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Absrrucr-In this paper we introduce a novel class of intrusion: the hid- 
den process, a type of intrusion that will not be detected by an intrusion 
detection system operating under the assumption that the underlying com- 
puting architecture is functioning as specified. A hidden process executes in 
a manner that is unobservable by many of the operating system’s account- 
ing and reporting functions. In this paper we present a mechanism to hide 
processes. Additionally, we show how a hidden process may communicate 
with an external entity by piggybacking onto a legitimate network connec- 
tion. We have implemented a mechanism that detects hidden processes and 
make recommendations calling for the separation of critical operating sys- 
tem functions from more general operating system functions. 

I. INTRODUCTION 

In this paper we introduce a novel class of intrusion - the 
hidden process, a type of intrusion that will not be detected by 
an intrusion detection system that assumes that the underlying 
computing architecture is functioning as specified. 

According to the Computer Emergency Response Team/ Co- 
ordination Center (CERT/CC) of Carnegie Mellon University’s 
Software Engineering Institute, the number of reported adverse 
computer incidents continues to increase significantly [I]. For 
example, in 1990 there were 252 reported adverse incidents, 
in 2000 that number grew to 21,756 and by the third quar- 
ter of 2002 there have been 73,359 reported adverse incidents. 
An anecdotal explanation of this dramatic increase may be at- 
tributed to Kargle, et. a1 [2] who have observed that computer 
attack tools are becoming increasing more effective and avail- 
able. 

The most significant and far reaching consequence of a com- 
puter attack is the intruder gaining root (administrative) access 
to the target computer [3]. This type of access opens the targeted 
system to continued misuse and exploitation. According to the 
CERTKC advisories, root access is the most frequent conse- 
quence of an attack that successfully exploits some system or 
software vulnerability [4]. Criscuolo [ 5 ]  and Toxin [6] have ob- 
served that once an attacker has gained unauthorized administra- 
tive access to a computer he, or she, will often install a Root-Kit 
as a means of continued access and compromise of the targeted 
system. 

The authors of root-kits and other attack tools often go by 
pseudo names and are probably somewhat on the fringe. Al- 
though one is tempted to minimize their credibility and not take 
them seriously, let alone cite their work, they are to a large part 
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the very reason that the Internet security software market con- 
tinues to grow. According to Sutterfield [7] revenues from com- 
puter security products and services are expected to reach $28 
billion by the year 2006 [7]. 

We believe that knowledge of the capabilities and intentions 
of one’s adversaries is central to the mission of securing com- 
puter resources. Consequently, we have surveyed the repertoire 
of hacking tools that are readily available on the Internet, ana- 
lyzing those that appear to pose the greatest potential threat. Our 
survey and analysis serves as a means of determining the direc- 
tion of interest and the level of expertise of those who attempt 
to attack and disrupt our systems. 

Chief among the hacking tools are root-kit like programs that 
grant an intruder a continued and unfettered presence on a sys- 
tem. Root kits, which first appeared in 1993, are a collection of 
tools and trojaned replacements of core system utilities. These 
core utilities include binaries such as top, ps, Is, du and netstat 
which are used to manage a system and ensure that it is operating 
properly. Rootkits replace these core system utilities with modi- 
fied versions in order to hide the presence of the intruder and her 
tools. Our survey of freely available attack tools has indicated 
that there is an increase in the level of sophistication exhibited 
on the part of the authors of some of these tools. Although com- 
plex and difficult to implement, these tools have become easier 
to use due to their inclusion in automated attack scripts. 

We have also observed that loadable kernel modules (LKMsj 
are being employed as an advanced form of root-kit. LKM root- 
kits have modules that may replace the system call table or force 
the kernel to hide specific processes from the @roc file system. 
The consequence of hiding process from the /proc file system is 
that even legitimate copies of system utilities will not accurately 
list information about the processes executing on the system. 
The inherent danger of hidden processes (we make the assump- 
tion that any process that is hidden from the user is intrusive) 
is that a Host Based Intrusion Detection Systenz that functions 
under the assumption that the underlying system is operating 
according to specification, will never see the intrusive process 
and will give the system owner a false sense of confidence that 
the system is normal and hence secure. 

To explore the feasibility of hiding process on a system with- 
out making detectable modifications to the system call table or 
system utilities, we have written our own program that hides a 
process on the Windows (NT, 2000 and X P )  operating system. 
As there exists similar tools for hiding processes that execute 
on the Linux operating system, we have examined and report on 
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one such tool. Accordingly, we are able to hide processes in the 
Windows environment without affecting the system call table or 
by making any detectable modification to the operating system 
kernel. We have also designed a mechanism that enables a hid- 
den process to piggyback onto an existing network connection 
giving the intruder remote access to the targeted system. 

The remainder of this paper is as follows: Section I1 dis- 
cusses related research in the area of detecting root-kits and 
other mechanisms for detecting hidden processes. Section I11 
presents methods for hiding processes. Section IV presents our 
method for detecting hidden processes. We conclude by pre- 
senting our plans for future work. 

11. RELATED WORK 

The intrusion detection research community specializing in 
host based intrusion detection is primarily focused on detect- 
ing anomalous behavior. Typically they concentrate on the be- 
havior of a specific user or a process. The research of Forrest 
et. al, [8], [9], [ lo]  which profiles system call usage to detect 
anomalous behavior exhibited by a process is promising, how- 
ever they measure and baseline known processes. Consequently, 
their methodology may be ineffective in detecting hidden pro- 
cesses. Apap et. al [ 113 have conducted research into anoma- 
lous accesses of the Windows Registry. Their method detects 
processes that access Registry key values in opposition to a sta- 
tistical norm that is derived from presumably attack free data 
from the specific host. If a hidden process were installed prior 
to establishing the baseline, or if the hidden process did not ac- 
cess the Registry, its behavior would be considered normal. 

There are tools and utilities that detect the presence of known 
root-kits and LKMs, most notably, chkrootkit [12] and KSTAT 
[ 131. The chkrootkit tool is a collection of utilities that checks 
for the presence of a root-kit’s configuration files, tests system 
binaries for malicious content and determines if the network in- 
terface is in promiscuous mode. KSTAT is a kernel memory tool 
that provides kernel statistics. Here too, these utilities check for 
the presence of rootkits and LKMs that are known a posteriori 
to be malicious. 

111. HIDING PROCESSES 

As stated in the introduction, we believe that the trend in at- 
tack tools is the continued development of the means to hide the 
presence of intrusive processes. We have examined the feasibil- 
ity of hiding process on both the Windows (NT, 2000 and X P )  
and Linux operating systems. Due to Window’s prevalence, its 
subversion offers the greatest profitability to the attacker. Linux 
is also an excellent target since it is widely deployed and pro- 
vides many enterprise infrastructure services. 

A .  .Windows 

We: have observed that when queried about the processes cur- 
rently running on the system, the Windows operating system 
presents a list of active processes that is obtained by travers- 
ing a doubly link list referenced in the EPROCESS structure 

(process descriptor) of each process. Specifically, a process 
EPROCESS structure contains a LIST-ENTRY structure that has 
members FLZNK and BLINK. FLINK and BLINK are pointers 
to the processes forward and behind the current process descrip- 
tor. Figure 1 illustrates the EPROCESS block of the Windows 
kernel. 

To hide a process in Windows we first locate the Kernel’s Pro- 
cessor Control Block (KPRCB), which is unique and located at 
Oxffdff120. We then follow the CurrentThread pointer to the 
ETHREAD block. From the ETHREAD block we follow the 
pointer from the KTHREAD structure to the EPROCESS block 
of the current process. We then traverse the doubly linked list of 
EPROCESS blocks until we locate the process that we wish to 
hide. Once located, we change the FLINK and BLINK pointer 
values of the forward and rearward EPROCESS blocks to point 
around the process to be hidden. Referring to Figure 1, the 
BLINK contained in the forward EPROCESS block is set to the 
value of the BLINK contained in the EPROCESS block of the 
process to hide and the K I N K  of the process to the FLINK con- 
tained in the EPROCESS block of the rearward process is set to 
the value of the FLINK contained in the EPROCESS block of 
the process that we are hiding. 

KPRCB 

L 
I /  

I I 

Fig. 1. Windows Kernel Data Structures 

Intuitively, one would think that hiding a process by removing 
its process descriptor from the doubly linked list of EPROCESS 
blocks would prevent the process from being allocated a time 
slot in which to execute. We have observed that this is not the 
case. The Windows scheduling algorithm is highly complex, 
is done at thread granularity, is priority based and pre-emptive. 
Accordingly, a thread is scheduled to run for a quantum of time, 
which is the length of time before Windows interrupts the thread 
to check for other threads of the same or higher priority or to 
reduce the priority level of the current thread. A process may 
have multiple threads of execution and each thread is repre- 
sented by an ETHREAD structure that contains pointers to its 
siblings. Although, we have been unable to precisely determine 
why “un-linking” a process’ EPROCESS block from the doubly 
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linked list does not adversely affect execution of the process we 
strongly suspect that the Windows scheduler references those 
threads from some other linked list, not the EPROCESS block. 

We have implemented our method by writing a device driver 
(.sys), which is similar to a LKM in Linux, and by writing a Dy- 
namically Loadable Library (DLL) that provides an interface to 
the device driver. To hide a process, we load the device driver 
and invoke it by passing the name and the unique PID (Process 
Identifier) of the process. This procedure hides the process and 
unloads the device driver. Since it takes but a few milliseconds 
to hide a process and unload the device driver we minimize the 
chance that an intrusion detection system would notice our ac- 
tivity. If this process were to be executed as a system booted, 
and before any IDS software is executed, it would be virtually 
impossible to detect. 

As demonstrated by our procedure, we do not make any 
changes to the system call table. Once a process was hidden 
we have used Microsoft's Windbg to attempt to locate the hid- 
den process by running the Windbg as master on one machine 
and slaving the machine with the hidden process to it via a serial 
connection. Windbg could not detect the presence of the hidden 
process. 

B. Linux 

In our survey of attack tools we have focused on two tools 
that employ LKMs to hide processes, specifically Adore [ 141 
and Phantasmagoria [15]. The following is an overview of the 
Phantasmagoria LKM. 

The Linux operating system employs a structure of type 
taskstruct as a process descriptor. There is a strong one to 
one correspondence between a process and its process descriptor 
where the individual process descriptors contain pointers for the 
run queue of runnable processes. Figure 2 provides an overview 
illustration of the Linux process descriptor. 

As depicted, the taskarray contains a pointer to each pro- 
cess descriptor. Additionally, the first entry in the task-array 
is to process 0 which is synonymous with initdusk or swap- 
per. Process 0 is the first process started by the Linux kernel 
and is at the head of the doubly linked list that is referenced by 
nextfask and prevfask pointers of each process descriptor. The 
run queue, a data structure that points to those processes whose 
state is runnable is also maintained via a linked list formed by 
the next-run and previous-run pointers of the process descriptor. 
Finally, each process descriptor contains pointers to its parent, 
sibling, and child processes. It is important to note that Process 
0 does not have a parent process. 

To hide a process, Phantasmagoria unlinks the process de- 
scriptor from the taskarray, removes any referencing links from 
corresponding parent, sibling and child process descriptors, and 
removes the nextfask and prevdask links of any referencing 
process descriptors. To maintain a reference to the hidden pro- 
cess Phantasmagoria sets the parent pointer ( p p p t r )  of Process 
0 to point to the hidden process. Consequently, the p p p t r  of 
Process 0 serves as the root of a list of hidden processes as ad- 

'p-osptr 

p-cptr 
'p-ysptr 
'p-osptr 

Fig. 2. Linux Process Descriptors 

ditional hidden process may be added to the list. 
Linux, unlike Windows, exclusively relies upon pointers con- 

tained within the process descriptor for scheduling CPU time 
to a process. Consequently, Phantasmagoria includes code that 
modifies the scheduler function while it is executing. Under nor- 
mal execution the Linux scheduler, at the start of each epoch, 
traverses the doubly linked list of process descriptors assigning 
each process quantums or CPU time slices. This modification 
causes the scheduler, to also traverse the list of hidden processes 
and add runnable processes to the run queue. Figure 3 illustrates 
the concept of removing PID 1901 from the normal list and hid- 
ing it by making it the parent of Process 0. 

C. Network Connections 

An attacker has little to gain if a she is not able to interact 
with the computer on which she has placed some intrusive pro- 
cess. If the hidden process were to open a connection and lis- 
ten on a specific port, utilities such as netstat would indicate 
their presence. Additionally, if netstat were to be replaced with 
a modified copy, the presence of the modified version is read- 
ily detectable by programs such as Tripwire [ 161, a file system 
integrity checker. Consequently, to establish a hidden comec- 
tion our hidden process piggy backs onto an existing applica- 
tions network connection. 

To enable a hidden connection it is feasible to insert a soft- 
ware "shini" between the hardware driver and the IP layer of 
the TCP/IP protocol stack. This notion is illustrated in Figure 
4. In order to establish a connection, the hidden process scans 
its host system searching for an opened port. Once an open port 
is found the hidden process connects to a predetermined IP ad- 
dress by sending IP packets using raw sockets [ 171. This informs 
the attacker of IP address and port number to which the hidden 
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task-array 

Fig. 3. A Hidden Linux Process Descriptor 

process i is “listening”. To communicate with the process, the 
attacker crafts a packet that differentiates it from communica- 
tions intended for the host and those intended for the hidden 
process. This differentiation is carried out by setting a flag in 
the IP header. Accordingly, the three precedence bits of the TOS 
field of the IP header are ignored by current implementations of 
TCPAP, consequently setting them to a predetermined value will 
serve as such a flag. Figure 4 illustrates the concept of the shim. 

ployed to hide processes. 
If the symbols for the kernel are loaded, PsLoadedModuleRe- 

source and PsLoadedModuleList are easily locatable. PsLoad- 
edModuleResource is similar to a mutex and is used for obtain- 
ing exclusive access to the loaded driver list, PsLoadedMod- 
ulelist. There are corresponding symbols for processes called 
PspActiveProcessMutex and PsActiveProcessHead. By remov- 
ing a driver from the PsLoadedModuleList list, it is hidden from 
the kernel in many respects. As is the case with hidden pro- 
cesses the Windbg debugger no longer lists the driver. The hid- 
den driver continues to work because IOCTL’s sent to it run in 
the context of the thread that issued the IOCTL. If the driver 
creates its own threads, they become part of System. 

One difficulty in hiding device drivers on the Windows op- 
erating systems is that the attacker does not have the symbols 
to the particular version of the OS. However the operating sys- 
tem exports the function ZwQuerySystemInformation, which in 
turn calls NtQuerySystemInformation. By following this exe- 
cution path, the attacker will find a call to ExpQueryModuZe- 
Information. The first parameter to this function is the address 
of PsLoadedModuleList. With a bit of effort, an attacker now 
has everything she needs to hide her malicious process and her 
duplicitous driver. 

IV. DETECTING HIDDEN PROCESSES 

Our method for detecting hidden processes, whether running 
on the Windows or Linux operating system, requires the exami- 
nation of each thread to ensure that its corresponding process de- 
scriptor is appropriately linked. Accordingly, both require added 
functionality to the operating system. 

Hunt and Brubacher introduce Detours [18], a library for 
intercepting arbitrary Win32 binary functions, as a means of 
instrumenting and extending application and operating system 
functionality in the Windows environment. Detours replaces the 
first few instructions of a target function with an unconditional 
jump to a user provided detour function. The instructions from 
the target (original) function are preserved in a trampoline func- 
tion. Figure 5 shows the temporal ordering of the detour, tram- 
poline and target functions. 

Source Detour Trampoline Target 
Function Function Function Function 

Fig. 4. Insertion and Extraction Points for Hidden Network Traffic 

Fig. 5. Temporal Ordering of a Detour Function 

Upon initial observation, one may think that a network shim 
would be easily detectable and a clear indication that the host 
has been compromised. However, finding the shim and deter- 
mining that i t  is not part of an already complicated network stack 
is difficult at best. To further exacerbate the situation we are also 
able to hide device drivers with a technique similar to that em- 

It is important to note that Detours are inserted at execution 
time, where the code of the target function is modified in mem- 
ory - not on disk. 

In Windows, context switching is carried out by a call to 
Swapcontext which is a function in ntoskrnl.exe. The first seven 
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bytes of Swapcontext are: 

OR CL, CL 
MOV byte ptr ES:[ESI+2DI, 02 

Accordingly, when Swapcontext has been called, the value 
contained in the ED1 register is a pointer to the next thread to 
be swapped in and the value contained in the ESI register is a 
pointer to the current thread, which is be swapped out. In our 
detection method, we replace the seven bytes of Swapcontext 
with a five byte unconditional jump to our Detour Function. The 
Detour Function verifies that the KTHREAD of the thread to be 
swapped in (referenced by the ED1 register) points to a EPRO- 
CESS block that is appropriately linked to the doubly linked list 
of EPROCESS blocks. 

Our method for detecting hidden process in Linux is similar to 
that for Windows. The Injectso [ 191 library provides function- 
ality similar to Detours, but in the Linux environment. Specifi- 
cally, Injectso is a tool that can be used to inject shared libraries 
into running processes on Linux and Solaris. In Linux, the ker- 
nel needs to be modified so that when a process’ state is set to 
TaskRunning and it is placed in the run queue by setting the 
next-run and prev-run pointers of its process descriptor, a test of 
its next-task and prevdask pointers is conducted to ensure that 
they are correctly linked. 

Although our detection methods are sound and functional, 
they raise concerns and issues. The computer security situa- 
tion today is akin to an ”arms race” between “good guys” and 
“bad guys” with the hackers playing to role of bad guy. This 
arms race is made possible because neither Windows or Linux 
protects memory in kernel mode from other processes also run- 
ning in kernel mode. Consequently, no matter what defense is 
constructed, it is generally only a matter of time before the other 
side constructs a counter measure. It should be underscored that 
the Detours and the Injectso libraries may be equally used for 
benign as well as malicious purposes, which only contributes to 
the arms race between attacker and defender. 

William Wulf[20] equates our present computer security 
model to that of the the “Maginot Line” *, emphasizing that 
this model does not work. Dr. Wulf further states that we need 
to abandon this model and establish a new one. Perhaps a new 
model should be developed that uses the x86 architecture to its 
fullest potential. 

The x86 microprocessor architecture provides hardware sup- 
port for four privilege modes of execution. Both Windows and 
Linux only make use of two of these modes. If operating system 
designers were to make use of all four modes, critical function- 
ality could reside at the inner most layer and be protected from 
device drivers and LKMs [21]. An alternative is proposed by 
Arbaugh, et. a1 [22]. They present the AEGIS bootstrap proto- 

‘The Maginot Line, named after Andre Maginot, the French Minister of War 
1928 - 1932, was a series of defensive fortifications built by France along her 
border with Germany and Italy. It failed however, in 1940 the German army by 
passed the Maginot Line, entering France through a “neutral” third country and 
swiftly defeating her. 

col which systematically loads the BIOS, the operating system, 
and all device drivers from a trusted source. Although AEGZS 
is only concerned with loading trusted software, not testing for 
modification while it is in process, it could be extended to pe- 
riodically test to ensure that operating system that is resident in 
memory has not been modified and remains consistent with the 
image that was loaded. 

V. CONCLUSIONS AND FUTURE WORK 

We have presented a novel class of attack, the hidden pro- 
cess, which executes in a manner that is transparent to a sys- 
tem’s management and audit functions. We have demonstrated 
the feasibility of this class of intrusion by implementing a device 
driver to hide processes on the Windows operating system. Ad- 
ditionally, we have presented an analysis of LKMs with similar 
functionality for the Linux operating system. We have detailed 
a mechanism for a hidden process to surreptitiously piggyback 
onto an existing network connection, which enables communi- 
cations between an attacker and a hidden process. 

We have detailed and implemented a mechanism to detect 
hidden processes in both the Linux and Windows environments. 
We use the Detours library for the Windows detection mecha- 
nism. Our mechanism, however, operates with root level priv- 
ileges implying that a malicious program that also operates at 
root level could subvert our detection mechanism. 

To alleviate the “arms race” between attackers and computer 
security practitioners we suggest using the x86 architecture to 
its fullest potential. By using all four hardware privilege modes 
of the x86 architecture and by placing critical operating system 
components within the most secure level will prevent LKMs 
and device drivers from modifying an operating system conse- 
quently ensuring that it continues to function as specified. 

We are continuing our research into detecting hidden pro- 
cesses and the channels that they might use to communicate 
with an attacker. As many intrusion detection system employ 
learning algorithms to distinguish between intrusive and benign 
events we are exploring the possibility of employing Analytical 
Learning as an alternative to inductively derived rule sets as the 
basis for a host based anomaly detection engine. According to 
Mitchell [23] the inputs to an analytical learning algorithm are 
the same as with inductive learning however an additional input 
referred to as domain theory consisting of background knowl- 
edge is used to explain observed training examples. The output 
is a rule set consistent with both the training data and the domain 
theory. The notion of placing the responsibility for intrusion de- 
tection onto a trusted third party mitigates the situation caused 
by the previously mentioned arms race. 
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