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Abstract
Entity linking is an essential step towards constructing knowledge graphs that facilitate advanced question answering over
scientific documents—including the retrieval of relevant information present in tables within these documents. This paper
introduces a general-purpose system for linking entities to items in the Wikidata knowledge base. It describes how we adapt
this system for linking domain-specific entities, especially those embedded within tables drawn from COVID-19-related
scientific literature. We describe the setup of an efficient offline instance of the system that enables our entity-linking approach
to be more feasible in practice. As part of a broader approach to infer the semantic meaning of scientific tables, we leverage
the structural and semantic characteristics of the tables to improve overall entity linking performance.
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1. Introduction
The rapid pace of research in dynamic, fast-evolving
scenarios, as recently exemplified by COVID-19 and the
unprecedented volumes of scholarly literature on this sub-
ject [1], has necessitated more machine-driven, human-
interpretable approaches to scientific knowledge discov-
ery. Open datasets like CORD-19 [2] have motivated
novel techniques and tools for keyword/semantic search
and Q&A, recommendation, and summarization of scien-
tific documents. As with the web, discovery from scien-
tific literature is predominantly associated with searching
over unstructured textual content. Domain-specific neu-
ral search engines [3, 4] typically produce ranked lists of
matching articles in response to search requests, while
mainstream information retrieval methods may also de-
liver direct short, targeted responses (drawn from text)
to queries. To facilitate such a search, Sohrab et al. [5]
introduced the BENNERD system and an annotated sub-
set of CORD-19 articles to demonstrate the fundamental
tasks of named entity recognition and entity linking for
COVID-19-related entities found in the text.

Besides text, alternative modalities such as tables and
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charts have come to play a considerable role in how the
scientific community succinctly conveys descriptive in-
formation in the literature. Our experience assembling a
corpus of over 62,000 open-access coronavirus-related ar-
ticles from PubMed Central [6] between 2020-21 yielded
over 120,000 tables, underlining a wealth of latent knowl-
edge embedded within these structured artifacts. The
extraction and retrieval of relevant information from
these scientific tables is becoming increasingly critical to
emerging knowledge-driven applications. For example,
consider a genomic surveillance scenario seeking infor-
mation on treatment efficacies against the top prevalent
COVID-19 variants in each US state. Better responses
to such queries entail going beyond text and searching
relevant portions of or entire scientific tables for vital
knowledge nuggets, possibly fusing information from
multiple source tables on the fly.
Although learning-based representational models for

tabular data [7] show great promise for understanding
relationally structured web tables, these models are typi-
cally not tuned to unconventional structural complexity.
This is especially true for the dense and often implicit
semantics and diffuse context inherent in scientific tables
in highly specialized domains [8]. Representing scien-
tific tables as semantically annotated linked data artifacts
accounts for structural complexities and enables explicit
reasoning over tabular content to infer their semantics
and relevance to search queries. Hence, entity linking is
fundamental to our end-to-end pipeline for constructing
such knowledge graphs of tables drawn from scientific
documents, as depicted in Figure 1.
This paper presents an entity linking system to auto-
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Figure 1: Entity linking and its role in constructing knowledge graphs from scientific tables

matically map the content of individual cells in scientific
tables to appropriate entries in the Wikidata knowledge
base [9]. To keep up with the scientific literature info-
demic, we architected a more efficient local, offline link-
ing system using periodic Wikidata knowledge dumps.
While the ensuing efficiency gains make our systemmore
feasible in practice, we discuss the implications for link-
ing performance.

2. Entity Linking for Scientific
Text and Tables

Given a mention of an entity in a document and a unique
set of known entities defined in some knowledge base,
entity linking refers to finding and assigning the entity
ID corresponding to the mentioned entity. Entities play
an essential role in text and are often used to describe
what the text is about. Likewise, linking entity men-
tions in the header and body cells of tables, as well as
linking entities in captions or other referring text, can
help partly understand or infer the semantic meaning of
tables. We developed a general-purpose linker to link
entity mentions in text to items in (and to further ex-
tract useful information about items from) Wikidata. We
describe the linker’s customization and inner workings
for linking highly specialized, idiomatic content within
header and body cells of tables drawn from a corpus of
COVID-19-related scientific literature.

2.1. Wikidata: Reference Knowledge Base
Wikidata [9] is a collaboratively edited multilingual
knowledge graph used to provide common data for Wiki-
media projects, with currently about 1.2 billion facts on
over 102 million items. Wikidata’s ontology has a fine-
grained type system with more than two million types
and about 11 thousand properties, including an item’s
label, aliases, and description. Each Wikidata item has a
unique identifier beginning with Q, like Q3519875 (“Na-
tional Institute of Allergy and Infectious Diseases”), and

each property has an identifier starting with P. The prop-
erty P31 (instance of) links an item with its immediate
types, P279 (subclass of) links a concept item to its im-
mediate supertypes, and P1647 (subproperty of) links
properties to their immediate super-properties.
An entity has just one label in a given language, its

“canonical name”. An entity can have any number of
aliases in a language and can have a short description
in any language. Unlike other open knowledge graphs,
Wikidata includes and links to specialized knowledge
from additional domain-specific knowledge resources.
These include the Unified Medical Language System
(UMLS) [10] knowledge base and the Medical Subject
Headings (MeSH) thesaurus [11], which bring together
biomedical vocabularies and standards to enable interop-
erability.

Figure 2 shows an example of a simple scientific table
with links to appropriate Wikidata items highlighting
several high-level issues we addressed. One is that we
must consider the “header” cells (whether for columns or
rows) differently from the regular table body cells. Note
that the third column’s header cell, Prevalence, has two
good candidate links: the concept Q719602 (“number of
disease cases in a given population at a specific time”) and
the property P1193 (“portion in percent of a population
with a given disease or disorder”). We give preference in
such cases to using the property item over the concept
item.
The middle header cell containing the text Lineage

illustrates a second issue: A simple linker might choose
the most common match for this based only on the text,
Q1517820 (“line of ancestors and descendants of a per-
son”). However, the cells in this column (e.g., B.1.1.7) are
all easily matched to Wikidata items whose immediate
type is Q104450895 (“variant of SARS-CoV-2”). Therefore,
we need to do joint inference using both the header cell
and a sample of its data cells to choose the best links for
both.

The first column of the table highlights a third aspect
of the task: mining additional knowledge from resources



Figure 2: Examples of header and cell annotations of links to Wikidata items and properties

connected to candidate Wikidata items. Wikidata items
often link to other knowledge graphs, such as DBpedia
[12], that contain additional useful information. DBpedia,
for example, has a short paragraph describing its items
and links to types in the Yago fine-grained type system
[13].

2.2. Core Entity Linking Algorithm
Our entity linker takes a mention string (e.g., from a table
header or cell) and begins by retrieving a pre-specified
number of Wikidata items using the MediaWiki search
API. This returns a ranked list containing each item’s
Wikidata ID, label, aliases, and English language descrip-
tion. Next, we rerank candidates to promote ones that
resulted in an exact match of their mention string with
a Wikidata item’s label (best) or alias (second best). For
each candidate, we use a SPARQL query to retrieve its
types, both immediate (P31) and inherited, via a chain of
P279 links for concept super-classes and P1647 links for
property super-properties.
For specific domains, our linker leverages the ultra-

fine-grained Wikidata type system to infer additional
domain types for an item by checking for specific domain-
relevant properties. We identified a custom set of Wiki-
data item types and properties to support entity linking
for the biomedical domain. For example, we infer the
mesh item type if an item has a MESH descriptor ID prop-
erty (P486) that connects the item with a UMLS Medical
Subject Heading.
When linking the text in a header cell, we give more

weight to candidates that are Wikidata properties. For
example, candidates for the text “location” include an
item representing the geographic location (Q2221906)
as well as the property location (P276). While either
might be relevant, our annotation methodology strongly
preferred the latter.
The linker’s filtering and ranking of candidate items

are based initially on analyzing an item’s types. This
type of analysis is controlled by five lists of types that are

part of the linker’s configuration for a domain and task.
These are ordered from best to worst as follows: (1) Tar-
get types are those we want to find based on the mention
type identified by an NLP system; (2) Near-miss types
are close to the target types and often confused with the
targets by an NLP system; (3) Good types are ones that
are very relevant to the domain, such as a MESH term
(Medical Subject Heading); (4) OK types include types
that are acceptable and common in many domains, such
as organizations, people, geo-political entities, and loca-
tions; and (5) Bad types are ones we are not interested in
(e.g., fictional characters, journal articles, musical groups)
and result in a candidate being immediately rejected.
The type names of interest are mapped to Wikidata

types via the linker’s configuration dictionary. Extend-
ing this dictionary-enabled us to easily customize our
linker to specific domains, such as COVID-19-related sci-
entific research. For our domain, examples of good types
are Wikidata high-level classes corresponding to disease,
protein, chemical compound, vaccine type, and type of
statistic. OK types are those associated with the standard
OntoNotes [14] types, such as person, event, facility, or-
ganization, and location. Entities of these types often
occur in biomedical tables. Our bad types cover things
like songs, works of art, sports organizations, fictional
things, and other high-level types unlikely to be present
in medical tables. For example, there exist 83 Wikidata
items with the canonical name “virus”. These include
Q808, the infectious agent, as well as films, songs, musical
albums, rock groups, painting, video games, musicians,
professional wrestlers, and more.

Finally, we have a mapping of near-miss types that rep-
resent types that are easily confused. A classic example is
the OntoNotes types FAC (for facility) and LOC (for loca-
tion) are easily confused by most NLP systems. An entity
likeWuhan Institute of Virology can bemarked as an ORG,
LOC, or FAC, depending on its context. Since locations
are a common type in tables for this domain, we can treat
an item identified as a FAC or ORG by a language proces-
sor as possibly referring to a location. Additional ranking



for an item’s prominence is then done using its number
of sitelinks, i.e., the number of links to other Wikimedia
projects that contain information about the item.
Beyond type analysis-based filtering, the last step is

the ranking of the final candidates using a context span or
string, if provided. The similarity of the context and the
item’s description is computed with embeddings from the
spaCy [15] large language model and generates a score
that is used alongwith the item’s rank in the candidate list
to select and return the best link. This worked reasonably
well for both well-structured text (e.g., table captions) and
for collections of terms from the row and column headers
and could be improved by using an embedding model
fine-tuned on the biomedical domain.

3. Efficient Entity Linking at Large
Scale

Our entity linker initially used the Wikidata and Wiki-
media APIs to retrieve the initial ranked list of Wikidata
candidate items and their type and supertype informa-
tion. Since Wikidata is a public resource, the APIs are
understandably rate-limited such that unreasonable ac-
cess requests and query rates in excess of established
limits may lead to IP address blacklisting [16]. The ta-
ble in Figure 3 breaks down our average observed entity
linking time to link a single exemplar mention string
to a Wikidata entity while operating under the above
limits. Accessing public Wikidata APIs, our linker can
operate no faster than around 30 seconds per entity. For
our dataset of 120,000+ tables (a rate reflective of the
COVID-19 infodemic), annotating even just 10 cells per
table at this rate could end up taking over a year.

Figure 3: Entity linking time using Wikidata APIs

Furthermore, when applying entity linking to infer
table semantics (see next section), the linking of a single
header cell could, in turn, translate to the linking of all
other cells in the respective column or row—potentially
placing far greater stress on the linker. As a result, while
Wikidata APIs facilitated a proof of concept of our core
entity linking algorithm, they cannot sustain a practi-
cal, scalable linking service capable of keeping up with

contemporary scientific publication rates.
To address these API rate-limit bottlenecks, we initially

set up a transient caching layer for cell entity linking re-
sults so that future requests to link the same mention
string would be served from the cache, avoiding API in-
vocations. However, this strategy was insufficient, so we
decoupled our core entity linker from the public Wiki-
data altogether by architecting and progressively setting
up a more efficient system using local periodic dumps of
relevant Wikidata knowledge.

The system is offline because the linker no longer relies
on Wikidata APIs. Wikidata’s complex software archi-
tecture [17] and its enormous size make it challenging
to replicate locally in its entirety. That said, our entity
linker does not need all the capabilities that Wikidata
offers. We targeted emulation strategies addressing bot-
tlenecks with cross-item graph search (via the Wikidata
query service (WDQS) and Wikidata’s underlying RDF
triple store) and full-text search over items and their prop-
erties (via the Action API and underlying CirrusSearch
Wikibase extension). We leverage proven open-source
storage technologies such as the Elasticsearch engine and
the Redis key-value store to emulate underlyingWikidata
capabilities, as depicted in Figure 4.

Figure 4: Functional architecture of an efficient ‘offline’ entity
linker

We implemented this system by uploading partial
JSON dumps of Wikidata items, their basic attributes
(label, aliases, description), specific types, and ‘sitelinks’
counts1 into a local Elasticsearch index. This resulted in
a locally searchable collection of 95.8M items. Offline, we
retrieved the current type hierarchy (by traversing P31
and P279 property relationships) and loaded the resulting
dictionary, mapping each of Wikidata’s 2.6M types to its
supertypes into Redis. This reduced determining if an
entity was an instance of a given type (direct or inherited)
to a dictionary lookup.
In this efficient entity linking system, an initial can-

didate search is performed using an Elasticsearch multi-
match query that compares a mention string against la-
bels and aliases. In lieu of Wikidata’s CirrusSearch rank-

1A Wikidata item’s sitelinks property is the number of other Wiki-
media sites such as Wikipedia, Wikisource, and Wikivoyage in
which it appears. It is commonly used as a metric for the item’s
importance.



Figure 5: Replacing the entity linker’s use of public Wikidata APIs with efficient offline, local queries

ing mechanisms, we use an item’s sitelinks count (i.e.,
popularity) as a proxy for its prominence and rank candi-
dates in descending order of their sitelinks counts. Once
we have a ranked list of candidates for each item, we
query Redis using the item’s entity ID and direct types as
keys to retrieve associated inherited types. Type analysis
and re-ranking then proceed as before.

Figure 5 shows a progression in replacingWikidata API
invocations with queries to these local knowledge stores.
The resulting system trades linking accuracy for a three-
fold improvement in linking efficiency, with the potential
for even further speedups via parallel processing. The
impact on entity linking performance is largely dictated
by the quality of the initial ranked candidate list returned
by our Elasticsearch query. We are exploring techniques
like PageRank to estimate an item’s relative importance
better.

4. Entity Linking to Infer
Semantics of Tables

The meaning of text derives from its constituent words,
which in turn are understood using grammatical knowl-
edge and context provided by surrounding text. Inferring
the intended meaning of tables additionally requires in-
terpreting row/column headers and relations between
them, besides linking cell values to entities. To improve
entity linking performance for inferring the semantics
of scientific tables, we supplement our core algorithm
with other techniques (beyond the scope of this paper),
as shown in Figure 1. These include:

• Rule-based syntactic characterization: We cate-
gorize tables into types (e.g., horizontal) based on
their structure,

• Joint inference based on embeddings of Wikidata
items. We use Wembedder-driven [18] cluster-
ing operations to compute compatibility between
entities and to jointly assign entities to cells in a
column, and

• Specialists: We use pattern-based or machine-
learning approaches to independently assess com-
monly encoded data types in table cells to avoid
linking those cell values that are deemed to be spe-
cific kinds of literals (e.g., RNA/DNA sequences
or Clinical Trial IDs).

Our entity linking system achieves a fair degree of
accuracy in linking table cells to Wikidata items. We
based our evaluations on a manually annotated subset
of 47 tables extracted from 45 COVID-19-related articles
drawn randomly from PubMed Central [6]. Of the 910
table cells (out of a total of 3600 manually annotated cells
in these tables) expected to be mapped to aWikidata item,
our linker achieved a recall of 0.82 when the expected
annotation was part of the linker’s initial candidate item
set, and a precision of 0.51 over the subset of these cells
with expected Wikidata annotations.

5. Discussion and Conclusions
Existing NLP tools for entity linking like spaCy [15] sup-
port a very limited entity type system, often based on
just Ontonotes 5.0 types (e.g., PER, ORG, LOC, FAC) and
do not cover specialized scientific entities. The SemTab
challenge on Tabular Data to Knowledge Graph Match-
ing focuses on three mapping tasks aimed at inferring the
semantics of web tables [19]. While it recently included
tables from biology literature, leading tabular entity link-
ing systems [20] do not adequately cover domain-specific
entities. Bespoke entity linking systems for COVID-19-
related entities [5] link against UMLS and do not exploit
the extensive type hierarchy or entity coverage of Wiki-
data.
Part of our goal is to fill this missing gap with a prac-

tical entity linking system that can not only be adapted
for domain-specific entities but can also help infer table
semantics with high accuracy by leveraging Wikidata’s
rich type system. As entity linking of tables against Wiki-
data at large scale is bottlenecked by rate-limited APIs
[21], we built an offline version of our linking system,



achieving a three-fold improvement in efficiency while
sacrificing a tolerable reduction in linking performance.
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