
KQML Overview

An Overview of KQML:

A Knowledge Query and Manipulation Language

KQML Advisory Group

with major contributions from

Hans Chalupsky

Tim Finin

Rich Fritzson

Don McKay

Stu Shapiro

Gio Wiederhold y

April 1992

Abstract

We describe a language and protocol intended to support interoperability among

intelligent agents in a distributed application. Examples of applications envisioned

include intelligent multi-agent design systems as well as intelligent planning, scheduling

and replanning agents supporting distributed transportation planning and scheduling

applications. The language, KQML for Knowledge Query and Manipulation Language,

is part of a larger DARPA-sponsored Knowledge Sharing e�ort focused on developing

techniques and tools to promote the sharing on knowledge in intelligent systems. We

will de�ne the concepts which underly KQML and attempt to specify its scope and

provide a model for how it will be used.

Notice of DRAFT Status. This document presents the current draft of a speci�cation

under consideration by the DARPA Knowledge Sharing E�ort. It is provided for information

purposes, and should be treated as representing only the current status of discussions. It

should not be interpreted as a �nished product. This document should not be quoted or

cited as representing the o�cial position of DARPA, the Knowledge Sharing E�ort, or any

other organization.

The speci�cations herein are subject to change. To be placed on the distribution

list for future releases of these documents, contact the authors or send electronic mail

to Neches@ISI.edu.

Please send comments to Tim Finin, Computer Science, University of Maryland, Bal-

timore MD 21228; �nin@cs.umbc.edu; 410-455-3522 or to Don McKay, Paramax Systems

Corporation, PO Box 517, Paoli PA 19301; mckay@prc.unisys.com; 215-648-2256.

yThis document replaces an earlier draft which was distributed without the complete list of contibutors

due to an administrative oversight.

**** DRAFT **** 1 **** DRAFT ****

KQML Overview

Contents

1 Introduction 3

1.1 Background and Motivation : 3

1.2 Modules in a Knowledge-Based System : 4

1.3 The Interfaces : 5

1.4 A Framework for Knowledge Interchange : 8

2 KQML 10

2.1 Design Issues and Assumption : 10

2.2 KQML Layers : 12

2.3 KQML Content Layer : 13

2.4 KQML Message Layer : 14

2.4.1 Content Messages : 14

2.4.2 Declaration Messages : 15

2.5 KQML Communication Layer : 15

2.6 KQML Performatives : 16

2.6.1 Content Language : 16

2.6.2 Discourse Contexts : 17

2.6.3 De�nitions : 18

2.6.4 Question Answering : 19

2.6.5 Control Messages : 21

2.6.6 Replies : 21

2.6.7 To Do : 22

3 SKTP 23

3.1 Introduction : 23

3.2 Facilitator Interface Library : 24

3.2.1 Declarations : 24

3.2.2 Exporting Messages : 26

3.2.3 Importing Messages : 26

3.3 Facilitators : 26

3.3.1 Routing : 26

3.3.2 Ontology and Topic Matching : 27

3.3.3 Database of Knowledge Based Services. : : : : : : : : : : : : : : : : 28

3.4 Implementation : 28

3.4.1 Prolog Facilitator Interface Library : : : : : : : : : : : : : : : : : : : 28

3.4.2 Declaration: Import Queries and Import Assertions : : : : : : : : : 30

3.4.3 Common Lisp Facilitator : 31

3.4.4 Common Lisp TCP/IP : 32

4 Conclusions 33

5 Acknowledgements 34

**** DRAFT **** 2 **** DRAFT ****

KQML Overview

1 Introduction

This paper is an overview of the Knowledge Query and Manipulation Language (KQML)

ongoing e�ort under the auspicies of External Interfaces Working Group of the DARPA

Knowledge Sharing E�ort [8]. The report is intended to motivate the need for a standard

language for information exchange among a collection of interacting knowledge-based agents

and give an overview for KQML.

1.1 Background and Motivation

We envision future large knowledge-based systems systems consisting of many dynamically

interacting intelligent agents and intelligent components. Organizationally, they will di�er

depending on their layer, i.e., are they close to the user, are they deeply embedded, or

do they interface with the real-world? Figure 1 shows these interfaces, and indicates the

external interfaces needed.

While there are many ad hoc techniques for accomplishing the integration of intelligent

agents and components, it is important that a common set of methods are adopted as early

as is reasonable in order to facilitate the use of these new architectures. Among the issues

which need to be dealt with are:

� What language does an agent use to formulate a query? What language is the reply

made in?

� What protocol does an agent use to send a query and produce an answer?

� What is an e�ective way to present a communication protocol to users of knowledge-

based programming disciplines such as procedural languages, backward chaining en-

gines, forward chaining engines, classi�ers, etc?

� How does an agent know which process to send queries to? How can it �nd out?

What protocol does it use in �nding out?

The integration technology we will develop will be based on KQML, Knowledge Query

and Manipulation Language, a language and protocol intended to support interoperability

among intelligent agents in a distributed application. KQML is part of a larger DARPA-

sponsored Knowledge Sharing e�ort focused on developing techniques and tools to promote

the sharing on knowledge in intelligent systems (Neches 1991).

The technical problem of coordinating many agents who must communicate with one

another is a di�cult one. In general, the agents must know:

� Which other agents to communicate with.

� How to establish a reliable communication channel with them.

� What protocol to use in the ensuing dialogue.

� What language to use to exchange information knowledge.

� What terms within the language to use to guarantee that the other agent will interpret the

expressions in the same way.

� How to handle inconsistent information and the eventual mis-matches that arise from di�erent

views of the world.

These problems are compounded when we are trying to coordinate a multitude of \intelligent

agents". The key aspects of the problem speci�cally addressed in this paper are

**** DRAFT **** 3 **** DRAFT ****

KQML Overview

Database

Active
Sensors

 Knowledge
Based System

Knowledge
Base
Repository

(KB)

(DB) (KBR) (AS)

(EUA)

End User
Application

Knowledge
Based System

Knowledge
Engineers

Real
World

Knowledge
Base
Administrator
(KBA)

Database
Administrator
(DBA)

End
User (KB)

& Effectors

Figure 1: Major modules of a knowledge-based system. Future knowledge-based systems will be in-

tegrated in a distributed architecture in which knowledge and data will be shared among applications,

knowledge-based systems, databases, knowledge repositories and sensor/e�ector systems. KQML will

primarily support interaction with knowledge-based systems, either from applications or other knowledge-

based systems.

� the description of the technical problem,

� the de�nition of a standard KQML for use in current and future intelligent information inte-

gration projects, and

� the design of an e�cient, robust and scalable KQML implementation.

1.2 Modules in a Knowledge-Based System

To de�ne the interfaces we �rst describe the di�erent classes of intelligent components

introduced in Figure 1.

End User Applications (EUAs). Here knowledge is acquired, possibly from multiple

sources, fused, analyzed, and presented to an end user. Enough meta-knowledge must

be made available to recognize sources, cost, expected volumes, and presentation devices.

Knowledge of the source may lead to assessment of quality and completeness.

Knowledge Based Systems (KB). Here knowledge and meta-knowledge is made avail-

able to the EUAs, in response to their requests. Knowledge-based systems may monitor

data resources such as databases (DBs) and active sensors (ASs) in order to acquire and

monitor knowledge. Responses to EUA's may be deferred until certain conditions in source

**** DRAFT **** 4 **** DRAFT ****

KQML Overview

databases or active sensors are met. Knowledge engineers construct knowledge-based sys-

tems using a development interface or shell.

Knowledge Base Repositories (KBR). Associated with a knowledge-based system

will be a repository for the speci�c knowledge base content which we call a Knowledge Base

Repository. The knowledge base repository will assure persistency of the knowledge. Often

a full history will be kept, so that older versions of a knowledge base will be accessible. Akin

to the coordination and responsibility role of a database administrator, a Knowledge Base

Administrator is charged with overseeing the design, integrity and content of a knowledge-

base for use in knowledge-based system applications.

Database Systems (DBs). Here we group conventional databases and other data �les.

The focus of the database system is collecting and storing information persistently. Such

database systems are typically maintained and updated autonomously to re
ect the accurate

operational status of an organization or other entity. A database administrator is in charge

of the database design, integrity and content for use by other applications.

Active Sensors (AS). We must also consider direct input from real-world phenomena.

Under active sensors we group all data sources that are not persistent. This means that

subsequent requests are likely to provide new values, and older values will not be retrievable.

An extension, not speci�cally considered here, are e�ectors that directly e�ect change on

the real world.

1.3 The Interfaces

We can now discuss systematically the possible interfaces for these �ve system nodes, and

indicate our focus. Since we do not distinguish direction we have 1/2(n*(n+1)= 15 potential

interface types for 5 module types. In Figure 2 only one instance of each interface is shown.

This enumeration of interfaces is intended to de�ne precisely what interfaces KQML is

addressing now. The primary interest is in interfacing end user applications to knowledge-

based systems and knowledge-based systems to each other. A secondary interest is the inte-

gration of knowledge and data from other sources such as databases and sensors/e�ectors.

For the latter, KQML could serve as a wrapper supporting a set of common knowledge-based

system behaviors for other components such as databases or sensors/e�ectors.

EUA to EUA. If an application (EUA) accepts a server role for another EUA, it must

satisfy the requirements we place on a general knowledge-based system (KB) acting as a

server, as de�ned below.

EUA to KB. The transmission of knowledge or knowledge-based derivations from knowledge-

based systems acting as servers to applications is a major path and is a focus of this docu-

ment.

EUA to KBR. Direct access to the representation of knowledge (KBR), without the

mediation of a (KB) can provide history, structure, and other information about the cor-

responding KB. However, uninterpreted knowledge may be risky to use; the expected user,

the knowledge-based administrator, of the interface is expected to be experienced in the

domain and the interface.

**** DRAFT **** 5 **** DRAFT ****

KQML Overview

End User Application (EUA) EUA

Knowledge−Based
 System
 (KB)

Knowledge Base
 Repository
 (KBR)

KB

KBR

Database
DB

Active Sensors AS

Interlingua

KQML

KQML

KQML

Interlingua

SQL(Distributed)

Figure 2: Internal interfaces among major modules: Interfaces which are labeled with KQML are

the primary focus of this e�ort. KQML supports the communication interaction among components

independent of the content languae used to exchange information. Those labeled Interlingua designate

those interfaces which depend primarily upon the content of knowledge to be exchanged.

EUA to DB. Standards for DB access are well established, as SQL and RDA. They are

however fairly awkward and not Turing-complete. We will not discuss those here. A number

of commercial products and semi-products exist here. For instance, the Apple CL initiative

generalizes such access for multiple SQL-based DBs. The common current approach is to

interface via a standard language such as SQL. Knowledge-based access to databases has

the potential to add knowledge supporting intelligent access to data and information stored

in conventional databases.

EUA to AS. Di�erences in sensor technology have inhibited high-level standards here,

although a variety of low-level standards exist. We will not discuss these here. As sensor-

based systems start using more standard types of computing equipment we can expect to

achieve more commonality.

KB to KB. The language in which to e�ect the interchange of knowledge among knowledge-

based systems has two parts. One is the language in which to express the content of the

information being exchanged. This is the focus of the Interlingua group under the Knowl-

edge Sharing E�ort (KSE). This kind of communication may only be e�ective where the

ontologies match, are shared, can be circumscribed and can be translated. The other part

of the interchange language is the speci�c communication language used to exchange the

content expressions. The language in which to encapsulate, route and match senders with

receivers of knowledge is the primary focus of the Knowledge Query and Manipulation Lan-

guage (KQML) group under the KSE. KQML is of primary concern when implementing

knowledge-based systems using knowledge repositories; the speci�c content language plays

**** DRAFT **** 6 **** DRAFT ****

KQML Overview

an important role, but secondary to KQML here.

KB to KBR. Questions on how to store knowledge representations in an e�ective and

persistent way is part of the charter of the KQML working group. While this topic is not

a focus of the current document, it is an important issue to address and to understand.

KB to DB. To make knowledge-based systems e�ective it is desirable that all voluminous

factual information be maintained outside of the KB, although this may engender high costs

in terms of performance. Research into suitable techniques, as caching, close coupling, etc.,

is in progress in many research sites. It appears that existing DB standards are insu�cient

to serve knowledge-based systems well. Object-oriented approaches are of interest. We are

not now focusing on this issue but the topic is within the scope of the KQML group.

KB to AS. A knowledge-based system can have an important role in abstracting and

monitoring sensor (AS) information. Certain information, when acquired, will force changes

in knowledge, so that some learning mechanism much be invoked. A special case here is an

active database system, which will also signal changes that may require knowledge update.

This �eld is not well understood now, and probably not ready for standardization.

KBR to KBR. Interchange of knowledge content is hard to distinguish from a knowledge-

based system to knowledge-based system interface, although it seems feasible if the internal

representations match. The Interlingua is of primary importance here and KQML takes on

a secondary role. The use of an Interlingua may motivate the internal consistency required

for shared ontologies. The development of experimental shared ontologies is another part

of the KSE.

KBR to DB. Active research and development is ongoing to use DB facilities for per-

sistent storage of knowledge. Although current DBs are too in
exible, there seem to be

no principles that would inhibit use of DBs. The focus will be on e�ciency. Again |

object-oriented structures hold out some promise in this arena.

KBR to AS. This interface does not make sense.

DB to DB. Distributed databases use replicated and fragmented data representations to

enhance performance and availability. Consistency requires use of concurrency protocols.

This is a relatively mature area, and outside of the purview of the KQML work.

DB to AS. Databases can be used to make sensor data persistent, but the update facilities

provided by SQL are implementation and performance bottlenecks here. The DADAISM

database design is con�gured to accommodate sensor data.

AS to AS. This is not a meaningful interface. Sensors are only senders of information,

not receivers. An extension of the AS module to encompass e�ectors could enable this

interface, but no intelligent processing would occur.

**** DRAFT **** 7 **** DRAFT ****

KQML Overview

1.4 A Framework for Knowledge Interchange

We identify three major dimensions which can be distinguished for communicating intel-

ligent agents: Connectivity, Architecture and Communication. We do not claim this is an

exhaustive list, but rather serves to distinguish a number of current and planned systems.

Connectivity. The connectivity dimension focuses on the connectedness among commu-

nicating components distinguishing the speci�c interconnections and dependencies among

components. For example, in many systems, the output of one component is the input

to the next component; a full system is supported via a series of point-to-point links. In

some systems, the output of one component is the input to several other components; a

full system is made up of a collection of multicast links. In some other systems, e.g., black-

board systems, the output of one component is the input to an unknown number of other

components; a full system is supported by broadcasting.

Architecture. The architecture dimension focuses on the degree to which agents may

be added or removed from a system. In a static architecture, all system components are

known at design time, and, the speci�c inputs as well as outputs are de�ned. In a dynamic

architecture, not all system components are known at design time, and, the speci�c source

of inputs as well as the destination of outputs are not �xed.

The architecture dimension captures the distinction between a system design in which all

components must be present for a system to operate versus a system design in which multiple

agents may be participating over time as well as entering and leaving active participation.

In the former case, a system is a completely designed and assembled from known and well-

understood interacting components. In the latter case, a dynamic architecture supports a

highly
exible system in which intelligent agents may be added or removed at any time,

and, there is su�cient overlap to allow the system to function with fewer or more of the

components present.

Communication. The communication dimension focuses on the synchronicity of the

communication between intelligent agents. Communication can be synchronous in which

case a complete output is made available to another agent before the other agent can fully

process it as a valid or complete input. Asynchronous communication allows for incremental

processing via partial results and inputs.

Examples. We consider how three standard system architectures vary along these di-

mensions. First, consider a pipeline implementation where the complete output of one

knowledge-based system is the entire input to the next. Further, there are a number of

systems in a pipe to a�ect some system implementation. The �nal output may result ei-

ther in a new input for the �rst element of the pipe, or, more likely, the �nal output will

be analyzed and changes made to the input of (or selections made by) the �rst element

of the pipe. Examples of this style of system include the PACT-0 demonstration of the

collaborative multi-system design of an electromechanical device, and the 1992 Integrated

Feasibility Demonstration of the DRPI where a planning system developed a detailed mili-

tary forces employment and deployment plan and a simulator analyzed the plan with respect

to transportation feasibility. The pipeline is characterized by

� Connectivity: a simple point-to-point connectivity, one knowledge-based system to

the next

**** DRAFT **** 8 **** DRAFT ****

KQML Overview

� Architecture: a static architecure known at system design time

� Communication: synchronous

The second system architecture to consider is a loosely coupled system in which a small

number of components, approximately 10 or under, are to cooperate loosely in solving an

overall system problem. An example here from the DRPI military transportation applica-

tion domain is a planned architecture for a demonstration system to be put together over the

next 12 to 18 months. The \Intgrated Feasibility Demonstration" system involves compo-

nents in which the output of one component is input to multiple other components. We call

this a loose coupling because while the interaction is more collaborative than the pipeline,

each knowledge-based system component is still acting independently. That is, the level

of integration consists of nearly complete output as available from a planning system, say,

which is a complete input to a force module generator. Thus, very little of the distributed

environment in which the knowledge-based systems participate is taken into account in the

design or implementation of the knowledge-based system. The loosely coupled system is

characterized by

� Connectivity: point-to-point but with some use of multicasting

� Architecture: a static architecure known at system design time

� Communication: synchronous and asynchronus

The �nal architecture we will consider is a tightly coupled system in which a larger

number of components, approximately 100 or so, are to cooperate in a highly integrated

system. Again, we take the application example from the DRPI because we are familiar

with it. The ultimate military transportation system would use more components than in

the current Integrated Feasibility Demonstration System, but primarily di�ers in how the

systems interact. A planning system can make use of some of the incremental results from

a scheduler but there may be several intervening knowledge-based systems in either the

pipeline or loosely coupled systems. If the output of the scheduler's reasoning system which

detected a scheduling con
ict were immediately available to a planning system, the planning

system may be able to respond with a di�erent plan alternative immediately. The e�ect

is to save potentially a considerable amount of work wasted on a plan alternative which is

causing identi�able problems in other parts of the overall system. In order to accomplish

this, each knowledge-based system component's reasoning system must be able to incremen-

tally update other knowledge-based systems and be updatable itself in a dynamic manner.

Further, for each knowledge-based system to be developed by application programmers in

a reasonable amount of time, the reasoning systems should be augmented in as transparent

a manner as possible. The tightly coupled system is characterized by

� Connectivity: point-to-point, multicast and broadcast communication

� Architecture: a dynamic architecure not fully known at system design time

� Communication: synchronous and asynchronus, but mostly asychronous

**** DRAFT **** 9 **** DRAFT ****

KQML Overview

2 KQML

The Knowledge Query and Manipulation Language (KQML) is a language and an associated

protocol to support the high level communication among intelligent agents. It can be used

as a language for an application program to interact with an intelligent system or for two

or more intelligent systems to interact cooperatively in problem solving. We argue that

KQML should be de�ned as more than a language with a syntax and semantics, but must

also include a protocol which governs the use of the language (e.g., a pragmatic component).

2.1 Design Issues and Assumption

Architectural assumptions. Agents will typically be separate processes which may be

running in the same address space or on separate machines. The processes will have a

reliable information transport mechanism (e.g. TCP/IP streams) connecting them. We

need a protocol that is simple and e�cient to use to connect a few pre-de�ned agents on

a single machine or on several machines on the same local area network. We also need

the protocol to be an appropriate one to scale up to a scenario in which we have a large

number (i.e. hundreds or even thousands) of communicating agents scattered across the

global Internet and who are dynamically coming on and o� line.

Communication Modes. KQML will support several modes of communication among

agents along several independent dimensions. Along one dimension, it supports interac-

tions which di�er in the number of agents involved { from a single agent to a single agent

(i.e., point-to-point), as well as messages from one agent to a set of agents (i.e., multi-

casting). Along another dimension, it permits one to specify the recipient agents either

explicitly (e.g., by Internet address and port number), by symbolic address (e.g., to \to the

theTRANSCOMMapServer" or even by a declarative description form of broadcast (e.g.,

\to any KIF-speaking agents interested in airport locations"). A �nal dimension involves

synchronicity { the protocol must support blocking as well as non-blocking communication.

Syntactic assumptions. The actual representation of information at the most under-

lying level, is not of great importance; current implementations utilize Lisp s-expressions

transmitted between processes in the form of ascii streams. The forms at the content layer

depend on the content-language being used and may be represented as strings, if necessary.

The forms at the message and communication layer will be ascii representations of lists with

symbolp as the �rst element and whose remaining elements use the Common Lisp keyword

argument convention.

However, newly emerging standards, such as those from the Object Management Group,

may provide an entirely new basis for representing the content of the messages.

Security. Security is an issue in any distributed environment. We will need to develop

conventions and procedures for authentication which will allow an agent to verify that

another agent is who it purports to be. Comment: We should take advantage of the Kerberos

system for secure authentication being developed as a part of Project Athena. It appears to

have all the right hooks and will be widely available on IBM, DEC, SUN and other Unix

platforms.

**** DRAFT **** 10 **** DRAFT ****

KQML Overview

Ethernet

Internet Protocol

Transport Control

SMTP HELO

TCP HELO

IP TCP HELO

E IP TCP HELO Ethernet

Internet Protocol

Transport Control

SMTP

Stream

Fac−to−Fac

Protocol

App−to−Fac

Protocol

(e.g. LOOM, Prolog)

Application Language

Stream

Fac−to−Fac

Protocol

App−to−Fac

Protocol

(e.g. LOOM, Prolog)

Application Language
(location x:airport long lat)

Deliver
 From:
 Address:
 Msg:
 Protocol:

MSG
 Type: {query}
 Language: Prolog
 Content:
 To: "application"
 Topic:

(location x:airport long lat)

MSG
 Type: {query}
 Language: Prolog
 Content:
 From: "appliation"
 To:

(location x:airport long lat)

Figure 3: Modern Internet communication is governed by a "protocol stack" with distinct, well-de�ned

layers. Communication between intelligent agents should also be governed by a protocol stack with

distinct, well-de�ned layers.

Transaction. Interactions among knowledge-based systems have a di�erent kind of trans-

action processing which will require something other than the now standard two-phase com-

mit. That is because interacting agents may use information and knowledge gained from

one information source for longer periods of time than read/write locks support. In one way,

knowledge-based systems are similar to other advanced systems such as software engineering

or CAD/CAM design environments (see Computing Surveys, 1991). Further, interactions

among knowledge-based systems may better be cast in terms of belief spaces and/or log-

ics of belief than in terms of low level transactions. The development of a good model to

support transactions among intelligent agents is a research topic for the KQML group to

consider sometime in the future. Developing a workable solution which is incrementally

implementable may prove key to the ultimate success of the KQML e�ort.

Protocol Approach. The Knowledge Query and Manipulation Language (KQML) is a

language and a protocol to support the high level communication among intelligent agents.

It can be used as a language for an application program to interact with an intelligent system

or for two or more intelligent systems to interact cooperatively in problem solving. We

argue that KQML should be de�ned as more than a language with a syntax and semantics,

but must also include a protocol which governs the use of the language (i.e., a pragmatic

component).

Using a protocol approach is common in modern communication and distributed pro-

cessing. The �rst diagram in Figure 3 shows a simpli�ed version of the standard protocol

stack for network communication over an Internet. At the top of the stack is the application-

level protocol, in this case SMTP (Simple Mail Transfer Protocol) and at the bottom is the

low level protocol in which data is actually exchanged. From a mailer's point of view, it is

communicating with another mailer using the SMTP protocol. It need not know any of the

details of the protocols which support its communication.

We are developing a similar approach to support communication among intelligent

agents { de�ning a protocol stack for transferring knowledge across the Internet. The

second diagram in Figure 3 shows a simple protocol stack we are using for the model of

KQML. We assume that the KQML protocol stack is an application protocol layer of the

standard OSI model and thus assume reliable communication.

SKTP, a Simple Knowledge Transfer Protocol, supports KQML interactions and is de-

**** DRAFT **** 11 **** DRAFT ****

KQML Overview

Application
Facilitator
Interface

Communication
 Facilitator

N
et

w
o

rk

Application

Content Message Communication

Communication

One

Application

Two

Figure 4: KQML expressions can be thought of as consisting of a content expression encapsulated in a

message wrapper which is in turn encapsulated in a communication wrapper.

�ned as a protocol stack with at least three layers: content, message and communication.

These layers are built upon some reliable network transport mechanism.

2.2 KQML Layers

KQML expressions can be thought of as consisting of a content expression encapsulated in

a message wrapper which is in turn encapsulated in a communication wrapper, as shown

in Figure 4. Thus the language is thought of as being divided into three layers: content,

message and communication. The content layer contains an expression in some language

which encodes the knowledge to be conveyed. Because the content is opaque to KQML,

the message layer adds a set of features which describe the content, i.e. the language it

is expressed in, the ontology it assumes and the kind of speech act it represents (e.g., an

assertion or a query). The �nal communication level adds a second layer of features to the

message which describe the lower level communication parameters, such as the identity of

the sender and recipient and whether the communication is meant to by synchronous or

asynchronous.

Content Layer. KQML makes no commitments about the content layer. One can use it

with any number of content languages, such as KRSL [3], KIF [8] or LOOM [4]. All that

two intelligent agents need to do is agree on a language to use for communication. This

does not preclude the use of or diminish the need for an interlingua such as KIF to support

knowledge sharing, but it does permit two agents who are using the same internal language

to use it as the communication language in the protocol.

Message Layer. The message layer is used to encode a message that one application

would like to have transmitted to another application. These messages are of two general

types | content messages and declaration messages. A \content" message contains a de-

scription of a piece of knowledge being o�ered or sought. \Declaration" messages are used

to announce the presence of an agent, register its name, provide descriptions of the general

types of information that the agent will send/receive, and the actual content messages sent

between agents. The message layer can also be thought of as a \speech act layer". One of

the most important attributes to specify about the content is what kind of \speech act" it

represents { an assertion, a query, a response, an error message, etc.

Content Messages. A content message is used to describe a query, assertion or other

speech act involving some sentence in the content language. It is represented as a list whose

�rst element is the atom MSG and whose remaining elements are alternating attribute-value

**** DRAFT **** 12 **** DRAFT ****

KQML Overview

pairs using the Common Lisp keyword argument format. The following example message

is a query expressed in KIF for which exactly one answer is sought.

(MSG

:TYPE query

:QUALIFIERS (:number-answers 1)

:CONTENT-LANGUAGE KIF

:CONTENT-ONTOLOGY (blocksWorld)

:CONTENT-TOPIC (physical-properties)

:CONTENT (color snow ?C))

Declaration Messages. A declaration message is used to provide metainformation about

the content messages that the agent will generate and would like to receive. These dec-

larations can be used to register a service (e.g., \I'll answer questions about the physical

properties of blocks") and to register a need for a service (e.g., \I want to be keep current

on the location of every block"). Syntactically, a declaration is a list whose �rst element

is the atom DCL and whose remaining elements are alternating attribute-value pairs using

the Common Lisp keyword argument format. The following example announces that agent

ap001 is willing to export assertions expressed in KIF about the color properties of things

in a blocks world ontology.

(DCL

:TYPE assert

:DIRECTION export

:MSG

(MSG

:TYPE assert

:CONTENT-LANGUAGE KIF

:CONTENT-ONTOLOGY (blocksWorld)

:CONTENT-TOPIC (physical-properties)

:CONTENT (color ?X ?Y)))

Communication Layer. At the communication layer, agents exchange packages. A pack-

age is a wrapper around a message which speci�es some communication attributes, such as

a speci�cation of the sender and recipients. A package is represented as a list whose �rst

element is the atom PACKAGE and whose remaining elements are alternating attribute-

value pairs using the Common Lisp keyword argument format. In the following example,

application ap001 is sending a synchronous query to application ap002:

(PACKAGE :FROM ap001

:TO ap002

:ID DVL-f001-111791.10122291

:COMM block

:CONTENT

(MSG

:TYPE query

:QUALIFIERS (:NUMBER-ANSWERS 1)

:CONTENT-LANGUAGE KIF

:CONTENT (color snow _C)))

2.3 KQML Content Layer

KQML makes no commitments about the content layer. One should be able to use it with

any number of content languages, such as KIF [?] or LOOM [4]. All the two intelligent

**** DRAFT **** 13 **** DRAFT ****

KQML Overview

agents need to do is to agree on a language to use for communication. This does not

preclude the use of or diminish the need for an interlingua such as KIF to support knowledge

sharing. It does allow two agents who are using the same internal language to use it as the

communication language in the protocol.

2.4 KQML Message Layer

The message layer is used to encode a message that one application would like to have

transmitted to another application. These messages are of two general types | content

messages and declaration messages. A \content" message contains a description of a piece

of knowledge being o�ered or sought. \Declaration" messages are used to announce the

presence of an agent, register its name and provide descriptions of the general types of

information that the agent will send and would like to receive and the actual content baring

messages sent between agents.

The message layer can also be thought of as a \speech act layer". One of the most

important attributes to specify about the content is what kind of "speech act" it represents

{ an assertion, a query, a response, an error message, etc.

2.4.1 Content Messages

A content message is used to describe a query, assertion or other speech act involving some

sentence in the content language. It is represented as a list whose �rst element is the atom

MSG and whose remaining elements are alternating attribute-value pairs using the Common

Lisp keyword argument format. Possible keyword arguments are:

:TYPE - <Speech Act>

The speech act type of the message (e.g., query, assert, retract, etc.).

:QUALIFIERS - <keyword list> A keyword tagged list of quali�ers appropriate to

the message type.

:CONTENT-LANGUAGE -<A language name>

A term naming the language in which the CONTENT �eld is expressed.

:CONTENT-ONTOLOGY - <An ontology name>

A term or list of terms chosen from a standard list naming the ontologies assumed.

:CONTENT-TOPIC - <topic name>

A term or list of terms describing the topic of the knowledge within the given

ontology.

:CONTENT - <A sentence in the content language>

The actual knowledge to by conveyed expressed as a sentence in the content-

language.

The following example message is a query expressed in KIF for which exactly one answer

is sought.

(MSG

:TYPE query

:QUALIFIERS (:number-answers 1)

:CONTENT-LANGUAGE kif

:CONTENT-ONTOLOGY (blocksWorld)

:CONTENT-TOPIC (physical-properties)

:CONTENT (color snow ?C))

**** DRAFT **** 14 **** DRAFT ****

KQML Overview

2.4.2 Declaration Messages

A declaration message is used to provide metainformation about the content messages that

the agent will generate and would like to receive. These declarations can be used to register

a service (e.g., \I'll answer questions about the physical properties of blocks") and to register

a need for a service (e.g., \I want to be keep current on the location of every block").

Syntactically, a declaration is a list whose �rst element is the atom DCL and whose

remaining elements are alternating attribute-value pairs using the Common Lisp keyword

argument format. Possible keyword arguments are:

:TYPE - <Speech act>

The speech act type of the embedded (MSG ...) expression (e.g., assert, query).

:DIRECTION - <OneOf(IMPORT, EXPORT)>

Speci�es whether the information is to be imported or exported.

:COMM - Speci�es whether the service is being o�ered or sought in a blocking or

nonblocking communication mode.

:MSG - a (MSG ...) expression which speci�es the content level information that is to

be imported or exported.

The following example announces that agent a001 is willing to export assertions ex-

pressed in KIF about the color properties of things in a blocks world ontology.

(DCL

:TYPE assert

:DIRECTION export

:MSG (MSG

:TYPE assert

:CONTENT-LANGUAGE KIF

:CONTENT-ONTOLOGY (blocksWorld)

:CONTENT-TOPIC (physical-properties)

:CONTENT (color ?X ?Y)))

2.5 KQML Communication Layer

At the communication layer, agents exchange packages. A package is a wrapper around

a message which speci�es some communication attributes, such as a speci�cation of the

sender and recipients. A package is represented as a list whose �st element is the atom

PACKAGE and whose remaining elements are alternating attribute-value pairs using the

Common Lisp keyword argument format. Possible keyword arguments are:

:TYPE - <Message type>.

This is the type of the embedded message, i.e. either a content message or a

declaration message. Comment: If we have separate facilitator agents, then we

know that packages of type declaration DCL or MSG.

:FROM - <Agent ID>

The unique identi�er of the sending agent.

:TO - <Agent ID>

The unique identi�er or identi�ers of the recipient agent(s).

:ID - <Package ID>

A unique identi�er for this message. This should be generated at this layer (e.g.

by the facilitator agent if one is being used) and is used to refer to the message

later.

**** DRAFT **** 15 **** DRAFT ****

KQML Overview

:COMM - <Oneof(block, nonblock)>

Speci�es whether or not the communication is to be carried out in a blocking or

nonblocking mode.

:IN-RESPONSE-TO - <Package ID>

A list of one or more package IDs which refer to earlier messages that this package

is in response to.

:CONTENT - an (DCL ...) or (MSG ...) expression.

In the following example, application ap001 is sending a synchronous query to applica-

tion ap002:

(PACKAGE

:FROM ap001

:TO ap002

:ID DVL-f001-111791.10122291

:COMM block

:CONTENT

(MSG

:TYPE query

:QUALIFIERS (:NUMBER-ANSWERS 1)

:CONTENT-LANGUAGE KIF

:CONTENT (color snow _C)))

2.6 KQML Performatives

Message types play an important part in this protocol. They appear at the message level in

both content and declaration messages and are akin to a \speech act" type in the theory of

natural language communication. Message types determine what one can \do" or \perform"

with the sentences in the content language.

2.6.1 Content Language

The de�nition of the various KQML performatives described below is based on the following

model of a knowledge base: A knowledge base (KB) is a set of sentences in a language L. L

can be the object language of the knowledge base, or a set of sentences of another language

for which a computable mapping into L exists. Candidates for languages other than the

object language of a KB are, for example, the Interlingua, or, if the object language for a

KB are graphs, a linear notation describing these graphs.

Since KQML is not assumed to be a superset of the Interlingua, it has to identify

sentences of the KB by way of quoted sentences of a language that can be translated into

the object language of the KB. This language is called the content language (CL).

The languages for the contents of requests and replies can be declared with declare-content-languages:

(MSG

:TYPE { declare-content-languages

:REQUEST-CONTENT-LANGUAGE { <content-language>

Declares what the content language for requests will be. From then on

all content language sentences of requests received by the provider should

be assumed to be in that language. The language for requests can be

interlingua (the default), local to use the object language of the local

KB of the provider, or a string that speci�es some other content language

**** DRAFT **** 16 **** DRAFT ****

KQML Overview

known by the provider. This request can only be handled successfully

if the provider knows how to translate sentences of the request CL into

sentences of the object language of its local KB.

:REPLY-CONTENT-LANGUAGE { <content-language>

Request what the content language for replies should be. Default is the

content language used for requests. This request can only be handled

successfully if the provider knows how to translate sentences of the object

language of its local KB into sentences of the reply CL.

)

2.6.2 Discourse Contexts

Requests and replies should be relativized to a current discourse context. A discourse

context is a subset of the sentences that de�ne the local KB of the provider.

The following messages allow to establish a discourse context that contains a subset

of the sentences of the local KB of the provider. With set-discourse-context we can

explicitly set the current discourse context to a subset of the sentences that de�ne the local

KB:

(MSG

:TYPE { set-discourse-context

:REQUEST-CONTENT-LANGUAGE { <content-language>

Content language to be used for this particular message. Default is the lan-

guage set by a declare-content-languages message, or interlingua.

:CONTENT { <sentence-pattern>

Request the current discourse context to be set to the set of all sentences

which match the supplied sentence pattern in the local KB of the provider.

We will assume that every knowledge representation language will have

a notion of a pattern or an open sentence and a matching or uni�cation

operation associated with it. If the value of pattern is empty the current

discourse context will be set to the empty set, if its value is all the whole

KB of the provider will be used (the default).

)

add-to-discourse-context allows to add additional sentences to the current discourse

context:

(MSG

:TYPE { add-to-discourse-context

:REQUEST-CONTENT-LANGUAGE { <content-language> (see above)

:CONTENT { <sentence-pattern>

Request that all sentences in the local KB of the provider which match

the supplied sentence pattern are added to the current discourse context.

)

assert allows to add a sentence which is not necessarily a member of the local KB to the

current discourse context:

**** DRAFT **** 17 **** DRAFT ****

KQML Overview

(MSG

:TYPE { assert

:REQUEST-CONTENT-LANGUAGE { <content-language> (see above)

:CONTENT { <sentence>

Request the supplied sentence to be added as an assertion to the current

discourse context.

)

With remove-from-discourse-context we can remove a set of sentences from the current

discourse context:

(MSG

:TYPE { remove-from-discourse-context

:REQUEST-CONTENT-LANGUAGE { <content-language> (see above)

:CONTENT { <sentence-pattern>

Request that all sentences in the current discourse context which match

the supplied sentence pattern are removed from the current discourse con-

text.

)

assign-truth-value allows to change truth values associated with sentences in the current

discourse context:

(MSG

:TYPE { assign-truth-value

:REQUEST-CONTENT-LANGUAGE { <content-language> (see above)

:TRUTH-VALUE { <phrase>

A CL phrase that describes a valid truth value which should get assigned

to the sentences identi�ed by the :CONTENT slot (what a valid truth value

is is de�ned by the local KB of the provider). Some KBs might not deal

with truth values explicitly, but rather implicitly by assuming a sentence

to be true if it is an element of the KB (or the current discourse context).

A truth value does not necessarily have to be one of true or false, it could

be a belief status, an assertion
ag, or a numerical value representing some

kind of certainty.

:CONTENT { <sentence-pattern>

Request that all sentences in the current discourse context that match the

supplied pattern get assigned the value of the :TRUTH-VALUE slot.

)

2.6.3 De�nitions

At the moment we will treat de�nitions as special cases of assertions which assert sen-

tences that express de�nitions. However, this approach might be too simplistic and special

performatives for de�nition and un-de�nition might be necessary.

**** DRAFT **** 18 **** DRAFT ****

KQML Overview

2.6.4 Question Answering

Once we have established a discourse context we want to ask questions. One type of question

asks about the truth value of sentences. If the question is a closed sentence of the CL we

want to know whether it has a certain truth value. If the question is an open sentence we

are interested in a number of instances of the question that have a certain truth value. Some

questions might be easy to answer, others might be very di�cult or impossible to answer.

To tell the provider how much work it should invest to �nd an answer we introduce the

concept of a worklevel which is basically a speci�cation of how much resources should be

spent at the most to answer a question. Depending on the supplied worklevel the provider

might choose a particular inference strategy suited for that level.

Unless otherwise indicated for all the following messages it is assumed that derived

answers will be automatically added to the current discourse context.

query-sentence-status handles queries about the truth value (or belief status) of sen-

tences:

(MSG

:TYPE { query-sentence-status

:REQUEST-CONTENT-LANGUAGE { <content-language> (see above)

:REPLY-CONTENT-LANGUAGE { <content-language> (see above)

:WORKLEVEL { <worklevel type>

Answers to the query in the :CONTENT slot will be found by perform-

ing some kind of inference. The total amount of inference (or work)

to be invested to �nd all requested answers is controlled by the value

of :WORKLEVEL. Its value can be minimal to request quick but probably

incomplete answers, maximal to request the provider to derive answers

without any (or maximal) resource bounds, or a number that speci�es a

maximal number of work units to be invested by the provider. What a

work unit is is de�ned by the local KB of the provider.

:HOW-MANY { <natural number>

The provider should report new answers at the earliest possible point after

it has derived at least :HOW-MANY new answers since the last report (default

is 1). If the number of allotted resources got exhausted all answers derived

so far will be reported. This kind of control is important if there is more

than one answer, e.g., if the query is an open sentence or a pattern.

:REPORT-MODE { <Oneof(suspend,continuous)>

Controls what the provider should do after it has reported a number of

answers as speci�ed by :HOW-MANY. If the value is suspend the provider

will suspend its answering activity until it receives a continuation message.

If the value is continuous the provider will continuously try to �nd new

answers until either no more answers can be found, the allotted resources

are exhausted, or it receives a control message that tells it to stop. New

answers will be reported whenever at least :HOW-MANY new answers are

available.

:TRUTH-VALUES { <(phrase, phrase)>

A pair of CL phrases that describe valid truth values. All derived answers

are required to have a truth value that is within the range of truth values

**** DRAFT **** 19 **** DRAFT ****

KQML Overview

de�ned by the two supplied values. If the local KB of the provider does

not have a notion of an ordering of truth values then the range is just

the set of the two values. If the two values are identical this set will be

a singleton set. The default is a special value any which indicates that

answers of any truth value are acceptable.

:CONTENT { <sentence-pattern>

This slot contains the actual query whose truth value should be found. If

the query is an open sentence or a pattern then all instances of it that

have the speci�ed truth value are potential answers.

)

Another type of question is topical in nature, i.e., it requests information related to a certain

topic, for example, as in the question \tell me (everything you know) about dogs". Here

we are not interested in the truth value of particular sentences, rather we want sentences

that are related to the topic expressed by the question. Depending on the di�erent levels of

expertise of the requester and the provider there might be answers that the requester will

not be able to understand.

(MSG

:TYPE { query-about-topic

:REQUEST-CONTENT-LANGUAGE { <content-language> (see above)

:REPLY-CONTENT-LANGUAGE { <content-language> (see above)

:WORKLEVEL { <worklevel type> (see above)

:HOW-MANY { <natural number> (see above)

:REPORT-MODE { <Oneof(suspend,continuous)> (see above)

:TRUTH-VALUES { <(phrase, phrase)> (see above)

:CONTENT { <phrase or pattern>

ACL phrase denoting some entity about which relevant information should

be found. What is considered as relevant is de�ned by the local KB of

the provider. If the supplied value is a pattern then it is to be viewed as

something like a predicate that describes a class of entities about which

answers should be found.

)

The next message handles queries of the kind \what can you infer from X", that is some

kind of forward inference. There are two variations to this kind of query: One where the

answerer actually assumes the initial assertions as its own, and another one in which these

assertions are only hypothetically assumed to answer the question:

(MSG

:TYPE { assert-and-infer

:REQUEST-CONTENT-LANGUAGE { <content-language> (see above)

:REPLY-CONTENT-LANGUAGE { <content-language> (see above)

:WORKLEVEL { <worklevel type> (see above)

**** DRAFT **** 20 **** DRAFT ****

KQML Overview

:HOW-MANY { <natural number> (see above)

:REPORT-MODE { <Oneof(suspend,continuous)> (see above)

:TRUTH-VALUES { <(phrase, phrase)> (see above)

:ASSERTION-MODE { <Oneof(actual,hypothetical)>

If the value of this slot is actual then the sentences will be added as

normal assertions to the current discourse context of the provider. If the

value is hypothetical the sentences will be hypothetically assumed in the

current discourse context (added to it) until all the answers are reported.

Then all these assumptions and the answers depending on them will be

removed again.

:CONTENT { <sentence list>

Answers should be found by starting inference from the sentences supplied

in this slot.

)

2.6.5 Control Messages

control messages allow some control of ongoing work performed by the provider.

(MSG

:TYPE { control

:CONTROL-TYPE { <Oneof(suspend,continue,stop)>

If the value of this slot is suspend then at the next possible point the

provider should suspend working on the request identi�ed by :REQUEST-ID

and allow for a continuation if requested. If the request has already been

completed this is a noop. If the value is continue then the provider should

�nish whatever it is doing right now and then continue to work on the re-

quest identi�ed by :REQUEST-ID. If that request has already been �nished

this is a noop. It cannot be assumed that a previously suspended task

will �nd the exact same state that existed when the interrupt occurred. If

the value is stop then at the next possible point the provider should ter-

minate to work on the request identi�ed by :REQUEST-ID. If that request

has already been �nished this is a noop.

:REQUEST-ID { <Package ID>

Holds the ID of the package that contained the request to which this

message refers. Defaults to the ID of the most recently sent request.

)

2.6.6 Replies

Similar to requests we need a set of performatives for replies. Every reply has to refer to

a particular request by the identi�er of the package that contained the request. There are

basically two kinds of answers:

Success/Failure replies tell the requester whether a certain request could get handled

successfully or not. Some requests only expect that kind of reply, e.g., the messages

that deal with setting up a discourse context.

**** DRAFT **** 21 **** DRAFT ****

KQML Overview

Content replies contain a set of sentences that are answers to queries. An empty set

indicates that no answers could be found. Yes/no type queries will get a singleton set

as a reply if the answer was yes, an empty set otherwise. The possibility to supply a

range of acceptable truth values to a query makes it necessary to indicate the truth

value of a particular answer. Instead of associating sets of answers with sets of truth

values we will assume that the truth value of an answer is expressed as part of the

content language sentence.

Success/Failure replies can be sent with the following message:

(MSG

:TYPE { success-reply

:VALUE { <Oneof(success,failure)>

:REQUEST-ID { <Package ID>

Holds the ID of the package that contained the request to which this

message refers.

:EXPLANATION { <string>

If the value of :VALUE was failure this slot can be used to hold an english

sentence that explains to any humans involved why a certain request could

not be handled.

)

content-reply messages transfer actual answers to queries back to the requester.

(MSG

:TYPE { content-reply

:REQUEST-ID { <Package ID> (see above)

:REPLY-NUMBER { <natural number>

The di�erent report modes for queries allow for multiple replies to a par-

ticular query. The value of this slot indicates the number of this particular

reply. Default is 1.

:CONTENT { <sentence set>

Contains a set of sentences that constitute replies to the query identi�ed

by :REQUEST-ID.

)

2.6.7 To Do

So far the various performatives do not account for ontologies. Updated versions will have

to.

**** DRAFT **** 22 **** DRAFT ****

KQML Overview

F

A

C

I

L

I

T

A

T

O

R

Internet

F

I

L
Application

Application Language F

A

C

I

L

I

T

A

T

O

R

F

I

L
Application

Application Language

Figure 5: SKTP architecture for implementing KQML.

3 SKTP

3.1 Introduction

SKTP is a design for an implementation of the KQML protocol stack. The design follows

the layered organization of the protocol. One section of the code handles the encapsulation

and labeling of content expressions (implementing the message layer). Another section

determines the destination of the messages and arranges (via some standard transport

mechanism) for their delivery and the return of any immediate responses.

An important feature of SKTP is its tight integration with the implementation language

of an application. This provides a nearly seamless interface between the application and

the communication protocols, signi�cantly reducing the di�culty of programming commu-

nicating agents and allowing a much tighter collaboration between processes than has been

easily achievable before.

A preliminary implementation of SKTP has been written in Common Lisp and currently

links applications written in a dialect of Prolog. We are designing interfaces to additional

languages and systems.

There are four protocol layers shown in Figure 3. Each has a matching component

in the implementation design shown in Figure 5. The overall communication is between

applications written in an application language. Applications exchange expressions which

have some meaning. This is the content layer. Expressions are selected for transmission to

remote sites and wrapped in messages. This is the message layer and is implemented in

Figure 5 by the module labeled Facilitator Interface Library (FIL).

Messages might not have unambiguously speci�ed destinations; they may have multiple

destinations; they may require special handling. The layer which handles this \routing"

of messages is the communication layer and is implemented by a separate agent called a

facilitator. The underlying stream which carries the structured data between facilitators

is, of course, the TCP/IP protocols provided by the Internet.

Each application is associated with a facilitator. Figure 6 shows an imagined collection of

application communicating via SKTP over an Internet. While the diagram looks complex,

the important gain made by the communication layer (implemented by the facilitators) is

that all network communication is made using the same protocol, instead of a di�erent

protocol for each pairing of systems.

**** DRAFT **** 23 **** DRAFT ****

KQML Overview

LoomProlog

Spice
Clips

Classic

???

Mediator
Mediator

Figure 6: A network of processes communicating using the SKTP architecture.

3.2 Facilitator Interface Library

The Facilitator Interface Library (FIL) is the code which connects the varying worlds of

di�erent AI languages and systems to the communication world of KQML. The FIL performs

three functions

� It interprets a set of declarations which describe the internal knowledge base trans-

actions (e.g. de�nitions, queries, assertions) should be imported from or exported to

remote systems.

� It contains code which monitors those internal transactions and arranges for the ap-

propriate expressions to be transmitted as messages to a facilitator which will route

them appropriately.

� It contains code which provides access points for a facilitator to deliver messages to

the application (e.g. queries to be answered, assertions to be stored, etc.)

Because the FIL is tightly integrated with the application system, it is partly imple-

mented in the underlying implementation language. For example, in our current prototype

we have applications written in a dialect of Prolog which is implemented in Common Lisp.

The FIL for these applications is written partly in Prolog and partly in Common Lisp.

3.2.1 Declarations

When using SKTP, an application program does not need to be modi�ed to make \calls" on

communication primitives. Instead, it is written as though the information that it needs was

**** DRAFT **** 24 **** DRAFT ****

KQML Overview

available locally (or, if it is primarily a supplier of information, as though there was no need

to communicate). The program is augmented by a set of declarations which describe the

internal transactions (assertions, queries, etc.) that are to be exported to remote sites and

what types of transactions it is willing to process from remote sites. Declarations describe

the following attributes of expression:

� Whether the expression is to be exported (sent to a remote site) or imported (accepted

from a remote site)

� The type of the expression (e.g. assertion, query, de�nition)

� A characterization of the expressions of this type which are to be selected. E.g. in

a relational system, the description might contain the name of the relation and the

number of arguments, or in an object-oriented system it might be the class of the

object.

Declarations which describe exports have to result in code which monitors the internal

ow of expressions, selects appropriate ones for encapsulation, and is prepared to insert any

replies into the the applications internal
ow as though they originated locally.

Programming Models The basic idea of this approach is to completely hide the commu-

nication primitives from the application programmer. This is why the FIL will frequently

need to be partly written in the underlying implementation language: it needs access to

the internal routines of the language itself to help determine when expressions need to be

transmitted and which expressions should be selected.

While this is a di�cult job for the implementor of the FIL, it has a couple of signi�cant

advantages. The �rst is that it makes application programming much easier. The ap-

plication programmer doesn't have to think about communication issues while writing the

application, just prepare a set of declarations to go with it. The declarations themselves

are written at a higher level of abstraction than communication code and so are easier to

write. The second advantage is that it relieves the implementor of the FIL from having to

design and implement a creative and clever way to integrate the communication primitives

with the non procedural languages used in AI systems.

Tighter Collaboration This approach also makes it possible for applications to collab-

orate at a much tighter level of coupling than the simple \pipe" model of communication

which is the only model currently used in DRPI or PACT. For example, in the current

SKTP, if an application's internal processes require a particular goal to be satis�ed re-

motely, the system will transmit that goal to a particular remote system and the answers

will be seamlessly integrated into the local system's inferencing cycle. The system answer-

ing the remote query may also generate additional remote queries (possibly back to the

originating system). All of this is transparent to the originating application which operates

as though all the necessary information was being provided locally. Because the library

intercepts internal transactions, two processes can actively collaborate, in parallel, on a

single goal, without explicitly programming that collaboration.

This greatly elevates the state-of-the-practice for collaboration among separately written

processes.

**** DRAFT **** 25 **** DRAFT ****

KQML Overview

3.2.2 Exporting Messages

Declarations which state the the application is going to be exporting expressions require

that the FIL contain code which will monitor the generation of these expressions, and act

on appropriate ones.

When an application declares that it needs to export some of its queries to remote agents,

the FIL creates code which monitors the internal generation of queries, queries which are

normally generated for use by an internal inference engine, looking for ones which match the

declared description. Queries which match the declarations are encapsulated as messages

and passed to a facilitator. Depending on the application, the language, and the designer

of the FIL, the FIL might wait for answers, or it might not; it might merge the answers

from remote sites with local answers, or replace the local answers outright. These and other

design decisions are made by the designer of the FIL and may be passed on as declaration

options to the application programmer.

Similar considerations apply for declarations which state that the application is going

to be exporting assertions. The primary di�erence is where in the implementation the FIL

has to look for the expressions and what to do with any replies that are received.

3.2.3 Importing Messages

If an application is willing to answer queries for remote agents, or it is interested in receiving

assertions from remote agents, it declares this in the same way as it would declare a need to

export expressions. However, in this case the FIL has to establish a set of properly advertised

functions or entry points to which a facilitator can deliver the queries or assertions.

The actual implementation of this connection depends on the design of the facilitator

and the type of connection it has with its FILs. In various implementations the facilitator

might be part of the same lisp image, or it might be a separate process connected by

shared memory or some type of interprocess communication channel. Naturally the kind of

\advertisement" needed to let the facilitator know how to deliver messages would depend

on the type of connection between the two modules.

3.3 Facilitators

Facilitators bridge the gap between KQML messages and the Internet world of host names

and TCP/IP streams. Using the metaphor of the Internet protocol stack, they are the

KQML equivalent of Internet routers.

Facilitator accept messages from FILs and rely on the information in the message's �elds

to determine the appropriate destinations for the message. In some cases an application

may identify a particular site as being the target of a message, either by host name (e.g.

To: louise.v
.paramax.com) or more symbolically (e.g. to: whichever machine is currently

advertising itself as \geosys server A"). In other cases, the application may not know what

an appropriate site is; the facilitator must rely on values of other message �elds and a

knowledge of what other sites are available in order to decide where to route the message.

3.3.1 Routing

Among the �elds of the a KQML messages are:

� language - The language in which the encapsulated expression is written.

**** DRAFT **** 26 **** DRAFT ****

KQML Overview

� type - \query", \assertion", \de�nition", etc.

� ontology - The general \framework" or \context" which the sender of the messages

assumes and which the receiver must share.

� topic - The speci�c subject matter of the message. This �eld can only be interpreted

in the context of a given ontology.

The declarations written for a program must provide su�cient information to allow the

FIL to provide values for these �elds. The facilitator uses them to search a database of

remote agents who have declared that they are suitable targets for these messages. For

example, if a facilitator receives (from a FIL) a message which is described as being:

� Type: query

� Language: relational

� Ontology: DRPI-93

� Topic: Airports:Location

it must look for one or more systems, somewhere on its connected network, which have

advertised that they are willing to import queries of this type and answer them (By hav-

ing matching \import" declarations.). It does this by searching a database of declarations

looking for entries which match those of the question. When it �nds them, it delivers the

message to facilitators which are \representing" them and, waits for either an acknowledg-

ment of receipt or actual replies.

While this process does not seem di�cult on the surface, there are several problems

which will require extensive work, especially as the number of agents available on a network

increases and as the complexity of the information being exchanged increases.

3.3.2 Ontology and Topic Matching

The task of matching the declared ontology and topic of a message against a database of

similar declarations is not well de�ned. While it is not di�cult to develop simple examples

and simple implementations to handle them it is also not di�cult to create complex examples

with no obvious implementation strategy.

Consider the case of a small and simply structure ontology which is divided into a small

and shallow class hierarchy, such as travel, divided into fewer than ten possible subclasses

such as air, rail, car, etc. Queries may be tagged as having one of these classes as their

topic; knowledge bases can choose to advertise that they are willing to answer queries about

one or more of these classes. As long as all of the participants understand which queries

are about which topic and abide by the rules implicit in the simple ontology, the problem

of matching messages with remote systems is reduced to simple string matching.

However, if the ontology is not quite as trivial, for example if it is described by a class

hierarchy of moderate depth, such as the animal kingdom, then the problem is not so trivial.

For example, if a knowledge base advertises that it is willing to IMPORT QUERIES about

the class of mammals and a facilitator has a client trying to EXPORT a QUERY about

cows, making the match is more di�cult.

The routing task must be relatively simple in order to keep the facilitators relatively

small and fast. The design of ontologies to be used for this purpose must be made with

these problems and constraints in mind.

**** DRAFT **** 27 **** DRAFT ****

KQML Overview

3.3.3 Database of Knowledge Based Services.

The second problem to be overcome is how a database of currently available applications is

to be maintained. Actually gathering the data is not di�cult. An assumption of this design

is that all applications provide their FILs with declarations of the queries they can import

and the assertions they can export, and that their associated facilitators will transmit these

announcements over the network. The question is where and how should the database be

implemented; there are several alternatives.

The database can take a variety of forms. It may be replicated in every facilitator,

it may be centralized on an advertised machine, it may be stored in a distributed form

across the network. Implementation strategies are based on the requirements of a particular

environment.

For small sets of machines, a replicated implementation may be easiest. That is, each

machine maintains its own complete copy of the list of network services. Maintenance of

this list has to be performed in realtime; whenever a service begins or ends operation it has

to be added to or removed from the list. With a small number of machines the overhead

for each machine is not too great.

However, for even modest collections of machines (e.g., more than ten or twenty) the

burden of broadcasting service announcements to every known machine, and the burden of

processing such announcements from every known machine becomes noticeable, making a

centralized approach is more suitable. One machine could serve as a repository for a single

database. All processes would send both assertions of services they are making available

and queries for needed services to this single machine.

In a very large network, e.g. a large campus network or the Internet itself, any central

server will be both a bottleneck and a single point of failure. On this scale, a distributed

approach is needed. A good example of this is the Internet distributed name service.

3.4 Implementation

Prototype versions of the components described above have been implemented. We have

implemented

� A facilitator interface library for an implementation of the language Prolog.

� A facilitator which runs as a separate process within the same Common Lisp image

as the Prolog language.

� A TCP/IP based communication package which links multiple Common Lisp images

on di�erent machines.

3.4.1 Prolog Facilitator Interface Library

An implementation of a FIL for Prolog has to handle the following events:

� A declaration by the local application of its communication status (what it needs and

what it can provide)

� An assertion by the local application which needs to be transmitted to a remote

application.

� A query by the local application which needs to be transmitted to a remote application.

**** DRAFT **** 28 **** DRAFT ****

KQML Overview

� An assertion by a remote application which has been received by the local facilitator

� A query by a remote application which has been received by the local facilitator and

needs to be answered

Declarations by the Local Application This facilitator provides routing for four types

of application declarations:

� Export Queries Applications which want to send queries to remote sites.

� Export Assertions Applications willing to transmit new assertions to remote sites.

� Import Queries Applications willing to receive (and answer) queries from remote sites.

� Import Assertions Applications which want to receive assertions from remote sites.

Each declaration is accompanied by a description of the type of assertion or query to be

exported or imported.

Declaration: Exporting Queries When a Prolog application declares that it needs to

export some of its queries to remote sites, the facilitator interface creates code which will

automatically transmit queries of the appropriate type to the facilitator.

The current implementation handles this by generating a Prolog rule of the form:

(query) :-

=(L, (call-lisp (remote-solve (query))))

member((args), L)

For example, if an application declares that it wishes to export queries of the form:

(color X Y)

The facilitator interface will assert the following rule:

(color X Y) :-

= (L, (call-lisp (remote-solve (color X Y))))

member ((X Y), L)

The function remote-solve transmits the query (with substitution performed on bound vari-

ables) to the facilitator which arranges for it to be answered by a remote site. The result is

expected to be a list of variable bindings, e.g.

((sky blue) (emerald green))

This method of dealing with locally generated queries is simple and provides an e�ective

way of dealing with the fact that the remote site returns a list of all solutions while the local

site only expects one at a time while it backtracks through them and solves the problem of

merging local answers with remote ones in a simple way. It is also very easy to implement.

**** DRAFT **** 29 **** DRAFT ****

KQML Overview

Declaration: Exporting Assertions Exporting assertions is a declaration primarily

used by forward chaining applications and not those implemented in Prolog, but we have

included it here for the sake of completeness.

When a Prolog application declares that it is willing and able to export assertions of

a particular type, it needs to create code to arrange that assertions which match those

described by the declaration are forwarded to the facilitator. The current implementation

has modi�ed the low level \assert" and \retract" functions in the Prolog implementation

to intercept and transmit matching assertions (and retractions) to the facilitator.

3.4.2 Declaration: Import Queries and Import Assertions

When a Prolog application declares that it is willing to accept queries of a particular type or

that it is interested in receiving assertions of a particular type, all it needs to do is transmit

that declaration to its local facilitator. The facilitator is responsible for insuring that other

applications are aware of this service. The transmission is performed by a simple function

call provided by the facilitator package.

When a Prolog system is willing to support this type of activity it it needs to provide

the facilitator with functions to call whenever remote queries or assertions arrive from a

remote site. This registration is made by a call to a function provided by the facilitator

package.

Handling Locally Generated Queries and Assertions When the local Prolog gen-

erates a query or assertion which needs to be transmitted to a remote site, the preliminary

work of the declaration handling (see above) has already arranged for the expression (the

query or assertion) to reach the facilitator interface code. The next step is to package the

expression into a message.

The facilitator provides a function for making messages. The interface package simply

provides values for the following message �elds:

� content The expression itself.

� language In this case, the name of the particular Prolog dialect, Frolic.

� type query, assertion, retraction, ...

� ontology This is a name which signi�es the shared assumptions that the programs

have about the knowledge they are using. It is a keyword shared among programs to

keep other programs with the same topic from answering.

� topic For one simple ontology, this is simply the particular predicate used in the

expression, e.g. COLOR/2. For another we used a list which represented the predicate

and its arguments which were represented by either constants or untyped variables,

e.g. (available JohnSmith ?Time ?Date ?Duration).

Prolog is not a good language in which to experiment with ontology de�nitions because

most \real" ontologies tend to be object oriented while Prolog is relation oriented. For

example, a service which can answer queries of the form:

(location ?x:airport ?y:coordinates)

**** DRAFT **** 30 **** DRAFT ****

KQML Overview

which can be translated as \What is the location of a particular airport?" is not likely to

advertise itself as a \location" server, providing information about the location of various

objects. It is more likely to be an \airport" server, able to answer questions about various

characteristics about airports, including their location. That is, it is more likely to be able

to answer

(number-of-runways ?x:airport ?n:number)

than

(location ?x:museum ?y:coordinates)

A given application is likely to be able to provide some information about a set of objects

in some \knowledge space". What kind of knowledge space is described by the ontology

�eld. But the task of describing which objects in that space, and what relations about those

objects, falls to the topic �eld.

A second function, send-msg-to-facilitator passes it on to the facilitator for routing.

Handling Remotely Generated Queries and Assertions To handle remotely gen-

erated queries and assertions all the interface package has to do is provide a function for

the facilitator to call when it needs to pass a query to be processed or an assertion to be

added/retracted from the database.

3.4.3 Common Lisp Facilitator

The facilitator's role is to route messages to appropriate recipients. Messages are not

usually addressed to a speci�c individual site but to either a symbolically named service

(e.g. Shipping-database or Planning-System-7) or a service which has advertised that it is

willing to accept messages of this type. The facilitator is responsible for tracking which

remote applications are interested in receiving assertions or are willing to answer queries on

various topics.

To accomplish this, each facilitator maintains its own database of remote applications.

Each entry in the database provides the Internet address of the host that the application

is running on and a TCP/IP port address for the facilitator on that host. The entries

are indexed by the types of messages the applications are willing to accept. Messages are

characterized, as described earlier, by the same �elds used to construct them: type, language,

ontology, topic and also communication style.

The database is maintained jointly by all active facilitators using the following rules:

� When a local application declares that it is willing to import queries or assertions, the

facilitator broadcasts that to all sites which may be running a facilitator.

� When a facilitator receives a declaration from another facilitator it acknowledges it

by sending a list of imports that its applications are willing to accept.

The �rst rule lets everyone know about any new services. The current implementation is

awkward in that it requires a list of machines where facilitators might be running. We will

be replacing this with a separate service which tracks running facilitators and distributes

new messages to them.

The second rule insures that new facilitators which announce their services are imme-

diately apprised of other facilitators on the net and can build their own database.

**** DRAFT **** 31 **** DRAFT ****

KQML Overview

3.4.4 Common Lisp TCP/IP

The facilitator is implemented using a locally written TCP/IP interface which allows Com-

mon Lisp applications to act as TCP/IP stream clients or servers. It provides client func-

tions to open streams to remote TCP/IP ports using hostnames (or Internet addresses) and

service names (or numbers). It also creates a separate process (within a Lucid Common

Lisp image) which monitors a speci�ed port and will spin o� additional subprocesses when

remote system communicate with that port. (That is, it implements a standard UNIX

server program.)

**** DRAFT **** 32 **** DRAFT ****

KQML Overview

4 Conclusions

KQML is a language which supports the high level communication among intelligent agents.

It can be used as a language for an application program to interact with an intelligent sys-

tem or for two or more intelligent systems to interact cooperatively in problem solving.

SKTP, a Simple Knowledge Transfer Protocol, supports KQML interactions and is de�ned

as a protocol stack with at least three layers: content at the application level, message

at the application to facilitator level, and communication at the facilitator to facilitator

level. Additional layers appear below these three to supply reliable communication streams

between the processes. The content layer contains an expression in some language which

encodes the knowledge to be conveyed. The message layer adds additional attributes which

describe attributes of the content layer such as the language it is expressed in, the ontology

it assumes and the kind of speech act it represents (e.g. an assertion or a query). The �nal

communication layer adds still more attributes which describe the lower level communica-

tion parameters, such as the identity of the sender and recipient and whether or not the

communication is meant to by synchronous or asynchronous.

We have implemented an experimental prototype of SKTP which uses communication

facilitators as intelligent \routers" to simplify the application interface and realize the proto-

col. Facilitators provide a declarative framework in which applications specify their knowl-

edge needs and the knowledge services they o�er, establish communication channels between

appropriate agents, and mediate the resulting dialogue.

KQML is part of a larger DARPA-sponsored Knowledge Sharing e�ort focused on de-

veloping techniques and tools to promote the sharing on knowledge in intelligent systems.

The next steps in this research will be apply this integration approach in several distributed

testbeds. Examples of applications envisioned include intelligent multi-agent design systems

supporting collaborative designs of complex circuits and devices by multiple design teams

as well as intelligent planning, scheduling and replanning agents supporting distributed

transportation planning and scheduling applications.

**** DRAFT **** 33 **** DRAFT ****

KQML Overview

5 Acknowledgements

The concepts and ideas in this paper are the result of contributions from a great many

people. We list here some of their names.

Jose-Luis Ambite

Hans Chalupsky

Surajit Chaudhari

Steve Cross

Jim Davis

Tim Finin

Rich Fritzson

Mike Genesereth

Bruce Hitson

Michael Huhns

Eric Mays

Don McKay

Bob Neches

Cli�ord Neuman

Ramesh Patil

Peter Rathmann

Stu Shapiro

Marty Tenenbaum

Craig Thompson

Jay Weber

Gio Wiederhold

Mike Williams

**** DRAFT **** 34 **** DRAFT ****

KQML Overview

References

[1] H. Chalupsky. Belief ascription by way of simulative reasoning. Unpublished disserta-

tion proposal, 1991.

[2] Tim Finin, Rich Fritzson, Don McKay, Robin McIntire, and Tony Ohare. The intel-

ligent system server delivering AI to complex systems. In Proceedings of the IEEE

International Workshop on Tools for Arti�cial Intelligence { Architectures, languages

and Algorithms, October 1989.

[3] N. Lehrer. KRSL Version 2.0. Language speci�cation and manual, 1992.

[4] Robert MacGregor and Robert Bates. The LOOM knowledge representation language.

In Proceedings of the Knowledge-Based Systems Workshop, April 1987.

[5] A. S. Maida and S. C. Shapiro. Intensional concepts in propositional semantic networks.

In R. J. Brachman and H. J. Levesque, editors, Readings in Knowledge Representation,

pages 291{330. Morgan Kaufmann, Los Altos, CA, 1985.

[6] Don McKay, Tim Finin, and Anthony O'Hare. The intelligent database interface. In

Proceedings of the 7

th

National Conference on Arti�cial Intelligence, 1990.

[7] J. G. Neal and S. C. Shapiro. Knowledge representation for reasoning about language.

In J. C. Boudreaux, B. W. Hamill, and R. Jernigan, editors, The Role of Language in

Problem Solving 2, pages 27{46. Elsevier Science Publishers, 1987.

[8] R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil, T. Senator, and W. Swartout.

Enabling technology for knowledge sharing. AI Magazine, 12(3):36 { 56, Fall 1991.

[9] Anthony B. O'Hare. The intelligent data interface language. Technical Report PRC-

LBS-8908, Unisys Paoli Research Center, June 1989.

[10] Anthony B. O'Hare and Amit Sheth. The architecture of BrAID: A system for e�cient

AI/DB integration. Technical Report PRC-LBS-8907, Unisys Paoli Research Center,

June 1989.

[11] N. Roussopoulos. An incremental access method for ViewCache: Concept, algorithms,

and cost analysis. ACM TODS, 16(3):535{563, 1991.

[12] N. Roussopoulos and A. Delis. Modern client-server DBMS architectures. Technical

report, Computer Science, 1991.

[13] S. C. Shapiro. The SNePS semantic network processing system. In N. V. Findler, editor,

Associative Networks: The Representation and Use of Knowledge by Computers, pages

179{203. Academic Press, New York, 1979.

[14] S. C. Shapiro andW. J. Rapaport. SNePS considered as a fully intensional propositional

semantic network. In N. Cercone and G. McCalla, editors, The Knowledge Frontier:

Essays in the Representation of Knowledge, pages 262{315. Springer-Verlag, New York,

1987.

**** DRAFT **** 35 **** DRAFT ****

KQML Overview

[15] S. C. Shapiro and W. J. Rapaport. Models and minds: knowledge representation for

natural-language competence. In R. Cummins and J. Pollock, editors, Philosophical

AI: Computational Approaches to Reasoning, pages 215{259. MIT Press, Cambridge,

MA, 1992.

**** DRAFT **** 36 **** DRAFT ****

