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Mining Social Networks for Viral
Marketing
Pedro Domingos, University of Washington

Traditionally, social-network models have been descrip-
tive rather than predictive. They’re built at a very coarse
level, typically with only a few global parameters, and

aren’t useful for predicting the network’s behavior. In the
past, this was due largely to lack of data; the networks
available for study were small and few and contained min-
imal information about each node.

Fortunately, the Internet’s rise has changed this dramati-
cally. Massive quantities of data on large social networks
are available from blogs, knowledge-sharing sites, collabo-
rative-filtering systems, online gaming, social-networking
sites, newsgroups, chat rooms, and so on. These networks
typically number in the tens of thousands to millions of
nodes. They often contain sufficient information to build
models of individual nodes, which we can then assemble
into models of the networks they’re part of. This gives us
an unprecedented level of detail in social-network analysis,
along with the potential for new understanding, useful pre-
dictions, and their productive use in decision making.

My colleagues and I have begun to build social-network
models at this scale using data from the Epinions knowl-
edge-sharing site, the EachMovie collaborative-filtering
system, and others.1,2 These models let us design viral-
marketing plans that maximize positive word of mouth
among customers. In our experiments, this has made it pos-
sible to achieve much higher profits than if we ignored
interactions among customers and the corresponding net-
work effects, as traditional marketing does.

Customers’ network values
Customer value is usually defined as the expected profit

from sales to a customer over the lifetime of his or her rela-
tionship to the company. Customer value is of critical inter-
est to companies because it determines how much is worth
spending to acquire a particular customer. However, tradi-
tional measures of customer value ignore the fact that in
addition to buying products, a customer can influence oth-
ers to buy them. For example, if I see a movie and persuade
three friends to see it with me, my customer value with
respect to that movie has effectively quadrupled, and the
movie studio is justified in spending more on marketing the
movie to me. Conversely, if I tend to decide what movies to
see on the basis of what my friends tell me, marketing to me
might be a waste of resources that would be better spent

Social Networks Applied

Social networks have interesting properties. They influence our
lives enormously without us being aware of the implications they
raise: How does a kind of fashion become en vogue? How does a
virus spread and infect people? How does a research topic become a
hot topic? Why are some companies successful and others aren’t? All
these questions affect us, and understanding them by building and
investigating computational models might give us a powerful tool to
improve our health system, increase individual and general wealth,
or just increase awareness about how the people around us actually
influence our opinions, which we frequently believe that we shape.

Pedro Domingos investigates how to exploit our unprecedented
wealth of data and how we can mine social networks for purposes
such as marketing campaigns. It’s fascinating how such techniques
could turn current marketing strategies upside down.

Peter Mika considers a particular form of influence: the way that
people agree on terminology and this phenomenon’s implications
for the way we build ontologies and the Semantic Web. In a nut-
shell, he concludes that the Semantic Web will either include social
networks’ influence in its architecture or wither away.

While Peter and Pedro target social networks as something we
can discover from data, Jennifer Golbeck takes a constructivist view:
people already provide explicit social network information in formats
such as friend-of-a-friend files. If we refine this kind of information,
we could offer a wealth of new applications, such as better recom-
mendations for restaurants, trustworthy email senders, or (maybe)
blind dates.

Li Ding, Tim Finin, and Anupam Joshi also take a constructivist
view by investigating the richness and difficulty of harvesting FOAF
information.

Andrzej Nowak and Robin R. Vallacher conclude this issue from
the viewpoint of social scientists who’ve studied extensively how
information processing is bound to social context. They point us to
the intriguing ways that network topology’s definition determines
its outcomes. —Steffen Staab



marketing to my friends. A customer’s net-
work value is the expected increase in sales
to others that results from marketing to that
customer.

Clearly, ignoring customers’network val-
ues, as traditional direct marketing does, can
lead to suboptimal marketing decisions. But
while the marketing literature has acknowl-
edged network effects’existence, it has gener-
ally considered them unquantifiable, particu-
larly at the individual-customer level. The
data sources now available have changed this.

Our models let us measure a customer’s
network value. We model how likely each
customer is to buy some product, as a func-
tion of the customer’s and product’s intrin-
sic properties and of the influence of the
customer’s neighbors in the network. By
performing probabilistic inference over the
joint model of all customers, we can answer
questions such as, “If we market to a partic-
ular set of customers, what’s the expected
profit from the whole network after those
customers’ influence has propagated through-
out?” Using this capability, we can search
for the optimal set of customers to market
to—that is, the set that will yield the highest
return on investment. Intuitively, we can look
for the customers with the highest network
values, market to them, and reap the benefits
of the ensuing wave of word of mouth.

Factors that influence network
value

What makes for a customer with high
network value? Clearly, high connectivity
in the network should help, but our model
identifies other factors.

Customer opinion
First, it’s important that the customer like

the product, preferably a lot. Customers who
have high connectivity but dislike a product
can have negative network value, and we
should avoid marketing to them. In our exper-
iments with EachMovie, our model took this
into account, which helped it outperform a
standard direct-marketing approach. The
standard approach assumed that the most it
had to lose by marketing to a customer who
didn’t like the product was the marketing’s
cost, which is typically small per customer.
As a result, the standard approach marketed
even to customers whose chances of liking
the product were relatively low.

Asymmetric influence
Another key aspect is that to have high

network value, a customer should influence
his or her acquaintances more (ideally much
more) than they influence that customer. If
influence is symmetric, searching for the
most influential customers has no advan-
tages. Fortunately, asymmetric influence is
widespread in practice, and our approach
exploits it. While various fields have well-
known opinion leaders, such as celebrities,
our approach lets us identify them at the
local level.

Chain of influence
Perhaps most important, a customer’s

network value doesn’t end with his or her
immediate acquaintances. Those acquain-
tances in turn influence other people and 
so on until they potentially reach the entire
network. A customer who’s not widely con-
nected might, in fact, have high network

value if an acquaintance is highly connected
(for example, an advisor to an opinion
leader). In our experiments with the Epin-
ions Web site, the most valuable customer
had a network value of over 20,000, mean-
ing that marketing to him was as effective
as marketing to over 20,000 others in the
absence of network effects. However, the
customer’s number of direct links to others
in the network—that is, people who read his
reviews—was much smaller.

Our model’s consequences
Word-of-mouth marketing might not be

effective in some markets because the req-
uisite influence networks aren’t present.
Although this is known at a high level for
some market types,3 many startup compa-
nies have failed by investing heavily to
unleash network effects that never material-
ized. Conversely, trials for some products,

such as cash cards and interactive tele-
vision, have failed because the companies
didn’t appreciate that giving the product 
to a small sample of isolated customers
doesn’t allow network effects to take hold.
When the data is available, our models let
us measure these effects precisely and
make better decisions.

Another interesting consequence of our
model is that it might pay to lose money 
on some customers, if they’re influential
enough. In traditional direct marketing,
customers receive an offer only if their
expected profits exceed the offer’s cost. In
viral marketing, giving a free product to a
well-chosen customer could pay off many
times in sales to other customers.

Maximizing word of mouth
Given a social-network model, we have

a well-defined optimization problem: choose
the set of customers to market to so as to
maximize net profits—that is, profits from
sales minus marketing’s cost. David Kempe,
Jon Kleinberg, and Éva Tardos have shown
this problem to be NP-hard, but approx-
imable within 63 percent of the optimal
using a simple hill-climbing search proce-
dure.4 We obtained similar results with an
even faster approach: we added each cus-
tomer to the current marketing set as long
as this improved overall profit.

With careful implementation, the poten-
tially prohibitive cost of performing proba-
bilistic inference over the whole network at
each search step (necessary to measure the
effect of adding a customer to the marketing
set) also turns out not to be a problem. This
is because the vast majority of customers
have low network values; their influence
doesn’t propagate far, so the computation
for them converges quickly. For the few
customers with high network values, the
computation can indeed take substantial
time, but amortized over all search steps, it
becomes quite manageable. We found the
optimal marketing set for a network with
tens of thousands of nodes in minutes.

No matter how much data we have, com-
pletely capturing the network of social inter-
actions among people in the real world will
never be feasible. So, the important question
arises of whether our approach to maximiz-
ing word of mouth still works when our
knowledge of the network is incomplete.
We’ve tested this by randomly removing a
variable number of edges from the network
before passing it to the data-mining system.
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We found the system to be quite robust, with
70 percent of the total increase in profit
obtained when the system knew only five per-
cent of the edges. We can also use our model
to determine the most cost-effective way to
gather additional knowledge. We’ve found
that the simple heuristic of iteratively asking
the customers with the highest network value
who their acquaintances are is quite effective.

Prospects
Traditional marketing is in crisis because

customers are increasingly inured to televi-
sion commercials, direct mailings, and so
on. At the same time, companies such as
Amazon, Google, and Hotmail succeed
with virtually no marketing, solely on the
basis of word of mouth.3 A recent study
found that positive word of mouth among
customers is by far the best predictor of a
company’s growth.5 Word-of-mouth mar-
keting has a key advantage: a recommenda-
tion from a friend or other trusted source
has credibility that advertisements lack.6

Because it leverages customers themselves
to do the marketing, it can also produce
unparalleled returns on investment. Until
now, it’s been somewhat of a black art. Our
goal is to put it on a firmer foundation, and
the results so far are promising.

Beyond marketing, word-of-mouth opti-
mization is potentially applicable in any
setting where we desire a large social out-
come with limited resources. Examples
include reducing the spread of HIV, com-
bating teenage smoking, and grassroots
political initiatives. Until recently, sociol-
ogy lagged behind other sciences in devel-
oping a computational branch. The wealth
of social data the Internet provides could
change this, and we see our work as a step
in this direction.

We’ve only begun to scratch the surface of
the rich set of possibilities that building pre-
dictive social-network models opens up. Real
social networks evolve and have multiple
types of arcs and nodes. Multiple players’
actions affect them, and we can mine them
from a combination of sources. Because data
points aren’t independent and identically
distributed, subtle statistical issues arise.
We’re designing a rich language for model-
ing these and other aspects of social net-
works and developing learning and infer-
ence algorithms for it. This language, called
Markov logic networks, combines the prob-
abilistic modeling of Markov random fields
with first-order logic’s expressiveness.7 In

preliminary experiments, it speeded devel-
opment of a complex social-network model
and yielded more accurate predictions than
standard methods.

We’re all familiar with the notion that a
butterfly flapping its wings in Beijing can
cause a storm in New York. At the same time,
the chances that a given butterfly flapping its
wings will indeed cause a storm in New York
are very small. Our approach, in a nutshell, is
to ask, “If we wanted to cause a storm in New
York, and could make a few butterflies flap
their wings, which ones would we choose?”
Our experiments so far show that, at least in
the marketing world, this is an effective way
to unleash storms on demand.
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Social Networks and the
Semantic Web: The Next
Challenge
Peter Mika, Free University Amsterdam

The 2004 International World Wide Web
Conference heralded the completion of the
first phase of the World Wide Web Consor-
tium’s Semantic Web Activity (www.w3.

org/2001/sw/Activity): laying the Semantic
Web architecture’s foundations. Publications
and demonstrations at past WWW events
and the International Semantic Web Confer-
ence series have presented an impressive
picture of standardized representation lan-
guages, from RDF Schema to variants of
OWL; tools for creating, storing, querying,
and reasoning with ontologies; and brows-
ing, search, and knowledge-sharing appli-
cations, driven by the ontologies under the
hood. With Semantic Web Activity Phase 2
beginning, the message is that by and large,
the Semantic Web is ready for deployment.

Looking more closely, some issues seem
to be left for future research—those hot
potatoes Semantic Web researchers have
passed around from the beginning. Two in
particular stick out from the thick proceed-
ings volumes: ontology learning and ontol-
ogy mapping. Ontology learning or extrac-
tion is the attempt to recreate a conceptual
model from existing knowledge sources, in
particular natural text. Ontology mapping
(also known as merging, alignment, and so
on) refers to finding and reconciling the
relations between two or more conceptual
models and creating a single model that
captures their intentions and the relationships
between them.

The underlying reason that automating
these tasks is difficult is our machines’ lack
of understanding when it comes to ontolo-
gies. Interestingly, this is the problem the
Semantic Web set out to solve—the idea
being that we would attach machine-
processable descriptions to content that’s
otherwise unintelligible to computers. As
the well-known slide about what it’s like 
to be a computer illustrates, although the
machine doesn’t understand strings of
human symbols, it has no problem identify-
ing the parts in angled brackets. Many have
noted that the strings in the angled brackets
are just symbols as well, but at least their
limits are clear. Our machines have no prob-
lems applying all kinds of rules to them,
generating further symbols along the way
(or pointing out to us that the way we used
them is inconsistent with the rules we set
out for them). If the conclusions don’t seem
to be intelligent or are surprising to us, we
add more rules to fix it.

What the machine can’t do is access what
we think those symbols’ interpretations are,
and therein lies the problem. Unfortu-
nately, this is the crux of ontology learning
and mapping.
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Semantics are us
Creating and reconciling interpretations

is a human-complex problem, as Figure 1
illustrates. The picture is a puzzle, although
an easier one than the computer must face,
because we uncovered two of the network’s
three terms. The puzzle imitates the basic
step of creating or recreating interpreta-
tions, namely placing or retrieving a new
concept on the basis of the context. The
question to the reader is, “What concept is
hidden under the code?”

Unfortunately for the computer, this chal-
lenge’s answer is a matter of association.
What comes to your mind when you look at
the combination of these terms? The answer
necessarily depends on your mental schemata;
you’ll accept an answer as plausible based
on your own response. Interestingly, we hap-
pen to know the answer that came from a set
of Edinburgh college students in 1973.

Knowledge engineers collected that year’s
Edinburgh Associative Thesaurus by hand-
ing a list of words to students and instructing
them to write as quickly as possible next to
each stimulus word the first word it made
them think of. The experiment’s next round
used those words. The engineers repeated the
cycle three times; by then, the number of
responses was so large that they couldn’t all
be reused as stimuli.

According to the EAT, the shortest path
from love to money in the students’ minds
runs through the notions of girl and security
(see Figure 2). If we consider only lines with
weights less than five, the path runs as fol-
lows: love, sex, yes, please, thanks, a lot,
money. So much for Edinburgh college stu-
dents’ love lives in the ’70s.

Deeper network analysis confirms that
money was central to these students’ thought
processes (it had the largest inward degree
and betweenness centrality), even more so
than sex.1 Moreover, it appears that the stu-
dents also had water and food on their mind,
when not preoccupied with the ideas men-
tioned earlier.

The EAT is actually an ontology. The
ontology-engineering method is particularly
revealing, because once the initial set of
words is selected, the only parameter to the
process is the population chosen. In particu-
lar, the knowledge engineer has no other
role than handing out questionnaires and
collecting responses. Some results are likely
to hold for other communities (such as the
overwhelming tendency for Christians to
say “Noah” when they hear “ark”), but the

experiment’s subjects’ collective mindset
drives many of the aggregated associations.
The well-known dynamics of social net-
works create this collective mindset: interac-
tion creates similarity and vice versa. (Caveat
to the second part: in practice, physical con-
straints such as geographic distance often
limit interaction.)

Communities and the
Semantic Web

Even if we should try to avoid entering
old debates about the nature of knowledge
and learning, we should bow to the social
sciences at this point and consider knowl-
edge’s embeddedness in the social context.
(For a summary of the different views on
knowledge and learning, see Figure 3.) I
believe we can learn something here for the
Semantic Web. Communities aren’t merely
sets of users, but an integral and dynamic
part of the architecture. Without intending
or even realizing, we’ve elevated them to
this place by integrating the notions of on-
tology and semantics into the first Web’s
technological framework.

It’s easy to predict what’s going to fail if
we decide to ignore social-context elements.
Communities will start creating their own
ontologies that reflect their identities, lan-
guages, and collective intelligence, develop-
ing them through interaction surrounding a
practice or interest. With these ontologies,
the communities will annotate their online or
offline content. Communities, ontologies,
and content make up the three layers of the
Semantic Web (see Figure 4). Islands of
semantics will arise unless we find a way to
map these ontologies. Mappings, however,
just reflect the similarities in the conceptu-
alizations the separate communities have
developed, possibly through interaction
between community members.

Further, these conceptualizations change

as communities evolve and learn. Unless we
make communities part of the system, the
system will have significant difficulties catch-
ing up with changing semantics. (Ontology
versioning is really an ontology mapping
problem between a model’s old and new
versions.)2 The more unstable knowledge is,
the more difficulty we can expect in formal-
izing and sharing it on a large scale.3

If all this sounds a bit gloomy, I should
quickly add that we might have already
come across a way toward the solution by
pure chance. Created and spread for the sole
purpose of having fun (another first for the
Semantic Web), the Friend of a Friend pro-
ject’s simple ontology lets us identify, de-
scribe, and relate users using URIs (uniform
resource identifiers), RDF, and a few extra
terms, just as we would with conventional,
Web-accessible resources such as HTML
pages. On the representation side, it’s a
small step from here to associating FOAF’s
users and groups to the Semantic Web’s
ontologies and metadata.

It will take time and a new, interdiscipli-
nary mindset to find out how we could
characterize a community’s relationship to
an ontology and its content and what this
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relationship means for an ontology’s use and
the metadata created with it. How could we
move part of the social process surrounding
ontologies within the system’s boundaries
so that we can give our machines a chance to
get a grip on the messy, confused world of
human knowledge?

Proof of concept
Many researchers have used a Web key-

word index such as Google for ontology-
learning purposes, most recently in Philipp
Cimiano and his colleagues’ excellent

work.4 In my recent effort, I’ve extended
this technique with the EAT idea, building
a conceptual model that reflects a com-
munity’s rather than the whole Web’s wis-
dom. Besides mining social networks from
the Web, as in the pioneering ReferralWeb
project,5 I queried Google with community
members’ names (in my case, Semantic
Web researchers), along with terms from
their domains, such as research topics, tool
names, and so on. I’ve measured the asso-
ciations among people and concepts by the
number of pages returned—that is, the num-

ber of pages where the name and the concept
co-occur—after a normalization step (see
also the online demonstration at http://flink.
semanticweb.org).6,7

By taking the most highly associated
individuals as representatives of a concept
or of community members, I measured the
associations between concepts by the num-
ber of people shared between the two com-
munities, much like the EAT (see Figure 5).
Although the method is under evaluation,
the first results suggest that an ontology
obtained this way represents the community
better than one obtained by mining associa-
tions on the basis of all of  Google’s index
pages, especially when it comes to terms
that have both a generic and a community-
specific interpretation (see Figure 6). For
me, this simple experiment is the proof of
concept: elusive, fuzzy communities are a
real independent variable in learning an
ontology. If I’d run the same experiment with
the Edinburgh master’s students’names, I’m
certain I would have gotten a quite different
picture.

As for the Semantic Web Activity’s
Phase 2, the message is clear. It’s time to
think about that final layer of the Semantic
Web architecture, the social structures and
processes that one day will lead us to a sus-
tainable worldwide ecosystem of people
and semantics.
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Sharing and Using Links in
Social Networks
Jennifer Golbeck, University of Maryland

Social networking has grown dramatically
more popular since the release of the film Six
Degrees of Separation and the now-infamous
Kevin Bacon Game’s popularization (see the
Related Links sidebar). In the past few years,
several Web sites have emerged to support
the public interest in social networking.
Some, such as LinkedIn, focus on building
business relationships, while others, such as
Tribe, Orkut, and Friendster, have social and
entertainment motivations. Recently, a Web
site even emerged to extend social network-
ing to our dogs, though the people at Dogster
prefer that you call it social petworking.

Data about millions of people and their
connections is publicly available on the
Web. Users spend a lot of time maintaining

their data, building up networks, and brows-
ing links. If it’s possible to integrate this
distributed data into centralized models, we
should be able to create socially aware,
intelligent applications that will let users
benefit from their participation in online
social networks. To achieve this goal, we
must answer two questions. First, how can
we merge data from separate databases into
a large social network model that applica-
tions can access? Second, how can social
networks benefit users?

The Friend of a Friend project
The question of making data accessible

and understandable by applications has a
strong foundation of work behind it. The
Friend of a Friend project is one of the
Semantic Web’s largest and most popular.
It’s essentially a vocabulary for describing
people and whom they know. Literally mil-

lions of FOAF files exist on the Semantic
Web, some from users who’ve authored
their own data and others from Web sites
that publish data from their databases using
the FOAF ontology. Because users are begin-
ning to accept FOAF as something of a
standardized ontology for representing
social networks on the Semantic Web, it’s a
good option for Web sites that want to start
sharing some of their data.

However, FOAF isn’t a complete data-
sharing solution. The vocabulary has a lim-
ited set of properties, and only one type of
relationship exists between people: the
“knows” relationship. In reality, the scale of
knowing someone varies from lifelong best
friend to Internet acquaintance. A specific
application might want properties that aren’t
part of FOAF, but on the Semantic Web,
that’s not much of a problem. By nature, the
Semantic Web lets individual projects make
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Figure 6. The resulting community ontology is the result of folding Figure 5’s bipartite graph and normalizing the weights using
geometric normalization.

The Oracle of Bacon at Virginia: www.cs.virginia.edu/oracle
LinkedIn: www.linkedin.com
Tribe: www.tribe.net
Orkut: www.orkut.com
Friendster: www.friendster.com
Dogster: www.dogster.com
Friend of a Friend project: www.foaf-project.org
Trust and Reputation project: http://trust.mindswap.org
Friend of a Friend Relationship module: www.perceive.net/schemas/20021119/
relationship

Related Links
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their own extensions to the vocabulary while
preserving FOAF as a core. My own project,
for example, studies trust in social networks.
FOAF doesn’t define trust, but my simple
ontology extends FOAF with trust properties.
Another project—the FOAF Relationship
module—defines a long list of relationship
types.

The benefits of using FOAF as a core are
twofold. A Web site that understands FOAF
can augment its own databases with infor-
mation gathered from other FOAF files on
the Web. Also, by publishing a set of data
with a FOAF core on the Semantic Web,
Web sites provide a service to users because
other FOAF-based services can now use
that data. (Paul Mutton describes one tech-
nique for spidering FOAF data and creating
applications with it.1)

Applications
Access to this large data model holds great

promise for improving and developing intel-
ligent systems. Based on the time they spend
developing networks online, users clearly
feel that there’s a benefit to building social
networks. The question to us as scientists is,
“What can we do with the connections in
these networks?” Some of the greatest poten-
tial for creating socially intelligent systems
lies in being able to compose relationships
within the network and integrate that infor-
mation into systems.

What can we say about two people con-
nected by intermediate friends? With the
standard approach of social networking,
which has a single relationship indicating
some sort of connection, we have too little
information to say much. By adding dimen-
sion to relationships, more possibilities open
up. Once we start refining relationships, we
can ask a series of questions that will affect
the analysis and potential for composition. If
Alice and Chris aren’t directly connected in
a social network, and we want to calculate a
recommendation about the relationship
between them, we need to know about the
relationships and intermediate people con-
necting them.

Using trust as an example, say Alice
highly trusts Bob, and Bob highly trusts
Chris. Can we recommend that Alice
should have some level of trust for Chris?
It’s debatable, but in practice, we use this
sort of social logic every day. Asking for a
recommendation about a mechanic or
restaurant employs exactly this type of
computation, taking into account the trust

we have for the person we’re asking and
their trust of the mechanic or restaurant.
Blind dates are another (albeit often unsuc-
cessful) application of the same logic.

With algorithms that can accurately infer
relationships between people—be they trust
relationships or other types—using those
inferences in applications is a natural next
step. Continuing with the trust example, we
can integrate recommendations we make
about trust using a social network in many
contexts: using ratings to allow access to per-
sonal information on the Web, using them as
a filter for Web-based information, or, as in
one of my projects, integrating ratings into
an email client. In email, we could use rat-
ings as scores for email messages, indicating
how much the user should trust the sender—
even if they’ve never met.2 That essentially
creates a social email filter, benefiting from
algorithms applied to large social networks.

Certainly, we can use values in other
ways and compose other types of relation-
ships. The core point is that we must be able
to bring something useful to systems from
social networks. Telling users the number
of relationships and number of friends-of-
friends they have might be entertaining, but
falls short of offering any real assistance.
The Web-based infrastructure exists that
will let people and Web sites share social
network data in a distributed way, and that
will let services and applications aggregate
that large set of data into queriable models.
Our work must focus on doing something
with the social network, like composing
relationships. In that type of analysis lies
the real ability for creating intelligent,
socially aware systems that integrate the
social and computational.
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Analyzing Social Networks on
the Semantic Web
Li Ding, Tim Finin, and Anupam Joshi,
University of Maryland, Baltimore County

The past year has seen a dramatic increase
in the amount of social information published
in RDF documents. Our investigations show

that the Friend of a Friend ontology (http://
xmlns.com/foaf/0.1) is among the most-
used Semantic Web ontologies.1,2 This is
true if we measure the number of Semantic
Web documents (SWDs) that use the FOAF
namespace, as Table 1 shows, or the number
of triples using FOAF terms. The Swoogle
Ontology Dictionary (http://swoogle.umbc.
edu) shows that the class foaf:Person (the quali-
fied name, or QName, of http://xmlns.com/
foaf/0.1/Person) has nearly one million
instances spread over about 45,000 Web
documents. The FOAF ontology isn’t the
only one people use to publish social informa-
tion on the Web. For example, Swoogle iden-
tifies more than 360 RDF Schema or OWL
classes defined with the local name “person.”

The Semantic Web and social-network
models support one another. On one hand,
the Semantic Web enables online and explic-
itly represented social information; on the
other hand, social networks, especially
trust networks,3 provide a new paradigm
for knowledge management in which users
“outsource” knowledge and beliefs via
their social networks.4 To turn these objec-
tives into reality, we need to address many
challenging issues such as

• Knowledge representation. Although
various ontologies capture rich social
concepts, we don’t need hundreds of
dialectic ontologies defining the same
concept. How can we coalesce around a
small number of common, comprehen-
sive ontologies?

• Knowledge management. Compared to
the entire Web, the Semantic Web is
fairly well connected at the RDF-graph
level but poorly connected at the RDF-
document level. The Semantic Web’s
open, distributed nature introduces other
issues. How do we provide efficient, effec-
tive mechanisms for accessing knowledge,
especially social networks, on the Seman-
tic Web?

• Social network extraction, integration,
and analysis. Even with well-defined
ontologies for social concepts, extracting
social networks correctly from the noisy,
incomplete knowledge on the Semantic
Web is difficult. What are good heuris-
tics for integrating and fusing social
information, and what metrics are useful
for the results’ credibility and utility?

• Provenance- and trust-aware distributed
inference. Provenance associates facts
with social entities that are interconnected
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in social networks. We can derive trust
among social entities from social net-
works. How do we manage and reduce
the complexity of distributed inferences
by using provenance of knowledge in the
context of a given trust model?

Datasets
To understand how social networks on

the Semantic Web are being modeled, we
collected two datasets: DS-SWOOGLE and
DS-FOAF. (We noticed that these datasets
are the largest among related works.1,5,6)
We used Swoogle, a crawler-based index-
ing and retrieval system for Semantic Web
documents, to collect the first dataset,2

which provides a baseline model of the
ontologies and information encoded in
RDF on the Web. The dataset shows that
the terms in the FOAF ontology, especially
foaf:Person, are among the most used and
populated. (We say that a class or property
is populated when it has direct instances.)
We assume that it’s reasonable to use the
foaf:knows property to connect people forming
social networks. Therefore, we collected the
second dataset for the SemDis project1 to
focus on available FOAF documents con-
taining instances of foaf:Person. We collected
both datasets from conventional Web search
engines, user-supplied URLs, and our
Semantic Web crawlers.

DS-SWOOGLE

At the time of this writing, DS-SWOOGLE

represented more than 335,000 valid SWDs
(that is, online RDF documents in formats
such as RDF/XML and N3). The SWDs
contain about 47,000,000 RDF triples and
are hosted by about 125,000 Web sites.
(Swoogle is running continuously, and its
database grows as new SWDs are added to
the Web.) Swoogle samples at most 10,000
documents from each Web site to avoid
being overwhelmed by Web sites with mil-
lions of RDF documents. Swoogle Ontol-
ogy Dictionary and Swoogle Statistics are
based on this dataset.

DS-FOAF and DS-FOAF-VAR
The DS-FOAF dataset has over one mil-

lion valid online FOAF document URLs
from over 1,800 sites. We consider a FOAF
document to be any RDF document that has
at least one instance of the foaf:Person class.
We count Web sites by DNS (Domain Name
System) name in DS-SWOOGLE and by IP
(Internet Protocol) address in DS-FOAF.

Five major blog sites, which use limited
vocabularies and fixed structures in describ-
ing personal profiles, host more than 95 per-
cent of the URLs. To reduce these sites’
impact, we studied a smaller dataset, DS-
FOAF-VAR, which considers Web sites that
host at most 1,000 FOAF documents. This
dataset has over 7,000 FOAF documents
drawn from 1,065 Web sites that define
nearly 37,000 instances of foaf:Person. These
include 4,158 strict FOAF documents, in-
tended to describe one person and his or her
acquaintances. Table 2 shows the two data-
sets’ detailed statistics.

Building a common social
ontology

The Semantic Web provides a powerful

distributed mechanism to represent and
publish social network information. Al-
though FOAF terms are widely used to
encode social relations, other ontologies
show up as well. We expect these to coa-
lesce and merge as they evolve. In light 
of the statistical approach to finding com-
mon terms,1,5 we studied a particular class:
foaf:Person, the most frequently used class for
describing personal profiles, according to
our datasets. The definition of foaf:Person
comes from three sources: its ontology defi-
nition, which relates it to other classes; the
ontological properties that relate to it via
rdfs:domain relation; and empirical properties,
which correlate with it by modifying its
instances (see Figure 1).

The DS-SWOOGLE dataset includes 17

Table 2. Statistics of DS-FOAF and DS-FOAF-VAR.

DS-FOAF DS-FOAF-VAR

max avg std max avg std

Persons/doc 2,216 30.5 52.3 2,196 5.1 49.4

SeeAlso/doc 2,238 29.3 51.8 2,066 1.9 36.7

Triples/person — — — 3,192 5.5 36.1

Table 1.The seven namespaces most frequently used in RDF documents 
(from Swoogle).

Namespace URI Number of documents

1 www.w3.org/1999/02/22-rdf-syntax-ns# 200,097 ( 96.9%)

2 http://purl.org/dc/elements/1.1/ 146,923 ( 71.2%)

3 http://purl.org/rss/1.0/ 111,595 ( 54.0%)

4 http://webns.net/mvcb/ 68,330 ( 33.1%)

5 http://xmlns.com/foaf/0.1/ 49,504 ( 24.0%)

6 www.w3.org/2000/01/rdf-schema# 44,656 ( 21.6%)

7 http://purl.org/rss/1.0/modules/content/ 28,607 ( 13.9%)

       Ontology definition
• rdfs:subClassOf—foaf:Agent
• rdfs:label—“Person”

foaf:mbox

owl:Class

foaf:name

“Tim's FOAF File”
dc:title

rdfs: domain
rdfs: domain

rdfs:subClassOf
rdfs:label
“Person”

rdf:type
rdf:type

foaf:name

SWD1Ontological properties
       • foaf:mbox
       • foaf:name

Empirical properties
       • foaf:name
       • dc:title

foaf:Agent

SWD2 SWD3

“Tim Finin”

foaf:Person

Figure 1. Three sources of term definition.



88 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

ontologies that add to the foaf:Person defini-
tion. For example, it is defined both as an
owl:Class and as an rdfs:Class and has the named
super-classes foaf:Agent, wordnet:Person, geo:Spa-
tialThing and con:Person (the geo prefix refers to
www.w3.org/2003/01/geo/wgs84_pos#
and the con prefix refers to www.w3.org/
2000/10/swap/pim/contact#). DS-SWOOGLE

reveals 162 ontological properties of foaf:Per-
son, most representing social relations. Sev-
enty-four properties exist whose rdfs:domain
and rdfs:range are both foaf:Person. DS-SWOOGLE

also finds 558 empirical properties of foaf:Per-
son that are populated with instance data.
Tables 3 and 4 list the 10 most frequently
used empirical properties, which suggest
that people publishing personal information
are concerned about privacy. They use the
property foaf:mobx_sha1sum (which hides the
true email address) much more frequently
than foaf:mbox.

The empirical cardinality also shows how
users organize their profiles. The high value
for maximum cardinality results from an

unusual usage of FOAF vocabulary to build
a collection of FOAF documents. In Table
4, the properties that documents (but not in-
stances) use frequently tend to describe the
strict FOAF documents’ owner.

Extracting social networks
Extracting social networks from noisy,

real-world data is challenging, even if the
information is already encoded in RDF
using well-defined ontologies. The process
has three steps: discovering instances of
foaf:Person, deciding which instances denote
the same person and merging their informa-
tion, and linking people through various
social-relation properties, such as foaf:knows.
Determining whether two foaf:Person in-stances
denote the same person is the critical, but dif-
ficult, step. The semantics of FOAF vocabu-
lary suggest several heuristics to answer this
question, such as

• Named URI. Non-anonymous individuals
using the same URI denote the same person.

• Inverse-functional properties. Inverse-
functional properties such as foaf:mbox
and foaf:homepage identify unique individ-
uals. In practice, we can use one or more
properties that aren’t strictly inverse
functional, such as foaf:name and foaf:nick,
in conjunction with other properties such
as foaf:phone to identify individuals with
high probability.

• Semantic equality. When two or more
values of an inverse-functional property
coexist in an individual’s description,
they’re semantically equivalent to identi-
fying the same individual.

• rdfs:seeAlso. This property almost always
links to a strict FOAF document where
the root and referrer persons are the
same.

In our preliminary study of DS-FOAF-
VAR, we applied the first three heuristics
and only consider foaf:mbox_sha1sum and
foaf:mbox as inverse-functional properties.
We found 18,603 merged people, but only
10,247 have unique identifiers. Figure 2
shows that the cumulative distribution of
group size follows a Zipf distribution.
Here, group refers to the collection of indi-
viduals being merged as a person.

These heuristics for merging individuals
can fail in two ways: inconsistency and
separation. OWL gives one inconsistency
criterion, where cardinality constraints
limit a property’s semantically distinct val-
ues. For example, when property P has an
owl:cardinality of one when modifying class C,
all P’s values for an individual of type C
should be semantically equivalent. In prac-
tice, because most people only have one
name, we derive a cardinality constraint
over foaf:Person. We can validate a person’s
semantic consistency by checking whether
it has two different names. Separation occurs
when a person’s information remains in two
disjoint groups after merging. This gives
rise to a dilemma—applying more merge
heuristics might reduce separation but
increase inconsistency.

Social network analysis
Social network analysis (SNA) is a large,

active research area, so we’ve limited our
work to studying some of the extracted
social network’s basic graph features. Peter
Mika shows more applications of basic
SNA measures on a smaller social network
(n = 167) extracted from FOAF and other
Web sources.7

Table 4. Top 10 empirical properties of foaf:Person in DS-FOAF-VAR.

Property usage per document Property usage per instance

1 foaf:name 80% foaf:name 65%

2 foaf:mbox_sha1sum 70% foaf:mbox_sha1sum 60%

3 foaf:nick 51% rdfs:seeAlso 37%

4 foaf:homepage 40% foaf:nick 24%

5 foaf:depiction 35% foaf:homepage 16%

6 foaf:weblog 30% foaf:mbox 14%

7 foaf:knows 28% foaf:weblog 14%

8 foaf:surname 27% foaf:firstName 12%

9 foaf:firstName 27% foaf:surname 12%

10 rdfs:seeAlso 26% foaf:depiction 9%

Table 3. Top 10 empirical properties of foaf:Person in DS-SWOOGLE.

Max. Min. Documents
Property cardinality cardinality Number Percent

1 foaf:mbox_sha1sum 12 1 41,403 95%

2 foaf:nick 7 1 36,095 83%

3 foaf:weblog 5 1 35,303 81%

4 rdfs:seeAlso 329 1 27,838 64%

5 foaf:name 4 1 26,749 62%

6 foaf:knows 3,187 1 25,736 59%

7 foaf:homepage 3 1 17,616 41%

8 foaf:dateOfBirth 1 1 12,783 29%

9 foaf:page 3 1 11,255 26%

10 foaf:interest 300 1 10,314 24%
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Degree analysis
Degree analysis is an important measure

in analyzing social networks. Our analysis
of 14,164 distinct “knows” relations in DS-
FOAF-VAR shows that both in-degree and
out-degree follow a Zipf distribution (see
Figure 3). We further put person into four
categories: in only (51.8 percent), out only
(5.8 percent), in and out (5.4 percent), and
isolated (37.1 percent), according to their
in-degree and out-degree. Such a social
network isn’t well connected because only
a few individuals (in and out) lie between
others. Ninety-four percent of “in only”
persons are known by only one person.

Patterns of connected components
We’ve discovered 834 connected com-

ponents and 6,904 isolated persons. The
connected components exhibit interesting
graphical patterns: six singletons that link to
themselves, a giant component that has 6,053
connected persons, and several stars with
many out-links (the average out-degree for
such nodes is 6.8). Figure 4 shows a selection
of connected components. We hypothesize
that the FOAF network topology evolves over
time; a FOAF network starts from some
disjointed star-like connected components,
which link together to form trees, forests,
and eventually a scale-free network.

Our research uses real-world data in an
open, distributed context to provide a data-
digest service for efficient data access on
the Semantic Web and reasoning over the
knowledge encoded in Semantic Web lan-
guages. We are also working on modeling
trust across multiple social networks and
building a general architecture for prove-
nance- and trust-aware inference in open,
distributed, and heterogeneous environ-
ments, such as the Web and multiagent
systems.

Figure 5 illustrates our ongoing work on
reasoning trust across multiple social net-
works and reputation systems. To improve
coverage and connectivity, we integrate
social networks and reputation systems by
mapping people to better derive and propa-
gate trust relations through social relations.
As Figure 5 shows, the gap between the
two people P. Kolari and A. Sheth is con-
nected by mapping the person T. Finin
between two social networks. The reputa-
tion systems might offer default trust to
social entities.

Our ongoing work focuses on improving
the efficiency and effectiveness of data-
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Figure 4. Some connected components in FOAF network.
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digest services, social-network extraction
and integration, and modeling provenance
and trust for distributed inference services.
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Information and Influence in
the Construction of Shared
Reality
Andrzej Nowak, Warsaw University
Robin R. Vallacher, Florida Atlantic 
University

Information isn’t hard to come by in
today’s world. Evaluating that information,
however, is a daunting task for individuals,
groups, and institutions. How do you deter-

mine which information is important? How
do you resolve conflict among different
pieces of information? How should you
assemble information into a meaningful
higher-order structure? These are difficult
enough issues for the individual; their diffi-
culty multiplies when a group must coordi-
nate individuals’ decisions and act on the
basis of socially validated information.

Research in social psychology suggests
that individuals interact, in large part, to
construct a shared reality that consists not
only of shared information, but also of
agreed-upon opinions. In this process, they
don’t simply transmit information. More
importantly, they influence one another to
arrive at a common interpretation of infor-
mation. Most research on social networks is
concerned with information transmission.1–3

We aim to supplement the social-network
perspective by incorporating mechanisms
that govern social influence.

Dynamics of social influence
Models of social influence focus on the

effects that people’s words, actions, or pres-
ence have on other people’s thoughts, feel-
ings, attitudes, and actions. Numerous exper-
iments have shown that three critical factors
determine social influence’s impact: the
number of sources exerting the influence, the
sources’ immediacy to the targets, and the
sources’ strength. We can describe these vari-
ables’ joint effect in terms of a multiplicative
function.4 Whether the issue is conformity,
stage fright, or interest in news events, influ-
ence grows approximately as a square root of
the number of people involved, decreases
with the square of the distance between the
source and target, and is proportional to the
sources’ strength (for example, social status
or credibility). In reality, of course, each
individual influences and is influenced by
other individuals, which provides the basis
for dynamic social impact theory.5 The for-
mula below describes the mutual influence
among individuals who differ in strength and
who occupy different locations in social
space, where Ii denotes total influence, sj cor-
responds to each individual’s strength, and dij

corresponds to the distance between individ-
uals i and j.

The formula indicates that individuals
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who are strongest and nearest to the recipi-
ent have the greatest impact. With respect
to strength, research has established lead-
ers’ crucial importance for group-level phe-
nomena. Some individuals are clearly more
influential than others, either because of
stable characteristics (such as credibility,
expertise, or social status) or transient
states (such as motivation to influence).

With respect to locality of influence,
research has shown two effects. First, the
probability of interaction (and hence of
influence) decreases with the square of the
distance between individuals. In both China
and the US, for example, the probability
that two individuals will discuss matters of
mutual importance decreases as a square of
the distance between their residences.6 Sec-
ond, information’s impact decreases with
the distance between source and recipient.4

For example, information concerning a traf-
fic accident is more likely to attract attention
if it occurs in your town than if it occurs in a
distant one.

Individual variations in the influence
function’s strength and locality are critical
factors that dictate the dynamics of informa-
tion in a social network.7 A model showing
how attitudes combine to form public opin-
ion initially demonstrated these factors’
importance.5 The social group, modeled in a
manner resembling cellular automata, con-
sists of n individuals on a 2D grid. Each in-
dividual has an opinion (such as pro or con
in the simplest case) and a value of persua-
sive strength. To simulate influence in social
interactions, each individual assesses the
degree of support for each position on the
issue according to the formula. (In most
simulations, we also assume a small noise,
represented as a small random number that
we add to a position’s resultant influence.) If
any opinion’s resultant strength is greater than
the individual’s current opinion’s strength,
his or her opinion changes to match the pre-
vailing opinion. The model performs this
process for each person in the group until no
further opinion changes occur.

A typical simulation starts with a clear
majority and a clear minority (such as 60 and
40 percent), randomly distributed in the grid.
After several rounds of discussion, the group
reaches an equilibrium that typically entails a
larger majority and a smaller minority (such
as 90 and 10 percent). Opinions are no longer
distributed randomly; rather, minority opin-
ions survive in clusters of like-minded peo-
ple, often formed around strong individuals.

Local effects
Local effects drive the model’s global

dynamics. In the initial random configura-
tion, more majority than minority members
surround the average group member. This
results in more minority members convert-
ing to the majority opinion than vice versa.
Research concerning attitude change in
groups8 and opinion swings on the eve of an
election9 has observed such polarization.
The other global property—clustering—
reflects the influence function’s locality
(that is, neighboring individuals have the
strongest influence). In a clustered society,
social interaction provides a biased estimate
of your opinions’ prevalence. Opinions in
the global minority thus form a local major-
ity. Many social phenomena—from social
attitudes to farming techniques and clothing
fashions—display pronounced clustering.

Locality of the influence function
The influence function’s locality also

shapes social change’s dynamics. Computer
social-change models based on the social-
influence formula indicate that transitions
occur as clusters of new that appear and
grow in the sea of old. From this perspec-
tive, interacting groups rather than isolated
individuals are subject to change. Cluster-
ing of change is pervasive across a variety
of social and economic phenomena.10

Research has demonstrated the equivalence
of simulation and empirical data with
respect to the economic and political
transformations in Poland following com-
munism’s collapse in the late 1980s.11,12 In
the social-interaction process, individuals
define and shape their common social real-
ity. Because this happens on a local level,
it promotes different social realities that
are separated in space. Social transitions

occur as the new reality gains at the old
reality’s expense.

Social-space topology
The topology of the social space defining

interaction patterns is critical for social-
influence dynamics.7,12 Social space’s topol-
ogy constrains interactions’ spatial structure
and thus dictates cluster formation’s nature,
the resultant clusters’ shapes, and the proba-
bility of their survival or decay. Locality is
essentially absent when the communication
pattern resembles a random structure. Under
these conditions, minority opinion rapidly
decays because minority opinions can’t
form clusters.

You can interpret one-dimensional topol-
ogy, in which people interact primarily with
people on their left and right, as a village
stretching along a road. Because of well-
pronounced local interactions, this topology
induces strong clustering but no polarization.
In a hierarchical topology, where people
are divided into groups, subgroups, and so
forth, the distance between two individuals
depends on the level at which they belong to
a common unit. Two members of the same
research unit in a university, for example, are
closer than two members of the same depart-
ment, who in turn are closer than two schol-
ars from different departments. In hierarchi-
cal topology, borders of clusters will usually
coincide with subgroups at some level. The
opinion structure thus follows social-interac-
tion patterns. There is pronounced polariza-
tion, the degree of which depends mainly on
the groups’ size on the lowest level, initial
proportion of minority, and the distribution
of individual differences in strength. Once
formed, clusters in such a topology are quite
stable. Clearly, we can envision more elabo-
rate social-space geometries, each likely to
be associated with specific dynamics.13

Implications for artificial
intelligence

The process by which humans construct
social reality might prove informative for
designing rules for interaction among intel-
ligent agents. The present model’s primary
implication is that information isn’t merely
acquired, but also evaluated and negotiated
in a social context. An individual is likely
to receive many pieces of mutually contra-
dictory information relevant to almost any
issue. Individuals resolve such conflicts not
only by cognitive means, but also by social-
influence mechanisms. Mimicking this

Computer social-change models

based on the social-influence

formula indicate that transitions

occur as clusters of new that

appear and grow in the sea of old. 



92 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

process might let artificial agents deal with
abundant information of varying quality
and degree of conflict. This would require
establishing mechanisms by which agents
mutually negotiate different informational
elements’ importance and validity. Each
agent evaluates information, and based 
on this evaluation, decides on its further
transmission.

The magnitude of influence determines
which information individuals will adopt
and transmit. It’s also conceivable that the
sheer volume of information, weighted by
its sources’ strength, and the information’s
coherent versus contradictory nature might
serve as criteria for evaluating information
flow. Depending on the information’s coher-
ence, the agents might interact further to
evaluate the information or reach a judgment
on the basis of information that can provide a
platform for action.

In this process, agents differ in their
strength, which is equivalent to social sta-
tus or credibility. To some degree, network
designers might predefine strength. Design-
ers specify some nodes, for example, to 
be more important due to their greater pro-

cessing capacity (supercomputers versus
desktop computers) or their superior access
to information (such as more precise sen-
sors). Strength can also change in the inter-
action process. Nodes broadcasting early
information that turns out to be important
and valid are likely to acquire higher sta-
tus than nodes that are slow to broadcast or
that broadcast unimportant or invalid
information.

In larger networks, the abundance of
information (including noise) might prove
overpowering to agents. Moreover, infor-
mation’s importance and validity are likely
to vary depending on its location in social
space. Information might be important and
valid in one location but irrelevant or false
in another. Interactions’ locality enables
social means of validating information
while allowing for diverse decisions in dif-
ferent locations. The possibility of local
events in the network depends on the inter-
action space’s topology. By choosing the
appropriate topology of interaction patterns
among artificial agents, you can choose the
most appropriate dynamics to handle dif-
ferent tasks. To ensure that all agents pre-

serve safety standards, for example, you
might design a network with no topology,
thereby making it impossible for a local
group of agents to negotiate a lower safety
standard. If an adaptation is crucial for a
local changing environment, however, inter-
action based on proximity in that environ-
ment might be most beneficial. Such an
interaction structure would not only let dif-
ferent subgroups of agents negotiate the
most appropriate information for individual
and group action, but would also let them
try different adaptation strategies in differ-
ent locations. The rest of the network’s
agents might then adopt the adaptation
strategies that work out best.

Connections in social networks provide
links for information transmission and
social influence. For adaptations in the real
world, both processes are vital. Different
network features dictate the dynamics of
information transmission and social influ-
ence. Social-network formalisms are flexi-
ble. In principle, we can accommodate the
social-influence features we’ve described in
social-network models,14 thereby making
them similar to attractor neural networks.15
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Although such a description is well suited
to capture social interactions’ existing struc-
ture, it provides few clear cues about influ-
ence’s dynamics in the network.

Networks of artificial agents, by mimic-
king social interaction, should be capable
of dealing with real-world information.
Social psychology might prove informative
in designing interaction rules for such agents
in the same way that cognitive psychology
proved instructive for constructing individ-
ual agents.
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March/April: Planning with Templates

Despite the promise of intelligent systems technology, interactive intel-
ligent systems are still hard and expensive to build, hard to understand,
hard to use, and hard to evolve and modify through their use. One
promising new technology area is agent-based intelligent forms as typ-
ified in DARPA’s research and demonstration program in Active Tem-
plates. Such forms let people create and use applications with simple,
yet smart interfaces for getting the information they need and for cap-
turing decisions they make on the basis of this information. This spe-
cial issue will present the state of the practice, descriptions of research
and evolving technology, application-focused case studies, and a
roadmap for required research. In addition, this issue will document
the substantial progress that has taken place in the past 10 years. The
February 1995 IEEE Expert (now IEEE Intelligent Systems) described
the state of the practice in knowledge-based planning and scheduling
with case studies of application in the military context and to user-cen-
tered software engineering. Significant progress since then has yielded
powerful, yet underutilized new capabilities that can improve intelli-
gent systems applications in many areas.
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