real data [8]–[11]. They consist of a generative
model (G) and a discriminative model (D) trained together in
a min-max game framework. GANs have demonstrated high
accuracy in generating synthetic data, particularly for images
and text. However, teaching GANs to learn from Network
Activity Data presents challenges due to its tabular nature,
combining discrete and continuous values, and exhibiting
sparsity and imbalanced distributions.

Xu et al. proposed a GAN model addressing challenges
with tabular data by introducing mode-specific normalization,
a conditional generator, and training by sampling [12]. Kotal et
al. extended this model for privacy-preserving data generation,
enforcing t-closeness in the synthetic data distribution to
preserve privacy [13].

Differential Privacy (DP) has been applied to GANs to
enhance privacy [14]. Various models combine DP with GANs
to generate differentially private synthetic data, introducing
noise into the discriminator during training to ensure privacy
[15], [16].

However, Network traffic data poses challenges for GAN
training due to sparsity and limited size. GANs trained solely
on observed network activity lack understanding of network
attributes and struggle to adhere to strict rules without explicit
constraints. Knowledge guidance becomes essential to convey
constraints and enhance the data generation process.

Knowledge Graphs (KGs) offer a versatile data model
for knowledge representation and reasoning [17]. They store
contextual information crucial for learning in distributed
systems and can impose constraints on entities. Integrating
KGs enriches the data generation process, improving con-
textual awareness in ML systems. Its integration has been
demonstrated to significantly improve contextual awareness in
machine learning (ML) systems [4], [18]–[20]. In a related
context, Hui et al. introduced a knowledge-enhanced GAN
for generating IoT traffic data [17]. Specifically, for privacy
preservation, there is evidence that Knowledge Infusion can
help generative models gain the added context needed for zero-
shot learning and learning with limited parameters [21]–[24].

In this paper, knowledge about network traffic is injected
into GAN training by adding the Knowledge base as an
independent discriminator. This approach enhances the GAN’s
understanding of network attributes and adherence to protocol
rules, improving the accuracy of synthetic data generation in
the observed system.

III. PROPOSED FRAMEWORK

Network traffic data presents challenges for synthetic data
generation due to sparsity, class imbalance, and strict domain

Fig. 1: The KiNETGAN model of Knowledge Infused Syn-
thetic Data Generation

rules. These characteristics hinder accurate model construction
solely based on observed data, leading to unrealistic synthetic
data. Domain knowledge integration into generative models
reduces the need for relearning rules, addressing class and
domain restrictions. We propose a knowledge-guided synthetic
data generation method, KiNETGAN, leveraging a domain
Knowledge Graph (KG) to train Generative Adversarial Net-
works (GANs) and conditional GANs. This approach tackles
class imbalance and attribute cross-correlation issues. The
framework’s architecture is detailed in Figure 1.

A. Conditional Generator with Data Balancing

In GANs, training on randomly selected data can lead to
underrepresentation of minority categories, affecting generator
accuracy. Conditional generation is vital for Mobile Network
Activity data, enabling the GAN to learn attribute relationships
and address data imbalance. Efficient data resampling ensures
balanced category representation during training, maintaining
original data distribution fidelity. We propose Conditional
GANs and sampling-based training to achieve these goals,
preserving model fidelity and accurately reflecting the original
data distribution during testing.

1) Conditional vector: To introduce the Conditional At-
tributes as the condition to the Conditional generator, we
introduce the condition vector, C. It is a one hot vector repre-
sentation of the set of discerete Attributes. Let (c1, c2, ..., cn)
be the list of conditional attributes and is the output from GC

that is the condition for our current generation.
Let us consider the attribute c1. Let the range for c1 be

{c1,1, c1,2, ..., c1,n} The chosen value for c1 is ĉ1. The one
hot vector representation (C1) of c1 is defined as follows:

C1,i =

{
1, if c1,i == ĉ1

0, otherwise
(1)



The conditional vector, C is a concatenation of all Ci’s:

C = C1 ⊕ C2 ⊕ ...⊕ Cn (2)

2) Conditional Generator: The input to the Generator is a
random noise (Z) and the conditional vector C. The objective
of the Conditional Generator is to generate realistic synthetic
data while adhering to the attribute values specified in C.
To ensure that this constrained is met, in addition to the
discriminator score, we need to penalise the generator for
disregarding the attribute values specified in C. This is done by
adding a cross entropy with the condition vector, C to the loss
function. Let the generator output for the conditional attribute
set be ĉ = (ĉ1, ĉ2, ..., ĉn), the one hot vector representation
of which is Ĉ. Then we add the following term to the loss
function of Conditional Generator: BCE(C , Ĉ) averaged over
all the instances of the batch. As the training advances, the
generator learns to make an exact copy of C into Ĉ.

3) Conditioning on Imbalanced Values: As discussed, mo-
bile network activity data is often sparse, and attribute values
are heavily imbalanced. To ensure that minority attribute
values are sufficiently represented during training, we need
to compel the generator to consider these minority values. To
achieve this, we randomly sample an attribute value from a
uniform distribution within the range of the attribute and add
it to our condition vector, C. The generator is thus constrained
to produce synthetic data where the minority attribute is
present. This ensures that sparse attribute values are adequately
represented during the training of the generator, enabling it to
produce data points within these values.

B. GAN Training with Knowledge-Guided Discriminator

The Knowledge-Guided Discriminator aims to identify ex-
ternal rules restricting attribute values using a Knowledge
Graph. It focuses on attributes with relative value restrictions
to learn valid and invalid attribute combinations. For example,
in the CVE-1999-0003 attack, a valid port address is between
32771 and 34000. Domain knowledge helps rule out invalid
combinations, such as ports outside this range. The key
difference is that some generator outputs may not just be fake
but invalid. Penalizing these instances ensures the generator
produces realistic and valid instances. This objective is met
by dividing the discriminator into two parts.

1) Knowledge-Guided Discriminator (DKG): The objec-
tive for the Knowledge-Guided Discriminator is to dis-
criminate between correct and incorrect instances of
data according to domain rules. In the case of net-
work activity data, this includes examples of invalid
combinations of IP addresses and port numbers for an
event. A domain-specific Knowledge Graph (KG) can
help rule out invalid combinations of attributes from
explicit knowledge. The KG is queried with the output
(ĉ1, ĉ2, ..., ĉn) of GC to determine whether the given set
of values is valid. Let us represent the KG query as Q.
The discriminator’s input consists of all valid sets of

Fig. 2: Ontology for Network Activity Capture

attributes for the conditional vector C queried from the
knowledge graph and the output of the generator, GC .

2) Regular Discriminator: The objective here is that of a
regular discriminator in a GAN model. It is a standard
discriminator tasked with distinguishing real data points
from those generated by the generator, GC . This frame-
work follows the design of a standard GAN. The input
to the discriminator DM includes the output of GC and
real data points from the training set.

The final output of the discriminator (DC) combines the
output of both DKG and DM :

DC = DKG +DM (3)

Loss function: The generator loss is updated on the output
of both DKG and DM . Thus following from equation 3, the
loss for GC is defined as:

LGC
= Ez∼pz(z)[log(1−DC(GC(z)))] (4)

IV. EXPERIMENTAL FRAMEWORK

A. Knowledge Graph Creation
The Unified Cybersecurity Ontology (UCO) is a com-

prehensive framework designed to enhance cyber situational
awareness by integrating diverse data and knowledge schemas
from various cybersecurity systems and standards. UCO en-
compasses entities, events, activities, and relationships crucial
for cybersecurity analysis. Integrating UCO into machine
learning models improves contextual understanding, enhanc-
ing their effectiveness in cybersecurity scenarios. This study
extends UCO to define concepts in network activity data,
introducing entities like ”networkEvent” and ”domainURL”.
Each network event is defined by properties such as protocol,
source/destination IP addresses, and port numbers. Leveraging
this ontology, a Network Traffic Knowledge Graph (Net-
workKG) is constructed, guiding data generation. A Knowl-
edge Graph reasoner facilitates queries for valid IP, port, and
protocol combinations, assisting the Generative Adversarial
Network (GAN) synthesis process. This approach ensures that
synthetic data generated aligns with real-world network event
attributes, enhancing the quality and relevance of generated
data for cybersecurity applications. Figure 2 demonstrates the
entities in this ontology.



B. Data Collection

To test our method, we require datasets of real network
activity from a system of devices. For this purpose, we utilize
two datasets: a network activity dataset collected from a
system of IoT devices connected in our lab and the UNSW-
NB15 Dataset.

1) Lab Collected Data:: In our network setup, we’ve
integrated mobile and IoT devices such as a Blink camera,
a smart plug, and a motion sensor. Analyzing their commu-
nication patterns with Wireshark, we focus on events like
motion detection, lamp activation, and tag manager interac-
tions. Collected data includes Source/Destination IP, Ports,
and Protocols. Filtering by device IPs, we study their typical
communications and simulate attacks like Traffic flooding.
The dataset, comprising 14,520 records, is crucial for NIDS
training.

2) UNSW-NB15 Data:: The UNSW-NB15 dataset consists
of 2,540,044 network connection records. This comprehensive
dataset includes a wide range of network traffic data, featuring
49 attributes that encompass flow features, basic features, con-
tent features, time features, and additional generated features.
This size and diversity make it well-suited for training and
evaluating machine learning algorithms for intrusion detection
systems.

V. EXPERIMENTAL RESULTS

In this section, we will begin by describing and detailing the
various measures and tests we used to validate our model. The
main goal of network activity datasets is to support Network
Intrusion Detection (NIDS) efforts. Machine learning-based
NIDS classifiers require high fidelity data for training. As
previously mentioned, the bottleneck for security efforts lies in
the challenge of obtaining dependable training data. To fulfill
its purpose, synthetic data must serve as a viable substitute for
the original data in downstream tasks.

To demonstrate that the KiNETGAN framework fulfills
these objectives, we present the outcomes of three types of
tests:

• Fidelity Results to show that the synthetic data is statis-
tically close or similar to the original data.

• Utility Results to show that the synthetic data is useful
in training downstream ML-based NIDS models.

• Privacy Results to show that the synthetic data and
KiNETGAN model are resilient against privacy attacks.

We demonstrate that the KiNETGAN framework fulfills
these objectives by being distributionally similar to the original
dataset and having comparable accuracy in downstream tasks.
To validate our model, we compare it with synthetic data
generated using other Generative Deep Learning models for
tabular data generation: CTGAN [12], OCTGAN [25], PATE-
GAN [26], TABLEGAN [27], and TVAE [12]. We provide
experimental results for synthetic data generated from training
on our dataset of lab-collected network traffic data and the
UNSW-NB15 data.

Lab Data UNSW-NB15
EMD Distance EMD Distance

CTGAN 0.06 0.09 0.07 0.2
OCTGAN 1.61 0.95 1.32 1.61
PATEGAN 1.07 0.09 0.53 0.24
TABLEGAN 1.02 0.19 1.21 0.53
TVAE 0.06 0.04 0.13 0.23
KiNETGAN 0.06 0.03 0.07 0.03

TABLE I: Comparison of Distance between Synthetic and
Original Data

Fig. 3: Comparison of NIDS accuracy for Lab Collected Data

A. Statistical Distance

When assessing the quality of generated data, statistical
distance measures help quantify the dissimilarity between
the generated data distribution and the original (real) data
distribution. We use two distance metrics for our comparison.

• The Earth Mover’s Distance (EMD) or Wasserstein Dis-
tance which measures the minimum cost of turning one
distribution into another, where the cost is interpreted as
the amount of ”mass” that must be moved.

• We use a combination of L1 norm or Manhattan distance
to calculate the distance for categorical variables and
the L2 norm or Euclidean distance to calculate the
distance for continuous variables. Since our data is tabular
i.e. a mix of categorical and continuous variables, this
pragmatic approach is ideal to handle mixed-type data.

The results from our comparison are given in Table I. For
the Lab collected data, the KiNETGAN had the lowest EMD
distance at 0.06, similar to TVAE and CTGAN. KiNETGAN
had the lowest combined distance at 0.032. For UNSW-NB15
KiNETGAN and CTGAN had the lowest EMD distance at
0.007. and the KiNETGAN model has a combined distance
of 0.16.

B. Utility Results

Machine Learning (ML) is essential in network intrusion
detection, identifying anomalies indicating security threats.
Network activity datasets aid ML models by providing ex-
tensive training data. We evaluate synthetic data’s efficacy in



Fig. 4: Comparison of NIDS accuracy for UNSW-NB15

replacing original data by training ML classifiers on both.
KiNETGAN, our proposed synthetic data generation model,
demonstrates competitive accuracy. Figure 3 demonstrates
the accuracy for the baseline classifier with the classifiers
trained on synthetic data from generated models including the
KiNETGAN model on lab collected data. On lab collected
data, KiNETGAN achieves an average accuracy of 0.81,
surpassing other models like CTGAN and TableGAN. Figure
4 demonstrates the accuracy for the baseline classifier with
the classifiers trained on synthetic data from generated models
including the KiNETGAN model on UNSW-NB15 data. For
the UNSW-NB15 dataset, KiNETGAN achieves an average
accuracy of 0.78, outperforming competing models. These
results confirm KiNETGAN’s potential in generating synthetic
data for NIDS applications. Notably, KiNETGAN’s accuracy
surpasses other tabular data models like CTGAN and OCT-
GAN. This suggests that KiNETGAN can effectively replace
original data in downstream tasks, enhancing the robustness
of NIDS classifiers.

C. Privacy Results

Re-identification, Attribute Inference, and Membership In-
ference attacks are significant privacy threats targeting ma-
chine learning models. In our experiments, we observe the
effectiveness of KiNETGAN in mitigating these risks.

The Re-identification attack aims to link de-identified data
with additional knowledge to reveal sensitive attributes. In
Figure 5, we present the results for the accuracy with which the
attack model is able to uniquely identify data points assuming
it has prior knowledge about 30%, 60% and 90% of the
lab collected data. KiNETGAN outperforms other models,
achieving an attack accuracy of 0.62 and 0.88 with 60% and
90% overlap with the data respectively.

Attribute Inference attacks deduce sensitive attributes by
analyzing seemingly innocuous data points. Figure 6 shows
the results for the Attribute Inference attack on synthetic data
for the lab collected dataset. KiNETGAN exhibits resilience,
with an attack accuracy of 0.3.

Membership Inference attacks determine if a specific data
point was part of the model’s training dataset. Figure 7 shows

Fig. 5: Comparison of Re-identification Attack with 30%, 60%
and 90% overlap on original data

Fig. 6: Comparison of accuracy in Attribute Inference Attack

the results of membership inference attack in WB and FBB
setting against lab collected data. KiNETGAN demonstrates
resilience in both White-Box (0.54) and Fully Black Box (0.5)
settings, outperforming other models like CTGAN and Table-
GAN. These findings underscore KiNETGAN’s effectiveness
in preserving privacy and security in synthetic data generation.

VI. CONCLUSION

To foster collaboration and address privacy concerns, this
paper explores a novel knowledge-infused Generative Ad-
versarial Network model for network activity data (KiNET-
GAN). Leveraging domain knowledge and enhanced GAN
training, KiNETGAN overcomes challenges of domain re-
striction, class imbalance, and privacy preservation, creating
realistic representations of network activities. We demonstrate
the efficacy of KiNETGAN through synthetic dataset val-
idation and likelihood fitness in our experiments, showing
its superiority over other generative models in utility tasks.
In future work, we aim to further enhance KiNETGAN’s
capabilities and applicability in network intrusion detection.
This includes integrating reinforcement learning techniques
with KiNETGAN to enable adaptive learning based on real-
time threat intelligence, developing algorithms that allow the
model to continuously update its parameters in response to
new and emerging threats, and conducting extensive field trials
to test KiNETGAN’s deployment in various network infras-
tructures, focusing on scalability, latency, and real-time pro-



Fig. 7: Comparison of Membership Inference Attack in White
Box (WB) and FBB (Fully Black Box) setting

cessing capabilities. This will involve optimizing the model for
edge computing environments to ensure low-latency intrusion
detection. Additionally, we intend to explore the integration
of federated learning with KiNETGAN, enabling collaborative
model training across multiple organizations without the need
to share raw data, and developing secure aggregation protocols
and differential privacy mechanisms to protect individual data
contributions. Beyond network intrusion detection, we will
adapt KiNETGAN to other critical domains such as healthcare
and finance by incorporating domain-specific knowledge into
the GAN training process, customizing the model architecture
and training algorithms to handle the unique data characteris-
tics and requirements of each domain.
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