
Automating Cloud Services Life Cycle
through Semantic Technologies

Karuna P. Joshi, Yelena Yesha, and Tim Finin

Abstract—Managing virtualized services efficiently over the cloud is an open challenge. Traditional models of software development

are not appropriate for the cloud computing domain, where software (and other) services are acquired on demand. In this paper, we

describe a new integrated methodology for the life cycle of IT services delivered on the cloud and demonstrate how it can be used to

represent and reason about services and service requirements and so automate service acquisition and consumption from the cloud.

We have divided the IT service life cycle into five phases of requirements, discovery, negotiation, composition, and consumption. We

detail each phase and describe the ontologies that we have developed to represent the concepts and relationships for each phase. To

show how this life cycle can automate the usage of cloud services, we describe a cloud storage prototype that we have developed. This

methodology complements previous work on ontologies for service descriptions in that it is focused on supporting negotiation for the

particulars of a service and going beyond simple matchmaking.

Index Terms—Intelligent web services and Semantic Web, life cycle, ontology design, web-based services

Ç

1 INTRODUCTION

REGARDING information technology (IT) as a service
delivered to the end user is a paradigm shift that is

fast changing the way businesses looks at the role of IT
within the organization. The outsourcing model is being
replaced by a new delivery model where businesses
purchase IT components like software, hardware or net-
work bandwidth as services from providers, who can be
based anywhere in the world. The service is acquired on an
as-needed basis and can be termed as service on demand.
Typically, the service is hosted on a cloud or a computing
grid and is delivered to the organization via the Internet or
mobile devices.

In such scenarios, multiple providers often collaborate to
create a single service for an organization. In some cases,
businesses utilize multiple service providers to mitigate
risks that may be associated with a single provider. In other
cases, a business may use a single provider who in turn
utilizes the services of other providers. In either case, the
delivery of IT service is moving away from a single
provider mode and is increasingly based on the composi-
tion of multiple other services and assets (technological,
human, or process) that may be supplied by one or more
service providers distributed across the network—in the
cloud. Moreover, a single service component could be a
part of many composite services as needed. The service, in
effect, is virtualized on the cloud [38]. It is becoming the
preferred method to deliver services ranging from help
desk and back-office functions to infrastructure as a service
(IaaS). The virtualized model of service delivery also

extends to IT-enabled services (ITeS), which typically
include a large human element.

One consequence of this development is that the
consumers now have more choices of service providers
that they can select from. However, at present, most of the
services are delivered as web services providing a singular
functionality. Often, the onus is on the consumer to procure
these web services individually and then integrate them per
the requirements. There has been some work in creating
brokers that would perform this functionality. However,
such brokers work only on a fixed, linear description of
service functionality which often fails to capture the
complete requirements of the service needed, and the
flexibility a consumer might have. In order to be able to take
advantage of virtualized service models, it is imperative for
the consumer to be able to identify all the constraints or
assertions of a service that need to be met along with its
functional requirements.

In our discussions with large organizations interested in
acquiring cloud services, especially from public cloud
providers, we have observed that a key barrier preventing
organizations from successfully managing virtualized
services on the cloud is the lack of an integrated
methodology for service creation and deployment that
would provide a holistic view of the service life cycle on a
cloud. In this paper, we present a methodology to address
the life-cycle issue for virtualized services delivered from
the cloud. We use semantically rich descriptions of the
requirements, constraints, and capabilities that are needed
by each phase of the life cycle. This methodology is
complementary to previous work on ontologies, like
Ontology Web Language for Services (OWL-S), for service
descriptions in that it is focused on automating processes
needed to procure services on the cloud. We concentrate on
enabling multiple iterations of service negotiation with
constraints being relaxed iteratively till a service match is
obtained. In Section 3, we present the high-level ontologies
that we have created for the various phases in this paper,

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2014 109

. The authors are with the Computer Science and Electrical Engineering
Department, University of Maryland, Baltimore County, 1000 Hilltop
Circle, Baltimore, MD 21250. E-mail: {kjoshi1, yeyesha, finin}@umbc.edu.

Manuscript received 13 Mar. 2012; revised 7 Sept. 2012; accepted 17 Dec.
2012; published online 28 Dec. 2012.
For information on obtaining reprints of this article, please send e-mail to:
tsc@computer.org, and reference IEEECS Log Number TSC-2012-03-0030.
Digital Object Identifier no. 10.1109/TSC.2012.41.

1939-1374/14/$31.00 � 2014 IEEE Published by the IEEE Computer Society
Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on August 29,2024 at 13:05:26 UTC from IEEE Xplore. Restrictions apply.

and show where existing ontologies can be leveraged.
These can be reasoned over to automate the phases guided
by high-level policy constraints provided by consumers,
service customers, or service providers. The proposed
methodology will enable practitioners to plan, create, and
deploy virtualized services successfully.

The key reason to have a semantically rich approach to
describe cloud attributes and service-level agreements
(SLA) is to permit distributed clients and cloud service
providers to “automate” the process of acquisition and
consumption of services. Without a semantic approach that
will permit the providers and consumers to understand
each other, which is the present state of the practice, the
acquisition process is done manually, and the consump-
tion/monitoring process also requires significant manual
input. For instance, the National Institute of Standards and
Technology (NIST) has identified ambiguity in cloud SLAs
currently offered by cloud providers as one of the factors
that prevent broad cloud adoption by large organizations,
especially federal agencies [46]. It is very difficult to
compare SLAs offered by two cloud providers to determine
who is offering the better deal. Also, existing cloud SLAs
(for instance, SLA provided by Amazon at http://
aws.amazon.com/ec2-sla/) are provided as a text docu-
ment making it open to interpretation and very difficult to
monitor SLA performance and adherence by the cloud
provider. Additionally, survey of industry sources also
indicates overall dissatisfaction among cloud users of
existing cloud SLA.

We have developed and implemented a cloud storage
service prototype to demonstrate and evaluate our metho-
dology. The prototype allows cloud consumers to discover
and acquire disk storage on the cloud by specifying the
service attributes, security policies, and compliance policies
via a simple user interface. We used W3C standard
Semantic web technologies, such as Web Ontology Lan-
guage (OWL) [18], Resource Description Framework (RDF)
[15], and SPARQL [24], to develop our prototype system
since they enable us to build the vocabulary (or ontology) of
our service life cycle using standardized languages that
support our design requirements, which include interoper-
ability, sound semantics, web integration, and the avail-
ability of tools and system components.

Our most fundamental requirement is for a representa-
tion that supports interoperability at both the syntactic and
semantic levels. The OWL [18] language has a well-defined
semantics that is grounded in first-order logic and model
theory. This allows programs to draw inferences from OWL
expressions with the assurance that the subsequent inter-
pretation is sound. An important advantage for OWL over
many other knowledge-based systems languages is that
there are well-defined subsets that guarantee sound and
complete reasoning with various levels of complexity (e.g.,
N2ExpTime for OWL 2 DL). Moreover, there are also
profiles that are tuned to work well with popular imple-
mentation technologies, for example, OWL QL for databases
and OWL RL for rule-based systems.

A second design requirement is for a language that is
designed to integrate well with the web, which has become
the dominant technology for today’s distributed information
systems. OWL is built on basic web standards and protocols
and is evolving to remain compatible with them. It is

possible to embed RDF and OWL knowledge in HTML
pages and several search engines (including Google) will
find and process some embedded RDF. RDF is also
compatible with Microdata, a Web Hypertext Application
Technology Working Group HTML specification that is
used to nest semantic statements within existing content on
webpages. Microdata has been adopted by Schema.org,
collaboration by Google, Microsoft, and Yahoo!, and has
been used to define a number of basic ontologies that are
being supported by search engines.

Finally, there are a wide variety of both commercial and
open-sourced tools that support Semantic Web languages
and systems including knowledge base editors, reasoners,
triple stores, SPARQL query engines (including some that
support federated queries), ontology mapping, and so on.
Several database vendors, including Oracle and IBM, have
sophisticated support for representing RDF and OWL,
including reasoning.

2 RELATED WORK

Since cloud computing is a nascent field, there is lack of
standardization and a need has been felt to clearly define its
key elements. NIST has recently released a special publica-
tion 800-145 [19] defining cloud computing as a model for
enabling ubiquitous, convenient, on-demand network ac-
cess to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and services)
that can be rapidly provisioned and released with minimal
management effort or service provider interaction. One of
the key characteristics identified by NIST is that a cloud
service should have the capability of on-demand self-
service whereby a consumer can unilaterally provision
computing capabilities, such as server time and network
storage, as needed automatically without requiring human
interaction with each service provider. Currently, it is very
difficult for organizations to specify their data, security,
privacy, and compliance policies, while automatically
provisioning cloud services. We have addressed this in
our proposed framework described in the next section.

In addition to the standard definition of cloud comput-
ing, NIST has also released the cloud computing reference
architecture [20] document that describes a reference
architecture for cloud computing and also the key roles
and responsibilities of stakeholders. The authors of this
paper were part of the NIST cloud computing reference
architecture and taxonomy working group that participated
in developing the standard. We have referenced the NIST
cloud computing standards to develop our ontology that is
described in the next section.

Current research on cloud or web services so far has been
limited to exploring a single aspect of the life-cycle-like
service discovery, service composition, or service quality.
There is no integrated methodology for the entire service
life cycle covering service planning, development, and
deployment in the cloud. In addition, most of the work is
limited to the software component of the service and does
not cover the service processes or human agents which are a
critical component of IT services.

Papazoglou and Heuvel [22] have proposed a methodol-
ogy for developing and deploying web services using

110 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2014

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on August 29,2024 at 13:05:26 UTC from IEEE Xplore. Restrictions apply.

service oriented architectures. Their approach, however, is
limited to the creation and deployment of web services and
does not account for virtualized environment where
services are composed on demand. Providers may need to
combine their services with other resources or providers’
services to meet consumer needs. Other methodologies, like
that proposed by Bianchini et al. [3], do not provide this
flexibility and are limited to cases where a single service
provider provides one service. Zeng et al. [33] address the
quality-based selection of composite services via a global
planning approach but do not cover the human factors
in quality metrics used for selecting the components.
Maximilien and Singh [17] propose an ontology to capture
quality of a web service so that quality attributes can be
used while selecting a service. While their ontology can
serve as a key building block in our system, it is limited by
the fact that it considers single web services, rather than
service compositions.

Black et al. [4] have proposed an integrated model for
IT service management. Their model is limited to mana-
ging the service from the service provider’s perspective.
Paurobally et al. [23] have described a framework for
negotiation of web services using the iterated Contract Net
Protocol (CNP) [29]. However, their implementation is
limited to pre-existing web services and does not extend to
virtualized services that are composed on demand. Our
negotiation protocol detailed in next section accounts for
the fact that the service will be composed only after the
contract/SLA listing the constraints is finalized. Good-
Relations [6] is an ontology developed for e-commerce to
describe products. While this ontology is useful for
describing service components that already exist on the
cloud, it is difficult to describe composite virtualized
services being provided by multiple vendors using this
ontology. Ren et al. [34] have proposed a technique for
more efficient composition of semantic services.

Research on grid computing has also examined issues on
on-demand provisioning and service discovery/composi-
tion [39], [40], [41], [42], [43], [44]. This research has primarily
concentrated on addressing issues from cloud provider’s
perspective. Given the origins of grid computing in the
scientific computing domain, this makes perfect sense.
However, many issues related to policies of the consumer
and the service acquisition processes are ignored. We
approach the issue instead of looking at it from a holistic
viewpoint of both the consumer as well as the provider. The
authors have also not accounted for virtualized services that
will be created by combining preexisting components.

The Information Technology Infrastructure Library (ITIL)
is a set of concepts and policies for managing IT infra-
structure, development, and operations that has wide
acceptance in the industry. The latest version of ITIL lists
policies for managing IT services [31] that cover aspects of
service strategy, service design, service transition, service
operation, and continual service improvement. However, it
is limited to interpreting “IT services” as products and
applications that are offered by in-house IT department or
IT consulting companies to an organization. This framework
in its present form does not extend to the service cloud or a
virtualized environment that consists of one or more
composite services generated on demand.

2.1 Semantic Web

As explained in Section 1, we have used Semantic Web
technologies to develop the services life cycle and prototype
development. Semantic Web enables data to be annotated
with machine understandable metadata, allowing the
automation of their retrieval and their usage in correct
contexts. Semantic Web technologies include languages
such as RDF [15] and OWL [18] for defining ontologies and
describing metadata using these ontologies as well as tools
for reasoning over these descriptions. OWL is based on
Description Logic (DL) [1] with a representation in RDF.
OWL Semantic Web knowledge can also be encoded in rule
format using several approaches, including N3-logic rules
[2], SWRL rules [7] and RIF, the new W3C standard for Rule
Interchange Formalism. These technologies can be used to
provide common semantics of Service information and
policies enabling all agents who understand basic Semantic
Web technologies to communicate and use each other’s data
and services effectively.

Several OWL ontologies have been developed to describe
services, including Ontology Web Language for Services
[16] and Semantic Annotations for WSDL and XML Schema
(SAWSDL) [14]. OWL-S allows service providers or brokers
to define their services based on agreed upon ontologies
that describe the functions they provide. We have inte-
grated the OWL-S ontology into our ontology and it is
described in Section 3.4. SAWSDL defines mechanisms
using which semantic annotations can be added to WSDL
components. Sheth et al. [27] describe the METEOR-S
project that resulted in the submission of WSDLS specifica-
tion which was used as the input for SAWSDL.

SPARQL Protocol and RDF Query Language (SPARQL)
is the query language for RDF that has been standardized by
W3C [24]. SPARQL can be used to express queries across
diverse data sources, whether the data is stored natively as
RDF or viewed as RDF via middleware. The results of
SPARQL queries can be results sets or RDF graphs. A
SPARQL endpoint is a conformant SPARQL protocol service
as defined in the SPARQL Protocol for RDF (SPROT)
specification [30]. It enables users to query a knowledge
base via the SPARQL language. Results are typically
returned in one or more machine-processable formats.
Therefore, a SPARQL endpoint is mostly conceived as a
machine-friendly interface toward a knowledge base.
Service descriptions [32] specify the capabilities of a
SPARQL endpoint. They provide a declarative description
of the data available from an endpoint, the definition of
limitations on access patterns, and statistical information
about the available data that is used for query optimization.

3 PROPOSED SERVICE LIFE-CYCLE ONTOLOGY

Traditional models of software development, like the
waterfall method or the spiral method [5], consists of
phases like planning, analysis, design, testing, and accep-
tance. These methodologies are found to be very time-
consuming and require extensive human labor, both from
the software application consumer as well as the provider.
Cloud computing environment promises agility, elasticity,
and quick turnaround time for provisioning resources and
services. Virtualized services that provide “on-demand”
service on the cloud are mainly built by combining

JOSHI ET AL.: AUTOMATING CLOUD SERVICES LIFE CYCLE THROUGH SEMANTIC TECHNOLOGIES 111

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on August 29,2024 at 13:05:26 UTC from IEEE Xplore. Restrictions apply.

preexisting components that are developed by same or
multiple providers. In this scenario, following traditional
software life-cycle methodologies will significantly slow
the service delivery time, thereby rending the service
provider uncompetitive in the cloud market. Hence, we
believe a radically different methodology is needed for
cloud-based services.

To develop this ontology, we had detailed discussions
with various large organizations who are interested in
acquiring cloud-based services. Among our chief collabora-
tors were NIST, our university’s division of IT, and a large
international financial organization with global presence.
Additionally, one of the authors of this paper has had
extensive experience in managing large IT services and we
were able to draw on that experience while developing this
framework. While developing the ontology, we referred to
NIST’s cloud computing reference architecture [20] to
identify the key stakeholders in the life cycle.

We divide the virtualized service life cycle on a cloud
into five phases. In sequential order of execution, they are
requirements, discovery, negotiation, composition, and
consumption. Our focus for this framework is the life cycle
for virtualized cloud services, where the services are
composed of combining preexisting components. Hence,
this life cycle does not include any requirements analysis or
design phases. We assume that services, that are designed
using a variety of existing approaches, will be described
using our ontology—something that can be done post
facto—and will be discoverable using standard (web)
service-type mechanisms (e.g., UDDI, SLP). We also permit
these services to be arbitrarily composed to create new
services. We argue that this hews closely to the cloud
model—a provider has a set of available services which can
be made available as is, or in combination with other
services. We do not claim that cloud providers only offer
preexisting component-based services; however, a survey
of current cloud based offerings has shown us that majority
of the cloud services consist of preexisting components
with minimal configuration capability and so we gather this
is what the consumers are currently interested in from
cloud providers.

Our ontology does not describe the service, but defines
the data and processes needed to automate the acquisition
and consumption of cloud services. The processes of
acquiring such services are largely independent of the type
of cloud service (IaaS, software as a service (SaaS), platform
as a service (PaaS)), cloud deployment (private, public,
hybrid), or service domain (computing services, healthcare,
financial services, etc.). Our framework assumes that users
will be defining the ontologies for functional and technical
specifications for the service which will obviously vary for
different domains. There is a significant body of work (e.g.,
SAWSDL, WSDL-S, WSMO, etc.) that provides ontologies to
describe specific services in terms of their functional and
technical specifications. Our framework makes it possible to
integrate these functional and technical specifications with
other enterprise-specific policies defined using the ontolo-
gies we provide (like privacy, security, compliance, human
agent policies) in the requirements phase. And so only the
functional description of the requirements phase ontology
will have to be defined for each service. Our prototype

described in next section is an example, where, for
completeness, we have also described the service itself to
show how our overall framework would work.

We have described the five phases in detail along with
the associated metrics in [10]. Fig. 1 is a pictorial representa-
tion detailing the processes and data flow of the five phases.
In the following sections, we present the pictorial repre-
sentations of high-level ontologies that we have created for
each phase. We have developed the ontology for the entire
life cycle in OWL 2 DL profile and it can be accessed at [11].

3.1 Service Requirements Phase

In the service requirements phase, the consumer details the
technical and functional specifications that a service needs
to fulfill. While defining the service requirements, the
consumer also specifies nonfunctional attributes like char-
acteristics of the human agent providing the service,
constraints and preferences on data quality, and required
security policies for the service. Service compliance details
like certifications needed, standards to be adhered to, and
so on, are also identified. The technical specifications lay
down the hardware, software, application standards, and
language support policies to which a service should adhere.
Once the consumers have identified and classified their
service needs, they issue a Request for Service (RFS). This
RFS can be generated in a machine readable format using
Semantic Web technologies and we have illustrated this in
the next section.

Majority of the users will not have static requirements
and might not be able to initially articulate all their needs.
Also, the requirements will continue to evolve as users
acquire more and more cloud services. Hence, our frame-
work captures a “snapshot” of the user requirements via
the RFS and initiates the service discovery process to
acquire services that match that snapshot. If the user is not
satisfied with the services discovered, they can change their
requirements (say, by increasing the cost constraint) and/or
policies and restart the discovery phase with a new RFS.
We also assume that the user requirements will change
once the user begins consuming the services and so we
show a link between the consumption and requirements
phase (see Fig. 1) to indicate system triggers that could
start a new cycle of service acquisition with a different
requirements snapshot (new RFS).

Some of the policies and constraints that may be
included in RFS are listed below. Additional policies/
constraints that may be domain specific can be specified as
needed:

1. Functional specifications list:

a. Service tasks to be provided.
b. Budgetary/cost policies and constraints.
c. Service domain.

2. Technical specifications:

a. Service’s software applications.
b. Software compatibility constraints.
c. Hardware policy—e.g., mobile device, PC, ser-

ver, multicore, and so on.
d. Operating system policy—e.g., single OS sup-

port, multiple OS support.
e. Language support policy.

112 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2014

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on August 29,2024 at 13:05:26 UTC from IEEE Xplore. Restrictions apply.

f. Cloud deployment—private, public, hybrid,
community.

g. Cloud service layer—IaaS, PaaS, SaaS.
3. Human agent policy:

a. Agent experience in years.
b. Agent skill level.
c. Agent’s location constraints.
d. Nationality/work permit constraints.

4. Security policy:

a. Roles and permissions
b. Cloud/service provider location constraints.
c. Data encryption, deletion constraints.
d. Virtualization—virtual machine (VM) separa-

tion.
e. Multitenancy policies.

5. Data quality policy:

a. a. Low-quality data may be acceptable to
consumer if it provides cost saving.

6. Service compliance policy:

a. Standards adhered.
b. Certifications needed.
c. Government regulations adhered.

While we have developed ontologies for generic
processes, domain-specific technical specifications will
require their own ontologies. For example, for the comput-
ing service, the ontology will define the semantics of each
computing term like processor speed, processor memory,
number of cores, and so on. Cloud vendors may bundle

their service offerings in any combination and give it brand
names like “compute unit”; however, the technical speci-
fications will specify each attribute desired and so will
make it possible to query across disparate services offering
similar service with different attributes bundled together.
Many such ontologies exist and can be used, for example,
DReggie [45]. This is part of the W3C standardized
Semantic Web approach.

Fig. 2 illustrates the high-level ontology for this phase.
The two main classes are the Specification class and the
“Request for Service” class. The Specification class consists of
six main classes that define the functional specifications,
technical specifications, human agent specifications, security
policies, service compliance policies, and data quality
policies. The functional specifications include the tasks to
be automated by the service, the cloud service layer, and
the service domain. The three cloud service layers that have
been identified by NIST [19] are infrastructure as a service,
platform as a service, and software as a service. The
functional specifications also include the budgetary policies
and cost (the price that the consumer is ready to pay for
the service) constraints associated with the service. The
technical specifications contain information about the hard-
ware, operating system, and other compatible services/
applications that the desired service should conform to.
Human agent specifications also list the technical and
domain expertise that the service providing agent should
have. The security constraints specified in the RFS include
policies regarding service role/permission levels, data
security policies, and cloud location/ownership policies.

JOSHI ET AL.: AUTOMATING CLOUD SERVICES LIFE CYCLE THROUGH SEMANTIC TECHNOLOGIES 113

Fig. 1. The IT service life cycle on a cloud comprises five phases: requirements, discovery, negotiation, composition, and consumption.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on August 29,2024 at 13:05:26 UTC from IEEE Xplore. Restrictions apply.

Part of our ongoing work is to use existing ontologies
that have been developed for classes like standard
hardware, operating systems, and computer applications.
Semantic Web policy language, like AIR [13], can be
used to describe service specifications and constraints in
machine-processable format.

Most large organizations already have clearly defined
policies for acquiring services. In addition, the policies that
have to be specified in the RFS already exist as institutional
or enterprise policies. These enterprise policies are centrally
managed by the organization’s head and may be electro-
nically maintained across various organizational functions
like Legal, Human Resources, Procurement, IT and Tele-
communications, Facilities, and Security. It will be a one-
time effort for the organization to consolidate these policies
into a single machine readable format to create organiza-
tion’s service policy document or system. The service policy
document can then be invoked each time a new RFS has to
be issued thereby automating the RFS process. This will
significantly reduce the amount of time needed for the
Service Requirements phase and also significantly reduce if
not completely eliminate policy oversight while acquiring
a service.

3.2 Service Discovery Phase

In the service discovery phase, providers are discovered by
comparing the specifications listed in the RFS with service
descriptions. The discovery is constrained by functional and
technical attributes defined, and also by the budgetary,
security, compliance, data quality, and agent policies of the
consumer. An organization can release the RFS to a limited
preapproved set of providers. Alternatively, it can search
for all possible vendors on the Internet. While searching the
provider, service search engines or cloud brokers can be
employed. A “cloud broker” role has been identified in the

NIST reference architecture [20] which we use in our
ontology. This cloud broker runs a query against the
services registered with a central registry or governing
body and matches the service layer, domain, data type,
compliance needs, and functional and technical specifica-
tions and returns the result with the service providers
matching the maximum number of requirements listed at
the top. Sbodio et al. [26] and Paliwal et al. [35] have
presented semantic approaches for service discovery which
can be incorporated into our methodology.

One critical part of this phase is service certification, in
which the consumers will contact a central registry, like
UDDI [25], to get references for providers that they narrow
down to. The NIST reference architecture [20] has identified
a cloud auditor role that will be primarily responsible for
security audit, performance audit, and privacy impact audit
of the cloud. We use this role in our ontology to be the
“provider certifying agent” that will be referenced in the
Service Discovery Phase.

Fig. 3 illustrates the high-level ontology for the service
discovery phase, which uses the RFS class from the
requirements phase to search for service providers and
generate a list of providers with which to begin negotia-
tions. The cloud auditor validates the provider’s credentials
and issues a service certification if the credentials are fine.
The cloud consumer’s policies will determine if the cloud
provider certification is essential or it can be skipped. Large
organizations with stricter security policies can mandate
that a provider is added to the provider’s list only after the
certification is received.

If the cloud consumers find the exact service within
their budgets, they can begin consuming the service
immediately upon payment. However, often the consumers
will get a list of providers who will need to compose a

114 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2014

Fig. 2. The ontology of the service requirements phase contains the RFS class that includes the Specification class.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on August 29,2024 at 13:05:26 UTC from IEEE Xplore. Restrictions apply.

service to meet the consumer’s specifications. The cloud
consumer will have to begin negotiation with the service
providers which is the next phase of the life cycle. Each
search result will return the primary provider who will be
negotiating with the consumer.

3.3 Service Negotiation Phase

The service negotiation phase covers the discussion and
agreement that the service provider and consumer have
regarding the service delivered and its acceptance criteria.
In our discussion with our collaborators, we found that the
negotiation of SLA for the cloud services procured is the
most time-consuming portion of the cloud service procure-
ment process. Automation of this process using SPARQL
queries is itself a performance improvement over the
existing human-based negotiation. The service to be
delivered is determined by the specifications laid down in
the RFS. Service acceptance is usually guided by the service-
level agreements [28] that the service provider and
consumer agree upon. SLAs define the service data,
delivery mode, agent details, quality metrics, and cost of
the service. While negotiating the service levels with
potential service providers, consumers can explicitly specify
service quality constraints (data quality, cost, security,
response time, etc.) that they require.

At times, the service provider will need to combine a
set of services or compose a service from various
components delivered by distinct service providers in
order to meet the consumer’s requirements. The negotia-
tion phase also includes the discussions that the main
service provider has with the other component providers.
When the services are provided by multiple providers
(composite service), the primary provider interfacing

with the consumer is responsible for composition of
the service. The primary provider will also have to
negotiate the quality of service (QoS) with the secondary
service providers to ensure that SLA metrics are met. The
negotiation steps are listed below and shown in the
negotiation sequence diagram in Fig. 4.

Steps for Service Negotiation on the Cloud.

1. The consumer sends an RFS to the provider specify-
ing the functional and nonfunctional requirements.

2. The provider responds to the RFS in one of three ways:

a. Informs the consumer that it cannot provide the
service, terminating negotiation.

b. Indicates that a service matching all the require-
ments exists and sends the quote with SLAs.

c. Indicates that there is a partial match of
requirements and sends the quote with SLA file
listing matching constraints.

3. The consumer receives and considers the quote.
4. The consumer responds to the quote in one of three

ways:

a. If the quote is a partial match, the consumer
relaxes the service constraints and/or function-
ality and resends the RFS to the provider. The
provider repeats the actions in step 2.

b. If the response is a full match and the consumer
is satisfied with the offer then negotiation is
regarded complete. The consumer signs this
offer and returns it as an SLA.

c. The consumer can decline the service, terminat-
ing the negotiation.

JOSHI ET AL.: AUTOMATING CLOUD SERVICES LIFE CYCLE THROUGH SEMANTIC TECHNOLOGIES 115

Fig. 3. The ontology for the service discovery phase uses the RFS class to search for providers and generate a provider list.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on August 29,2024 at 13:05:26 UTC from IEEE Xplore. Restrictions apply.

5. The provider responds to the RFS in one of two ways:

a. The provider can no longer provide the
service, and rejects the agreement, terminating
negotiation.

b. The provider agrees with the constraints, and
the same RDF file consisting of the SLA now
exists with both parties.

We have constructed a high-level ontology for this phase

and it is illustrated in Fig. 5. This phase uses the RFS class

from the requirements phase and the provider’s list class

from the discovery phase to negotiate the contracts between

consumer and primary provider and between the various

component providers themselves. The key deliverable of

this phase is the service contract between the service

consumer and service provider. The SLA is a key part of

this service contract and will be used in the subsequent

phases to compose and monitor the service. Another

deliverable of this phase are the service subcontracts

between the service provider and component (or dependent

services) providers. The QoS are the essential part of the

service subcontracts and are used in the consumption phase

to monitor service performance.

3.4 Service Composition Phase

In this phase, one or more components provided by one or

more providers are combined and delivered as a single

116 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2014

Fig. 5. The ontology for service negotiation uses the RFS class for the contract negotiation and creation of the SLA and QoS.

Fig. 4. Service negotiation sequence diagram.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on August 29,2024 at 13:05:26 UTC from IEEE Xplore. Restrictions apply.

service to the service consumer. Service orchestration
determines the sequence of the service components.

Fig. 6 illustrates the high-level ontology for this phase.
The main class of this phase is the service class that
combines the various components into a single service. We
include the OWL-S composite process class ontology. The
service class takes inputs from the specification, service
contracts, and service-level agreement classes defined in
the earlier phases to determine the orchestration of the
various components.

3.5 Service Consumption/Monitoring Phase

The service is delivered to the consumer based on the
delivery mode (synchronous/asynchronous, real time,
batch mode, etc.) agreed upon in the negotiation phase.
After the service is delivered to the consumer, payment is
made for the same based on the pricing model agreed to in
the SLA. The consumer then begins consuming the service.
In a cloud environment, the service usually resides on
remote machines managed by the service providers. Hence,
the onus for administrating, managing, and monitoring the
service lies with the provider. In this phase, consumer will
require tools that enable service quality monitoring and
service termination if needed. This will involve alerts to
humans or automatic termination based on policies defined
using the quality-related ontologies. The service monitor
measures the service quality and compares it with the
quality levels defined in the SLA. This phase spans both the
consumer and cloud areas as performance monitoring is a
joint responsibility. If the consumer is not satisfied with
the service quality, she/he should have the option to
terminate the service and stop service payment.

Fig. 7 illustrates the ontology for this phase. The composite
service is composed of human agents providing the service,
the service software, and dependent service components. All
the three elements, agents, software, and dependent services,
must be monitored to manage the overall service quality. The
providers have to track the service performance, reliability,
assurance, and presentation as it will influence customer’s
satisfaction rating (CSATs). Since the dependent services/
components will be at the back end and will not interface
directly with the consumers, the service provider only needs
to monitor their performance. We have proposed a frame-
work to manage quality based on fuzzy logic for such
composed services delivered on the cloud in [12].

4 CLOUD STORAGE SERVICE PROTOTYPE

In this section, we describe the prototype that we have
constructed as a proof of concept for our proposed life
cycle and ontology. This prototype is based on the actual
use case 3.9 [36] identified by NIST’s cloud computing
initiative. It demonstrates the capability that cloud users
will have in the future to automatically acquire IT services
from the cloud. There are many cloud providers, like
Amazon or Dropbox, that provide cloud storage services.
However, to show end-end operation of our system
(from policy specification to service acquisition), we
developed the prototype on an open source cloud platform
(Eucalyptus). This let us demonstrate, for example, that
the cloud provider could satisfy the user request for virtual
machine separation, which was a key requirement for
NIST. Our framework is fully capable of describing
such constraints, which we demonstrated by using real

JOSHI ET AL.: AUTOMATING CLOUD SERVICES LIFE CYCLE THROUGH SEMANTIC TECHNOLOGIES 117

Fig. 6. The ontology for the composition phase builds on the OWL-S composite process class.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on August 29,2024 at 13:05:26 UTC from IEEE Xplore. Restrictions apply.

constraints that represent federal agency requirements that
we obtained from NIST. However, there is no way for us to
invoke such mechanisms on closed clouds such as Amazon
or Dropbox. As such, the demonstration prototype is built
on an open-source platform.

4.1 Service Description

For the prototype, we consider a simple storage service, as a
representative scenario for infrastructure as a service,
whereby users can store their files/data on the cloud. It
consists of a web interface that enables cloud users to easily
define the service policies and constraints by choosing
predefined values from dropdown fields. The tool then
discovers the services that will match the specified policies.
A cloud-provider end server process interprets the policies
specified by the user(s) and establishes SLAs by the process
of negotiation.

We have incorporated actual enterprise policies related
to data storage and security that are practiced by large
organizations. We have used the policies defined in the use
case 3.9 [36] identified by the NIST cloud computing
initiative. While requesting the storage service, users will
specify the following service attributes depending on their
storage needs:

1. Storage size needed (in GB/TB units).
2. Service cost (the price consumers are willing to pay

for the service).

3. Data preservation/backup requirements (hot back-
up-Yes/No; daily/weekly).

4. Service availability (e.g., 99 percent, 99.9 percent).
5. Data location (restricted to a geolocation or can be

anywhere in the world).
6. Data deletion policy (data deleted or merely made

inaccessible, secure wipe or not).
7. Data Encryption policy (data stored encrypted or

not; encryption algorithm used, key strength).
8. Compliance policy—compliance or noncompliance

for a Trusted Internet Connection (TIC) specification,
CC Evaluation Assurance Level (EAL) levels.

9. User authentication mechanism (FIPS 140-2 sup-
ported?).

10. Virtual machine separation (supported or not).
11. Size, speed, and number of cores for an instance

specification.
12. SOAP or REST interface for a storage specification.

In addition to the NIST policies, we have also referred to

service procurement policies of a large international

financial organization. The main goal of this organization’s

service procurement policy is to acquire the “best value”

service that will have an optimal combination of technical

factors (like quality, functionality, service, innovation,

environmental sustainability) and financial factors (like

purchase price, total cost of ownership, etc.) that meet the

organization’s needs. To acquire the “best value” service in

118 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2014

Fig. 7. The ontology for the consumption phase contains classes to monitor the quality of software, human, and dependent components of
the composite process.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on August 29,2024 at 13:05:26 UTC from IEEE Xplore. Restrictions apply.

a transparent fashion, the organization’s policies mandate
that any purchases above US$25;000 have to be done via a
competitive procurement process that considers multiple
competing proposals from qualified suppliers and makes
an award decision based on the merits of each proposal,
relative to some predetermined criteria for best value.
Exceptions are made if the service product is sold by only
one vendor (sole-sourced) thereby rending the competitive
bid a moot point. To continue receiving “best value”
service, the service contract by policy is limited to three
years and then competitively rebid at the end of the third
year. Every service provider is expected to sign a service-
level agreement as part of the service contract. The essential
elements of the SLA include the availability time frame of
service, contingency plans, time frames for notification and
recovery following an unplanned service disruption or a
security incident, problem resolution and escalation proce-
dures, and scheduled maintenance times. We have used
these elements when developing the SLAs during the
negotiation phase.

4.2 Prototype Platform

We used Semantic Web technologies to build the front end of
our prototype as they are platform independent and inter-
operable. We used SPARQL, Jena Semantic Web framework
[8], and the Joseki software [9], which is an HTTP engine that
supports the SPARQL Protocol and the SPARQL RDF Query
language, to develop the prototype. After defining our
service, we created a SPARQL endpoint using Joseki to
simulate a service provider providing the service. Since the
Joseki server allows multiple service definitions, we used it
to simulate both multiple services provided by the provider

as well as multiple instances of a same service. The Joseki
service database contained the service description along
with the provider policies endpoint. For the cloud-end
processes, we used the Eucalyptus Cloud [21] which is an
open-source cloud platform that we have installed in our
research lab. We are using our service life-cycle ontology that
we described in the previous section and the OWL-S
ontology to develop the tool. In addition to these two
ontologies, we also created another OWL ontology to
describe the technical and security policies for our prototype.

4.3 Service Requirements

In the requirements phase, we identify the service layer
which is IaaS for our prototype, the service domain—in this
instance storage service—and the functional and technical
specifications. Functional specification describe in detail
what functions/tasks should the service help automate.
These are mandatory attributes that the service provider
must provide. For our prototype, the service attributes are the
storage size, backup rules, service availability, and service
costs. Specifications also list acceptable security levels, data
quality, and performance levels of the service software.
Service compliance details, like required certifications,
standards to be adhered to, and so on, are also identified.

Our prototype has a web-based user interface, illustrated
in Fig. 8, which allows consumers to generate their RFS by
using drop down lists. The interface logically separates the
various components of the RFS into four sections: the
mandatory service attributes include constraints that have
to be met, the data and security policies, compliance policies,
and cloud instance. Each field has an associate “Help”
description to help users determine which option to select.

JOSHI ET AL.: AUTOMATING CLOUD SERVICES LIFE CYCLE THROUGH SEMANTIC TECHNOLOGIES 119

Fig. 8. User interface for discovering cloud storage service by specifying constraints.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on August 29,2024 at 13:05:26 UTC from IEEE Xplore. Restrictions apply.

After selecting the values of their service attributes,
security policies, and compliance policies, the consumers

can press the “Request for Service” button to generate an RDF
document that contains the RFS. Fig. 9 illustrates the RDF/
XML document generated for the attributes selected in Fig. 8.

4.4 Service Discovery

The users can press the “Discover Services” button to search

for services that match the RFS issued. The tool generates
federated SPARQL queries, like the one illustrated in Fig. 10,
based on the selections on the screen. This query runs across

multiple SPARQL endpoints to retrieve a list of matching
services residing on that endpoint. Researchers like Sbodio
et al. [26] have also proposed algorithms for service
discovery using SPARQL language.

If a query matching all the constraints is found, it is
displayed on the screen. Else the user is advised to begin
service negotiation by selecting the Negotiation button.

4.5 Service Negotiation

The users can press the “Negotiate and Finalize SLA”
button to begin the service negotiation. The tool auto-
matically begins relaxing RFS constraints one by one by

removing the constraints from the SPARQL query and
generating a new SPARQL query to search the endpoints.

The order of constraints relaxation for this prototype was
determined by the NIST team that was collaborating with
us who specified the priority of each constraint in the RFS.
After each constraint relaxation, the tool executes a new
SPARQL query to discover services that match the new
constraint set. When a service match is found, the tool
returns the service details of that service along with a list
of constraints not met. The consumer can finalize the SLA
by accepting the service that best matched the constraints.
The final SLA is saved as an RDF file and is in machine
readable format.

4.6 Service Composition and Consumption

The user tool is interfaced to the Eucalyptus [21] cloud,
which is an infrastructure as a service cloud solution.
The tool and the Eucalyptus cloud were installed on
separate machines. Due to security reasons, the Eucalyptus

120 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2014

Fig. 9. RFS generated as an RDF/XML file.

Fig. 10. Service discovery by using the SPARQL query to get a service
description.

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on August 29,2024 at 13:05:26 UTC from IEEE Xplore. Restrictions apply.

installation had no direct internet access and no direct
access to the tool. The two systems communicated through
an intermediate node called Bluegrit which is a 116 core
PowerPC cluster managed at UMBC.

When the user clicks the Compose button, a virtual
machine is created on the Eucalyptus cloud environment.
The finalized SLA is referred to by an automated routine
when launching the virtual machine. The URI of the service is
then returned to the end user to begin consuming the service.
By clicking on the Launch Service button, the consumer is
directed to the service URI on Eucalyptus cloud environment.

5 CONCLUSION AND ONGOING WORK

In this paper, we have defined an integrated ontology for
processes needed to automate IT services life cycle on the
cloud. To the best of our knowledge, this is the first such
effort, and it is critical as it provides a holistic view of steps
involved in deploying IT services. Our approach comple-
ments previous work on ontologies for service descriptions
in that it is focused on automating the processes needed to
procure services on the cloud. The methodology can be
referenced by organizations to determine what key deliver-
ables they can expect at any stage of the process. We also
hope that it will enable the academia and the industry to be
on the “same page” when they speak about IT services on
the cloud.

The tool that we built successfully demonstrated how
our methodology can be used to significantly automate the
acquisition and consumption of cloud-based services
thereby reducing the large time required by companies to
discover and procure cloud-based services. We are in the
process of releasing this tool to multiple users to analyze
how this scales up.

As part of our ongoing work, we are working on
automating complex service negotiation process where
the negotiation is on a range of values for a constraint.
We are also updating and refining the ontology to capture
these complex negotiation protocols that we are designing.
We are working on integrating this tool with other cloud
computing platforms available in the industry today. One of
the first platforms that we are working on is the Virtual
Computing Lab (VCL) [37] platform provided by IBM. We
also plan on using enterprise policies from various
organizations to demonstrate the validity of this framework.

ACKNOWLEDGMENTS

The authors wish to thank Ms. Dawn Leaf, Program Director
of the Cloud Computing Initiative at NIST, for her support
for this work.

REFERENCES

[1] F. Baader, D. Calvanese, D. McGuinness, P. Patel-Schneider, and
D. Nardi, The Description Logic Handbook: Theory, Implementation,
and Applications. Cambridge Univ. Press, 2003.

[2] T. Berners-Lee, D. Connolly, L. Kagal, Y. Scharf, and J. Hendler,
“N3Logic: A Logical Framework for the World Wide Web,” Theory
and Practice of Logic Programming, vol. 8, no. 3, pp. 249-269, 2008.

[3] D. Bianchini, V. De Antonellis, B. Pernici, and P. Plebani,
“Ontology-Based Methodology for E-Service Discovery,” Int’l J.
Information Systems, Special Issue: The Semantic Web and Web
Services, vol. 31, nos. 4/5, pp. 361-380, June/July 2006.

[4] J. Black et al., “An Integration Model for Organizing IT Service
Management,” IBM Systems J., vol. 46, no. 3, pp. 405-422, 2007.

[5] B. Boehm, “A Spiral Model of Software Development and
Enhancement,” ACM SIGSOFT Software Eng. Notes, vol. 11, no. 4,
pp. 14-24, Aug. 1986.

[6] M. Hepp, “GoodRelations: An Ontology for Describing Products
and Services Offers on the Web,” Proc. 16th Int’l Conf. Knowledge
Eng. and Knowledge Management (EKAW ’08), pp. 332-347, 2008.

[7] I. Horrocks, P. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and
M. Dean, “SWRL: A Semantic Web Rule Language Combining
OWL and RuleML,” W3C member submission, 2004.

[8] Apache Software Foundation, “Jena - A Semantic Web Framework
for Java,” http://incubator.apache.org/jena/, Mar. 2012.

[9] “Joseki - A SPARQL Server for Jena,” http://www.joseki.org/,
Mar. 2012.

[10] K. Joshi, T. Finin, and Y. Yesha, “Integrated Lifecycle of IT
Services in a Cloud Environment,” Proc. Third Int’l Conf. Virtual
Computing Initiative (ICVCI ’09), Oct. 2009.

[11] K. Joshi, “OWL Ontology for Lifecycle of IT Services on the
Cloud,” http://ebiquity.umbc.edu/ontologies/itso/1.0/itso.owl,
2010.

[12] K. Joshi, A. Joshi, and Y. Yesha, “Managing the Quality of
Virtualized Services,” Proc. SRII Global Conf., Mar. 2011.

[13] L. Kagal, C. Hanson, and D. Weitzner, “Using Dependency
Tracking to Provide Explanations for Policy Management,” Proc.
IEEE Int’l Workshop Policies for Distributed Systems and Networks,
2008.

[14] J. Kopecky, T. Vitvar, C. Bournez, and J. Farrell, “SAWSDL:
Semantic Annotations for WSDL and XML Schema,” IEEE Internet
Computing, vol. 11, no. 6, pp. 60-67, Nov./Dec. 2007.

[15] O. Lassila et al., “Resource Description Framework (RDF)
Model and Syntax Specification,” W3C recommendation, 1999.

[16] D. Martin et al., “Bringing Semantics to Web Services: The OWL-S
Approach,” Lecture Notes in Computer Science, vol. 3387, pp. 26-42,
Springer, 2005.

[17] E.M. Maximilien and M. Singh, “A Framework and Ontology for
Dynamic Web Services Selection,” IEEE Internet Computing, vol. 8,
no. 5, pp. 84-93, Sept./Oct. 2004.

[18] D. McGuinness et al., “OWL Web Ontology Language Overview,”
W3C recommendation, 2004.

[19] P. Mell and T. Grance, “The NIST Definition of Cloud Comput-
ing,” National Institute of Standards and Technology Special
Publication 800-145, Sept. 2011.

[20] F. Liu et al., “NIST Cloud Computing Reference Architecture,”
National Institute of Standards and Technology Special Publica-
tion 500-292, Nov. 2011.

[21] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L.
Youseff, and D. Zagorodnov, “The Eucalyptus Open-Source
Cloud-Computing System,” Proc. Ninth IEEE/ACM Int’l Symp.
Cluster Computing and the Grid, pp. 124-131, 2009.

[22] M. Papazoglou and W. Van Den Heuvel, “Service-Oriented
Design and Development Methodology,” Int’l J. Web Eng. and
Technology, vol. 2, no. 4, pp. 412-442, 2006.

[23] S. Paurobally, V. Tamma, and M. Wooldrdige, “A Framework for
Web Service Negotiation,” ACM Trans. Autonomous and Adaptive
Systems, vol. 2, no. 4, article 14, Nov. 2007.

[24] E. Prud’hommeaux and A. Seaborne, “SPARQL Query Language
for RDF,” W3C recommendation, http://www.w3.org/TR/
rdf-sparql-query/, Jan. 2008.

[25] S. Ran, “A Model for Web Services Discovery with QoS,” ACM
SIGecom Exchanges, vol. 4, no. 1, pp. 1-10, 2003.

[26] M.L. Sbodio, D. Martin, and C. Moulin, “Discovering Semantic
Web Services Using SPARQL and Intelligent Agents,” J. Web
Semantics, vol. 8, no. 4, pp. 310-328, Nov. 2010.

[27] A. Sheth, K. Gomadam, and A. Ranabahu, “Semantics Enhanced
Services: METEOR-S, SAWSDL and SA-REST,” IEEE Data Eng.
Bull., vol. 31, no. 3, pp. 8-12, 2008.

[28] SLA@SOI, "What’s in a Service Level Agreement?” http://
sla-at-oi.eu/2009/03/what’s-in-a-service-level-agreement/, Mar.
2012.

[29] R. Smith, “The Contract Net Protocol: High-Level Communication
and Control in a Distributed Problem Solver,” IEEE Trans.
Computers, vol. 29, no. 12, pp. 1104-1113, Dec. 1980.

[30] Semantic Web, “SPARQL Endpoint,” http://semanticweb.org/
wiki/SPARQL_endpoint, Mar. 2012.

[31] J.V. Bon et al., Foundations of IT Service Management Based on ITIL
V3. Van Haten, 2008.

JOSHI ET AL.: AUTOMATING CLOUD SERVICES LIFE CYCLE THROUGH SEMANTIC TECHNOLOGIES 121

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on August 29,2024 at 13:05:26 UTC from IEEE Xplore. Restrictions apply.

[32] G. Williams, “SPARQL 1.1 Service Description,” http://www.
w3.org/TR/2009/WD-sparql11-service-description-20091022/,
2013.

[33] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Sheng,
“Quality Driven Web Services Composition,” Proc. 12th Int’l Conf.
World Wide Web, pp. 411-421, 2003.

[34] K. Ren, N. Xiao, and J. Chen, “Building Quick Service Query List
Using WordNet and Multiple Heterogeneous Ontologies toward
More Realistic Service Composition,” IEEE Trans. Services Comput-
ing, vol. 4, no. 3, pp. 216-229, July/Sept. 2011.

[35] A. Paliwal, B. Shafiq, J. Vaidya, H. Xiong, and N. Adam,
“Semantics Based Automated Service Discovery,” IEEE Trans.
Services Computing, vol. 5, no. 2, pp. 260-275, Apr.-June 2012.

[36] “Cloud Computing Use Case 3.9: Query Cloud-Provider Cap-
abilities and Capacities,” National Institute of Standards and
Technology working document, http://www.nist.gov/itl/cloud/
3_9.cfm, Nov. 2010.

[37] J. Moothoor and V.A. Bhatt, “A Cloud Computing Solution in
Universities,” IBM developerWorks technical document, http://
www.ibm.com/developerworks/webservices/library/ws-vcl/,
Jan. 2012.

[38] M. Xu, Z. Hu, W. Long, and W. Liu, “Service Virtualization:
Infrastructure and Applications,” The Grid: Blueprint for a New
Computing Infrastructure, I. Foster and C. Kesselman, eds., Morgan
Kaufmann, 2004.

[39] D. De Roure et al., “The Semantic Grid: Past, Present, and Future,”
Proc. IEEE, vol. 93, no. 3, pp. 669-681, Mar. 2005.

[40] T. Dörnemann, E. Juhnke, and B. Freisleben, “On-Demand
Resource Provisioning for BPEL Workflows Using Amazon’s
Elastic Compute Cloud,” Proc. Ninth IEEE/ACM Int’l Symp. Cluster
Computing and the Grid (CCGRID ’09), 2009.

[41] C. Crawford, G. Bate, L. Cherbakov, K. Holley, and C. Tsocanos,
“Toward an on Demand Service-Oriented Architecture,” IBM
Systems J., vol. 44, no. 1, pp. 81-107, 2005.

[42] Q.Z. Sheng et al., “Configurable Composition and Adaptive
Provisioning of Web Services,” IEEE Trans. Services Computing,
vol. 2, no. 1, pp. 34-49, Jan.-Mar. 2009.

[43] M. Boniface et al., “Dynamic Service Provisioning Using GRIA
SLAs,” Proc. Int’l Conf. Service-Oriented Computing (ICSOC ’07),
2007.

[44] A.J. Ferrer et al., “OPTIMIS: A Holistic Approach to Cloud Service
Provisioning,” Future Generation Computer Systems, vol. 28, pp. 66-
77, 2011.

[45] D. Chakraborty, F. Perich, S. Avancha, and A. Joshi, “DReggie:
Semantic Service Discovery for M-Commerce Applications,” Proc.
Workshop Reliable and Secure Applications in Mobile Environment in
Conjunction with 20th Symp. Reliable Distributed Systems, 2001.

[46] L. Badger et al., “US Government Cloud Computing, Technology
Roadmap, Volume I, Release 1.0 (Draft),” National Institute of
Standards and Technology Special Publication 500-293, http://
www.nist.gov/itl/cloud/upload/SP_500_293_volumeI-2.pdf,
Nov. 2011.

Karuna P. Joshi received the bachelors degree
in computer engineering from the University of
Mumbai, India, and the MS and PhD degrees in
computer science from the University of Mary-
land Baltimore County (UMBC), where she was
twice awarded the IBM PhD Fellowship. She is
now a research assistant professor at UMBC
whose primary research area is cloud computing
and healthcare IT. She has developed a frame-
work to automate the acquisition and consump-

tion of cloud-based services. She is currently researching cloud security
and privacy issues, especially related to healthcare services. She is also
working in collaboration with NIST to develop standards for cloud
usability. She has more than 20 years of experience, primarily as a
cloud researcher and an IT manager. She worked at the International
Monetary Fund for nearly a decade. Her managerial experience
includes portfolio management, program/project management, and
change management.

Yelena Yesha received the BSc degree in
computer science from York University, Toronto,
Canada, and the MSc and PhD degrees in
computer and information science from the Ohio
State University. She is currently a professor of
computer science and electrical engineering at
the University of Maryland, Baltimore County.
She is also the associate director for the
Multicore Computational Center. In addition,
she served as the director of the Center of

Excellence in Space Data and Information Sciences at NASA. Her
research interests are in the areas of distributed databases, distributed
systems, digital libraries, electronic commerce, and trusted information
systems. She has coauthored 14 books and authored more than 180
refereed articles in these areas.

Tim Finin holds degrees from MIT and the
University of Illinois and has also held positions
at Unisys, the University of Pennsylvania, and
the MIT AI Laboratory. He is a professor of
computer science and electrical engineering at
University of Maryland, Baltimore County. He
has more than 30 years of experience in
applications of artificial intelligence to problems
in information systems and language under-
standing. His current research focuses on the

Semantic Web, mobile computing, analyzing and extracting information
from text and online social media, and enhancing security and privacy in
information systems.

122 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2014

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on August 29,2024 at 13:05:26 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

