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Abstract—Healthcare providers are deploying a large number
of Al-driven Medical devices to help monitor and medicate
patients. For patients with chronic ailments, like diabetes or
gastric diseases, usage of these devices becomes part of their
daily lifestyle. These medical devices often capture personally
identifiable information (PII) and hence are strictly regulated by
the Food and Drug Administration (FDA) to ensure the safety
and efficacy of the medical device. Medical device regulations
are currently available as large textual documents, called Code
of Federal Regulations (CFR) Title 21, that cross-reference other
documents and so require substantial human effort and cost
to parse and comprehend. We have developed a semantically
rich framework MedReg-KG to extract the knowledge from
the rules and policies for Medical devices and translate it into
a machine-processable format that can be reasoned over. By
applying Deontic Logic over the policies, we are able to identify
the permissions and prohibitions in the regulation policies.
This framework was developed using AI/Knowledge extraction
techniques and Semantic Web technologies like OWL/RDF and
SPARQL. This paper presents our Ontology/Knowledge graph
and the Deontic rules integrated into the design. We include the
results of our validation against the dataset of Gastroenterology
Urology devices and demonstrate the efficiency gained by using
our system.

Index Terms—code of federal regulations; compliance; seman-
tic web; medical device; knowledge graph.

I. INTRODUCTION

Artificial Intelligence and machine learning (AI/ML) al-
gorithms have recently gained a lot of attention for their
ability to identify and learn patterns automatically from larger
datasets. These technologies hold great potential to enhance
the efficiency and precision of healthcare delivery, capitalizing
on the latest advancements in big data [1], [2]. Following
the digitization of healthcare systems, the extensive and con-
tinuous data generated during patient care is captured and
stored as Electronic Health Record (EHR) data. According
to the National Academy of Medicine, the essential func-
tions of EHR include health information and data, decision
support, electronic communication and connectivity, patient
support, administrative processes, and reporting, as well as
population health management [3]. In recent decades, the
usage of machine learning (ML) and deep learning (DL) has
significantly advanced various applications, including com-
municable disease diagnosis [4], resource allocation through
task prediction [5], patient diagnosis [6]-[8], length-of-stay
prediction [9], cancer diagnosis, mortality estimation [10] from

EHR data, medical images [11] [12]. Knowledge Graphs have
been widely adopted to enhance data insights and complement
EHR modeling.

Nevertheless, medical AI/ML introduces new challenges for
society and, in particular, for current regulators like those in
the U.S. These evolving technologies are driving the need to
reassess existing procedures for medical device approval and
post-market monitoring systems. In the early 20th century,
the U.S. Food and Drug Administration (FDA) was tasked
with the vital role of ensuring that drugs were safe and
effective before they could enter the market [13]. Later, in
1976, amendments to the Federal Food, Drug, and Cosmetic
Act expanded the FDA’s oversight to include the safety of
medical devices [14]. These devices fall under the jurisdiction
of the FDA’s Center for Devices and Radiological Health
(CDRH). According to the Federal Food, Drug, and Cosmetic
Act, a device can be defined as an instrument, implement,
apparatus, machine, implant, or in vitro reagent, among other
forms. FDA’s definition of ML as a system that improves
performance on a given task through training. While early Al
systems primarily relied on decision rules, modern Al research
emphasizes ML techniques. The FDA, responsible for ensuring
the “safety and effectiveness” of medical devices, regulates
the market entry of devices in the U.S. [15]. Advocacy
groups concerned with consumer protection call for stricter
regulatory control, while businesses, many physicians, and
certain patient advocacy groups argue that current regulations
stifle innovation and restrict patient access to new devices [16].

Medical devices are generally categorized by matching their
description to the relevant sections in Title 21 of the Code
of Federal Regulations (CFR), specifically Parts 862-892.
The FDA has classified and outlined more than 1,700 dis-
tinct device types, organizing them into 18 medical specialty
“panels,” such as Cardiovascular or Ear, Nose, and Throat
devices. These panels correspond to Parts 862 through 892
in the CFR. For each device classified by the FDA, the CFR
provides a general overview that includes its intended use,
the device’s classification (Class I, II, or III), and details re-
garding marketing requirements [17]. Since 2015, regulations
for device manufacturers have grown by 64%, with a total of
13,485 regulations in place by 2022 [18]. For Class III de-
vices following the Pre-Market Approval (PMA) pathway, the
approval process takes, on average, more than eight months.
The estimated cost to bring a premarket 510(k) product from
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Figure 1. Overview of MedReg-KG, knowledge graph based architecture for automating medical device regulations.

concept to clearance is approximately 31 million, with 24
million of that amount allocated to FDA-related activities
[19]. These documents are typically not in a format that can
be easily processed by machines, necessitating considerable
human effort to interpret and understand. As a result, device
manufacturers face significant costs in complying with the
FDA’s regulations throughout the approval process.

We have created a novel semantically rich framework
called MedReg-KG to extract knowledge from the rules and
policies governing medical devices in a machine-readable
format. MedReg-KG can be queried and reasoned over to
identify complex rules relevant to various devices. MedReg-
KG was developed using Al/Knowledge Management tech-
niques and Semantic Web technologies, including deontic
logic, OWL/RDF, and SPARQL. In this paper, we provide
a detailed explanation of our approach and present the results
of our validation. Our design aims to automate the pre-market
analysis for 1,700 distinct types of devices regulated by the
FDA, categorized into 18 medical specialty “panels”. In Fig.
1, the overview of MedReg-KG, knowledge graph based archi-
tecture for automating medical device regulation is illustrated.
MedReg-KG was validated using Part 876 Gastroenterology
Urology devices [20]. Fig. 2 illustrates the proposed architec-
ture. The key contributions of this paper are as follows:

o The MedReg-KG for medical device compliance is de-
signed to reduce manual effort, lower costs, shorten
approval times, and accelerate time-to-market by enabling
automated analysis of Title 21 of the CFR Parts 862-892.

o To the best of our knowledge, our approach towards
machine-processable compliance knowledge graph is first
of it’s kind that captures knowledge by identifying key
terms, rules, topic summaries, relationships between var-
ious terms, semantically related terminologies, deontic
expressions, and cross-referenced facts and regulations.

In this paper, Section II illustrated the related work. Sec-
tion III introduces our methodology for constructing a se-
mantically enriched, machine-readable compliance knowledge
graph. Section IV outlines the experimental evaluation and
validation of our approach. Finally, Section VI presents the
conclusion and outlines potential directions for future research.

II. RELATED WORK

A. Medical Device Regulation and Risk Classification

The Code of Federal Regulations (CFR) is a key collection
of documents maintained by the U.S. Executive Branch [21].
It provides the public with a comprehensive repository of all
regulations established by the president and federal agencies
[22]. These regulations are critical to the government’s oper-
ations and communication, offering necessary guidelines and
standards across a variety of functions. Specifically, Title 21,
Parts 800-1050, of the CFR covers all medical devices, with
Parts 800-861 addressing cross-cutting device regulations and
Parts 862-1050 focusing on device-specific requirements [23].

FDA classifies devices as different classes based on risk
category [24]. The Class I devices are classified as the lowest
risk and include products such as bandages, crutches, and
tongue depressors [25]. Class II devices, like electrocardio-
graphs, contact lens solutions, hearing aids, and orthopedic
drills, are determined as moderate risk [26], while the Class III
devices are categorized as the highest potential risk, include
items such as implantable pacemakers, stents, heart valves,
and HIV diagnostic tests [27]. Many Class I devices and
certain Class II devices are exempt from premarket review and
regulations. For exempt devices, companies are not required
to seek FDA review or clearance but only need to notify the
FDA of their intent to market these products. Class II devices,
which present a moderate risk, are reviewed via the 510(k)
premarket notification process. Class III devices, including
life-sustaining or implantable devices, generally undergo the
more stringent PMA process [28], which is the most rigorous
process mandated by the FDA for devices. These devices
require clinical evidence to support their application. However,
if a Class III device only presents minor modifications from an
existing, approved device (or “predicate” device), it may not
need to undergo the strict PMA process. In such cases, the
sponsor can petition the FDA for reassignment of the device
using a 513(g) application. These devices can generally be
approved through the less rigorous 510(k) process [29]. The
FDA has classified and delineated over 1,700 distinct types
of devices, arranging them within the CFR into 18 medical
specialty “panels,” which include categories like Cardiovas-
cular, Orthopedic, and Radiology devices [17]. These devices



can generally be approved through the less rigorous 510(k)
process [29]. The FDA has classified and delineated over
1,700 distinct types of devices, arranging them within the CFR
into 18 medical specialty “panels,” including categories like
Cardiovascular, Orthopedic, and Radiology devices [17].

The classification and exemption process, outlined in Fig 2,
requires a thorough review of devices based on their specific
categories. For sponsors seeking clearance, understanding the
relevant CFR codes is crucial to ensuring compliance with
regulatory guidelines. However, this process is highly time-
consuming and remains inaccessible to machines, as it is
available only in textual form. This necessitates significant
manual effort to interpret the rules and constraints, leading
to higher costs and extended time-to-market.

B. Federal Regulation using Knowledge Graph

Previous research has highlighted the application of se-
mantically rich knowledge graphs in fields such as drug
discovery, predictive modeling, and healthcare compliance
[30]-[35]. These studies have demonstrated how knowledge
graphs can incorporate machine-processable rules to automate
the monitoring of data operations, transfers, and sharing [36].

One example includes a knowledge graph designed for
HIPAA-compliant cloud services, organized into key cate-
gories like privacy rules, security rules, and stakeholders [37],
with additional classes like Health Information and detailed
sub-classes [38]. Another study focused on COVID-related
privacy and security regulations using HIPAA as a foundation
to streamline compliance with patient record access [39].
Other research combined the Semantic Web with Ethereum
Blockchain to enforce data protection [40], while encryption
schemes have also been proposed to enhance healthcare secu-
rity [41]. Many prior works have introduced knowledge graph-
based methods for implementing data protection policies [42],
[43]-[45]. Our recent publication details automating medical
device regulations using a semantically rich knowledge graph
[46].

C. Semantic Web

Semantic information derived from knowledge graphs
can significantly improve search results in semantic-aware
question-answering (QA) systems. IBM’s Watson, a QA sys-
tem utilizing multiple knowledge bases like YAGO and DB-
pedia, was designed to outperform human experts in the
Jeopardy game show, showcasing the potential of KGs in such
applications [47]. Semantic parsing-based QA systems operate
by converting natural language questions into logical forms
that represent the full meaning of the query. These logical
representations are then used to create structured queries (such
as SPARQL) to search knowledge bases for answers. They use
Freebase to create a rough mapping between phrases and pred-
icates, applying all relevant predicates, including neighboring
ones and those generated through bridging operations, to form
an accurate query and retrieve the correct answer [48].

Information retrieval-based QA systems, on the other hand,
focus on automatically converting natural language questions

into structured queries, from which they extract candidate an-
swers from a knowledge base. They then analyze the features
of both the question and candidate answers to rank them
and identify the correct answer. In recent work, linguistic
features like question words, verbs, focus, and topics are
extracted to transform a question into a feature graph [49].
DL in natural language processing, many researchers have
enhanced the performance of traditional QA methods by inte-
grating deep learning techniques. In a DL-based framework,
multi-column convolutional neural networks (MCCNNSs) for
information retrieval were employed to eliminate the need for
manually crafted features and rules [50]. A scoring layer is
used to rank candidate answers based on the representations of
both questions and potential answers, yielding more accurate
results.

D. Deontic Logic in Knowledge Graph

Deontic logic parser extracts key terms containing all the
coverage and exclusion keywords based on three types of
modalities: Permissions, Obligations, Prohibitions. In earlier
work deontic logic extracted from insurance policies to stan-
dardized structure for policy formatting. The extracted rules
was categorized into coverages (permissions) and exclusions
(prohibitions) using deontic expressions [51]. In another work,
Semantic Web, Deontic Logic, and Natural Language Pro-
cessing (NLP) was utilized to reason over publicly available
policies from seven different cyber insurance providers estab-
lished by the United States Federal Trade Commission (FTC).
Deontic expressions, including permissions and prohibitions,
were leveraged to extract the relevant policy coverages and
exclusions [52]. In another study, deontic logic was applied to
classify the entire rule set into Permissions or Obligations. The
framework details, along with results from analyzing a dataset
of 3,000 privacy policies for GDPR compliance, are provided.
The framework utilizes a BiLSTM multi-class classification
approach combined with a BERT-based extractive summarizer.
We assessed the framework’s performance by measuring the
context similarity between the summarized GDPR guidelines
and the privacy policies of web service providers [36].

E. Adverse event analysis

FDA analysts invest a considerable amount of time search-
ing for appropriate documents before they can access relevant
information. In a recent study, CDRH developed the Semantic
Search and Retrieval Framework (SARF), which aimed to
expedite the process of locating documents [53]. In recently
published work, RDF was utilized to detect errors like syntax
errors [54]and logical inconsistencies, while inconsistency in
Japanese medical devices was studied using SPARQL [55]. In
another study, knowledge graph embedding techniques were
utilized to design and train a customized Deep Neural Network
(DNN) for predicting Adverse Drug Reactions. The knowledge
graph comprised of drugs, ADRs, target proteins, indications,
pathways, and genes entities [S6] while a similar approach
for classifying Adverse Drug Reactions (ADRs) was also
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Figure 2. Overview of the FDA’s medical device classification

proposed using knowledge graph, which leverages machine-
readable interlinked representations of knowledge graph rep-
resenting uniform heterogeneous data [57].

III. METHODOLOGY

In this section, we provide a detailed explanation of our
MedReg-KG framework, including the structure of the CFR
and key instances within it to automate the query analysis of
Title 21, Parts 862-892, which covers 1,700 unique medical
devices categorized by risk and indicates whether they require
510(k) notifications or pre-market approval [13]. In the Fig. 1
presents the overall system architecture.

A. Building MedReg-KG CFR -Title 21 from Parts 862-892

The knowledge graph was constructed in accordance with
the structural guidelines and provenance detailed in Title
21 of the CFR, specifically Parts 862-892. This section of
the CFR covers 18 medical specialties, each divided into
multiple subparts that include general provisions and five
device categories: diagnostic, monitoring, prosthetic, surgical,
and therapeutic devices. There are 1,700 distinct devices across
these categories. The knowledge graph captures key attributes
such as device classification, title, volume, citation, section,
and part number. The primary nodes in the graph represent
different subparts of devices, as shown in Figure 3, which il-
lustrates how devices are classified under these subparts. Each
device node is detailed with attributes including identification,
classification, device name, and references to relevant CFR
regulations. The knowledge graph reflects the hierarchical or-
ganization of the regulations, starting from general provisions
(Device_Classification_Panel) and progressively focusing on
specific device categories and individual devices within each
category.

The classes “Manufacturer” and “Device” allow query
sponsors to seek information about a device’s classification
(Class I, II, or III) and its premarket notification (510(k))
or approval requirements. Queries are structured around
subparts such as Subpart_A_General_Provision, Sub-
part_B_Diagnostic_Device, Subpart_C_Monitoring_Device,
Subpart_D_Prosthetic_Device, Subpart_E_Surgical_Device,
and Subpart_F_Therapeutic_Device (refer to Figure 3).
The MedReg-KG offers a comprehensive and organized

representation of the regulatory framework for medical
devices, simplifying navigation, compliance evaluation, and
understanding of FDA requirements. It also supports reasoning
through SPARQL [58] queries, enabling connections between
entities and rules at the most detailed subsections of the
CFR. Developed with OWL [59] in the Protégé tool [60],
this methodology ensures effective exploration and analysis
of CFR regulatory information while facilitating advanced
querying and inference.

B. Population of Knowledge Graph

Title 21 of the CFR covers Parts 862-892, which are made
up of various sections, subsections, and sentences detailing
FDA information and regulatory guidelines. Instances for the
ontology were extracted from Title 21 and incorporated into
the appropriate classes using the Protégé tool. Likewise, data
properties and object properties of these instances were also
added from Title 21 of the CFR via Protégé. Some key policy
statements, which were instrumental in populating MedReg-
KG, are highlighted below.
e 876.1080 Gastroenterology-urology accessories to a
biopsy instrument [61]
Identification: A gastroenterology-urology accessory to
a biopsy instrument is an accessory used to remove a
specimen of tissue for microscopic examination by cutting
or aspiration. This generic type of device includes a
syringe for specimen aspiration and a biopsy channel
adaptor. This device does not include accessories to
biopsy instruments used in other medical specialty areas.
Classification: Class I (general controls).
The device is exempt from the premarket notification
procedures in subpart E of part 807 of this chapter
subject to the limitations in § 876.9.

e 876.1075 Gastroenterology-urology biopsy instrument
[62]
Identification: A gastroenterology-urology biopsy instru-
ment is a device used to remove, by cutting or aspira-
tion, a specimen of tissue for microscopic examination.
This generic type of device includes the biopsy punch,
gastrointestinal mechanical biopsy instrument, suction
biopsy instrument, gastro-urology biopsy needle and nee-
dle set, and nonelectric biopsy forceps. This section does



not apply to biopsy instruments that have specialized uses
in other medical specialty areas and that are covered
by classification regulations in other parts of the device
classification regulations.

Classification: Class Il (performance standards).

Algorithm 1 Extract Rules using Deontic Logic from CFR

1: Input: A list of texts texts to analyze for modal verbs.

2: Output: A dictionary of modal verbs categorized as

permissions_deontic (PD), obligations_deontic

(OD), and prohibitions_deontic (PDO).

Step 1: Load NLP Model

: Load the Spacy Model

Step 2: Define Modal Categories

: Define the sets of modal verbs:

. permissions_deontic = {‘ ‘can’’,

‘‘could’’, ‘‘might’’}

8: obligations_deontic = {‘‘should’’,
‘‘shall’’, ‘‘must’’, ‘‘Ought to’’, ‘‘Have
to’’, ‘‘Need to’’, ‘‘Are required to’’,
‘‘Are obligated to’’}

9: prohibitions_deontic = {‘‘Must

N wv s w

AUAY

may’’,

not’’, *‘Should not’’, ‘‘Shall not’’,
‘‘Cannot’’, “‘Are not allowed to’’, '‘Are
forbidden to’’}

10: Step 3: Process Each Text

11: for each text in texts do

12: Tokenize text: doc = nlp (text)

13: Initialize an empty dictionary, extracted_modals:

14: extracted_modals = {}

15: extracted_modals["PD"] = []

16: extracted_modals["OD"] = []

17: extracted_modals["PDO"] = []

18: Step 4: Identify and Categorize Modals

19: for each token in doc do

20: if token in PD then

21: Add token to extracted_modals["PD"]

22: else if token in OD then

23: Add token to extracted_modals["OD"]

24: else if token in PDO then

25: Add token to extracted_modals ["PDO"]

26: end if

27: end for

28: Step 5: Output Results

29: the corresponding extracted_modals.
30: end for

C. Deontic Logic: Rules Identification and Analysis in
MedReg-KG

In this phase, we categorize the extracted elements, such
as key term definitions and rules found in the sections, into
fundamental deontic expressions using modal logic [63]. These
terms and rules outlined in Title 21 of the CFR Parts 862-
892 establish the permission, obligations, and prohibitions for
key stakeholders, including federal agencies, organizations,
and researchers. Our framework allows reasoning over these
deontic rules to answer questions like “Is the submission
of the original design and verification of a device impor-
tant?”, “whether the device enhances reader performance as
intended”. The responses to such inquiries should clearly
define the three deontic expressions. Deontic logic includes
three main modalities:

ELEET)

e Permissions: “can”, “may”, “could”, “might”. These de-
scribe the rights or authorizations granted to an entity.

o Obligations: ”should”, ”shall”, "must”, ”Ought to”, "Have
to”, "Need to”, ”"Are required to”, ”Are obligated to”.
These refer to mandatory actions that an entity is required
to perform.

o Prohibitions: ”Must not”, ”’Shall not”, ”Cannot”,’Are not
allowed to”, ”Are forbidden to”. These outline actions
that are explicitly forbidden.

Once we extracted all statements containing deontic expres-
sions, we stored each as an instance in the class of our
ontology. The detailed algorithm is represented in section
III-B. The results of this phase are presented in Section IV.

IV. EXPERIMENTAL VALIDATION

The design of MedReg-KG has been validated using a use
case and one of our domain expert collaborators in medical
device regulation.

A. Use case

In the following subsections, we outline two specific use
cases of our system. Numerous other comparable use cases
can be identified, depending on the application of the device.
1) Case 1: In a scenario where a device manufacturer
is preparing a 510(k) notification to the FDA, they need to
verify the classification and regulatory details of their device.
The initial step involves checking if the device falls within a
specific classification category, as predefined by the FDA. The
SPARQL query assists in this process by providing essential
information about device classifications, including the types
and attributes associated with various devices. By querying this
data, the manufacturer can confirm whether their device aligns
with the existing classifications and regulatory standards, en-
suring accurate submission of the 510(k) notification.
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-
— syntax-ns#>

PREFIX owl: <http://www.w3.0rg/2002/07/owl#>

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-
— schema#>

PREFIX xsd: <http://www.w3.0rg/2001/XMLSchema#
— >

PREFIX fdadc: <http://www.semanticweb.org/

— medicalresearch/FDADeviceClassification#
— >

SELECT ?subject ?predicate ?object
WHERE {
?subject ?predicate 7?object.

}

The result of the query provide crucial information about the
Vendor_ID, Manufacturer, Device_ID, Identification, subparts,
Section_Name, and Cite the rule associated with it.

2) Case 2: In this use case, a medical device manufacturer
is preparing a detailed submission for FDA approval and
needs to ensure that their device classification aligns with
existing FDA predicate devices. The SPARQL query retrieves
information about devices, their descriptions, and classifica-
tions from an ontology of FDA device classifications. For
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Figure 3. MedReg-KG: CFR -Title 21 medical device KG top-Level Classes

instance, if the query results indicate that a device described
as Gastroenterology-urology fiberoptic retractor falls under
”Class I (premarket approval),” the manufacturer can use this
information to confirm the correct regulatory pathway. This
ensures that the device is categorized properly according to
FDA standards, facilitating accurate and compliant submission

of documentation for approval.

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-

— syntax-ns#>
PREFIX owl: <http://www.w3.0rg/2002/07/owl#>
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-
— schema#>
PREFIX xsd: <http://www.w3.0rg/2001/XMLSchema#
— >
PREFIX fdadc: <http://www.semanticweb.org/
— medicalresearch/FDADeviceClassification#

— >

SELECT DISTINCT ?device ?description ?
< classification

WHERE ({
?device rdf:type fdadc:Device
?device fdadc:Device_Description ?description

—

?device fdadc:ControlledBy/fdadc:
— ClassifiesDevice/fdadc:hasSubpartE ?

— subpart

?subpart fdadc:Section_Name ?sectionName ;
fdadc:Classification ?classification

FILTER (STR (?description) = STR(?sectionName))

}

The SPARQL query the class ”Sub-
part_E_Surgical_Devices” and retrieves Class [ (general
controls) and the Exempted from the premarket notification

procedures is retrieved.

B. Rule-Based Decision using Deontic Expressions

Through our framework, we extracted deontic expressions
found within Title 21 of the CFR, Parts 862-892, and cate-
gorized each statement based on its deontic type. The system
effectively identified permissions, obligations, and prohibitions
embedded in these regulations. Below are some of the several
deontic rules from Title 21 of the CFR that our system
successfully extracted:

o Permission: “The pH electrode is at the end of a flexible

lead which may be inserted into the esophagus or stomach



through the patient’s mouth. The device may include an
integral gastrointestinal tube.” [CFR Title 21, Volume 8
Sec. 876.1400 Stomach pH electrode].

e Obligation. “The device design should ensure that the
EGG signal is distinguishable from background noise that
may interfere with the true gastric myoelectric signal.”
[CFR Title 21, Volume 8 Sec. 876.1735 Electrogastrog-
raphy system].

o Prohibition: “The summary should not only include the
percentage of patients in which a polyp was correctly
identified by capsule endoscopy, but also the percent of
patients in which the capsule either missed or falsely
identified a polyp with respect to the clinically accept-
able alternative structural imaging method.” [CFR Title
21, Volume 8 Sec. 876.1330 Colon capsule endoscopy
system].

V. DISCUSSION

The categorization of medical devices by risk is based on
the 1,700 distinct device types specified in CFR Title-21.
These regulations, which govern medical devices, are currently
presented in comprehensive textual formats, often containing
references to other related documents. As of now, there are
no specific regulatory standards in place for implementing
Al in healthcare software or device applications. However,
in April 2018, FDA Commissioner Scott Gottlieb highlighted
the potential of Al in healthcare, stating, ”Al holds enormous
promise for the future of medicine, and we’re actively de-
veloping a new regulatory framework to promote innovation
in this space and support the use of Al-based technologies.”
Despite these efforts, under the existing regulatory system,
medical devices and software applications are still evaluated
by the FDA under traditional pathways (e.g., 510(k), PMA,
or De Novo). Recently, the FDA released a discussion paper
outlining a proposed regulatory framework for modifications
to AI/ML-based software as a medical device (SaMD) that
may require premarket review.

Given the complexity of these regulations, understanding
and navigating them can be a labor-intensive process. Con-
sequently, device manufacturers often face significant costs
during the regulatory submission process as they work to meet
the extensive rules and requirements set forth by the FDA.
In this work, we have developed MedReg-KG to automate
the representation of the 1,700 device types from CFR Title-
21, which are categorized into 18 medical specialty panels.
MedReg-KG is validated using SPARQL queries, as described
in section IV-A. The FDA’s first step is to classify a device
based on its risk level into Class I, II, or III, as shown
in Figure. 2. In section IV-Al, the initial process involves
determining if a device belongs to a particular classification
category, as defined by the FDA. SPARQL queries help
streamline this process by providing critical information about
device classifications, including the attributes and types of
various devices. Class III devices, which carry the highest risk
to patients, require the most stringent review process by the
FDA. Pre-market approval (PMA) involves submitting clinical

data to support their safety and effectiveness. Additionally,
Class III devices are vital for maintaining or supporting
human life, preventing deterioration of health, or addressing
potentially severe risks of illness or injury. In section IV-A2, a
manufacturer preparing a submission for FDA approval must
ensure that their device’s classification aligns with existing
FDA-approved predicate devices. The SPARQL query output
provides details on whether the device is categorized as Class
I (general controls) and whether it is exempt from premarket
notification requirements.

Al-based models are increasingly gaining clearance for use
in diagnostic applications. Regulated by the FDA’s CDRH,
a total of 108 and 139 AI/ML-based medical devices were
approved in 2023 and 2022, respectively, representing 35%
of all medical devices approved to date [48]. Since 2015,
regulations for medical device manufacturers have increased
by 64%, with 13,485 regulations in place by 2022 [18]. The
approval process can be cumbersome, and approval times may
vary depending on the FDA’s workload. MedReg-KG aims to
alleviate the burden by translating CFR rules into a machine-
readable format that supports reasoning and streamlines com-
pliance. As with previous technological advancements, the
FDA must evolve its regulatory frameworks to keep pace with
Al innovations.

VI. CONCLUSION AND FUTURE WORK

Regulatory documents for medical devices, like CFR Title
21, are traditionally managed as extensive text-based files,
requiring substantial manual analysis due to their complexity
and volume. This process is both time-intensive and costly.
In this paper, we introduce MedReg-KG a novel framework
that leverages knowledge representation and Semantic Web
technologies to automate pre-market processes governed by
FDA medical device policies, particularly those outlined in
CFR Title 21. MedReg-KG categorizes devices by risk level
and determines whether they require 510(k) notification or
pre-market approval. The validation of this research focuses
specifically on CFR Title 21 Part 870, within “Subpart H -
Medical devices Part 876 Gastroenterology-Urology Devices.”

This research aims to create an efficient and automated
Question and Answer (QnA) system to help manufacturers
and regulators minimize the human effort and costs involved
in navigating medical device regulations. In collaboration with
domain experts, we are continuously validating and enhancing
the design of our knowledge graph to actively populate with
all 1,700 approved devices.
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