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Abstract. The advent of long-term reanalysis datasets such as ECMWF
ERA 4/5 has enabled the development of Al-driven machine learning
models for weather forecasting. The major benefit of Al as an approach
is its ability to reduce computational forecast time from tens of hours
to tens of seconds, thereby enabling a variety of new applications rang-
ing from extreme regional weather event forecasting to first responder
aid for wildfires, severe storms, floods, oil spills, tornadoes, and other
extreme events in real time. Today, several operational weather forecast
centers are evaluating these models as complements or alternatives to
their existing models. However, similar efforts in applying AI/ML ap-
proaches to mesoscale weather forecasting have lagged behind due to
the lack of a reanalysis of current operational regional weather forecast
models. Recently, the ECMWF made publicly available Copernicus Eu-
ropean Regional ReAnalysis (CERRA) at spatial resolutions of 11km
(0.10) and 5.5km (0.050) from 1984 to the present. We present the first
demonstration of a successful Al regional forecast at 5.5 km spatial reso-
lution employing the Nvidia FourCastNet (FCN) model with its Adaptive
Fourier Neural Operator (AFNO) and transformer self-attention model-
ing approach. We describe the training of a regional FourCastNet model
in the NASA Center for Climate Studies (NCCS) Adapt cluster at the
Goddard Space Flight Center using five years of CERRA reanalysis data
at 3-hour intervals for five variables at four pressure levels. We show the
RMSE forecast errors of a 5.5km implementation trained on five years of
data improved for all variables but one over a forecast trained on three.
We also devise a nesting scheme wherein our regional model is boundary
forced by a global forecast. We find that our model improves on the per-
formance of the global model over its region in all but one atmospheric
variable.

Keywords: Dynamic Data Driven Learning, Regional Reanalysis, Al fore-
cast, FourCastNet, CERRA data Sets

1 Introduction

The availability of the ECMWEF ERADB reanalysis dataset has led to a revolution
in the development of Al based global models. A reanalysis data set combines
long-term records of conventional ground and spaceborne observations with ad-
vanced data assimilation forecast models to form a complete global and physi-
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cally consistent dataset representing the best estimate of the state of the atmo-
sphere. Recent Al-based global weather forecast models, such as Huawei Pangu
[14], Nvidia FourCastNet [10], Google GraphCast [6], and Microsoft ClimaX [9],
show forecast ability comparable to operational weather forecast models, but
with a significant gain in speed and a large reduction in high-performance com-
puting requirements. For example, a traditional global weather forecast model
with a spatial resolution of 1 km that takes 12 hours to simulate a 10-day fore-
cast on today’s most powerful supercomputers would take only a few minutes for
an Al-based inference forecast using a trained model. This increase in speed en-
ables the integration of regional forecast models into a digital twin for real-time
weather and climate applications. For example, a wildfire digital twin can pro-
vide useful guidance to firefighters in the field or to save lives by early issuance
of orders to families to evacuate their homes.

Unlike global forecasting, Al-based mesoscale weather forecasting has been
less explored, as there has been a lack of reanalysis data for operational re-
gional weather forecast models. An exception is that on 26 March 2024, Huawei
announced their first 3km regional five-day forecast [8]. Unfortunately, this an-
nouncement has not been followed by public access to the publication of such
models or the accuracy of their forecasts. One reason why this problem area is
less explored in terms of Al research is the lack of a long-term high-resolution
mesoscale reanalysis comparable to ERA5 [11]. Additionally, unlike physics-
based regional models that work everywhere given the local topography, a unique
reanalysis would be needed for each geographic domain of application interest.
Fortunately, in 2022-2023, the ECMWF made publicly available a 40-year re-
analysis for a European domain called the Copernicus European Regional Re-
Analysis (CERRA) data sets at resolutions of 11km (0.10) and 5.5km (0.050)
from 1984 to the present. Using an implementation of the Nvidia FourCastNet
(FCN) model [10], we developed a new Al regional forecast model trained on
five years of CERRA reanalysis data at 3-hour intervals for five variables in four
pressure levels.

Due to the relatively unexplored nature of regional AI weather forecasting
models, we must determine what adaptations are needed to achieve performance
comparable to global models over each region, as well as explore different meth-
ods of allowing the global model to influence the regional model in order to allow
global weather effects to influence the region as part of a nesting scheme.

2 Relation to Dynamic Data Driven Applications
Systems

The Dynamic Data Driven Applications Systems paradigm describes the inte-
gration of instrumentation data and application models together into a feedback
control loop, which can then be used to control the instrumentation or improve
the accuracy of the model of the physical system [2]. DDDAS has found uses
particularly in the modeling and structure of digital twins [7] [12]. Traditional
mesoscale forecasts rely on slow and computationally intense simulations, mak-
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ing it difficult for them to be guided by dynamic data input. Our work’s major
contribution is the large reduction in computational forecast time and resources
for a regional weather model, which allows integration into a dynamic control
system within a DDDAS paradigm. Faster forecasts also enable new applications
within this paradigm, such as live monitoring and simulation of extreme weather
events such as wildfires. In turn, this can be used to steer instrumentation to
collect and measure data relevant to generating a more accurate model of the
event in order to (for instance) better inform firefighters and emergency services.
Our model fits within the data assimilation loop of the DDDAS method, as its
quick simulation time allows for faster updating of sensor instrumentation and
integration of sensor data. Figure 1 illustrates a basic version of this DDDAS
system.

Dynamic Data Driven Mesoscale Forecasting Architecture
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Fig. 1: Illustration of a simple DDDAS system integrating our regional FourCast-
Net mesoscale model into CERRA reanalysis. This can itself be used in a larger
DDDAS system to drive instrumentation based off this reanalysis.

3 Background

There are two general types of weather forecasting models: global models at
30km spatial resolution and mesoscale models at 3km resolution (both are used
operationally for different applications). The use of global weather models for
regional forecasting at 3km scale is a 10x factor in spatial resolution and a 100x
temporal computing constraint even with today’s fastest supercomputers, which
limits such use to non-real time exploratory research. Mesoscale weather models
can perform forecasts at these resolutions and higher by defining geographic do-
mains at 1/8 or less the size of the global domain and embedding nested domains
of higher resolution covering even smaller geographic areas. For instance, we can
embed a higher resolution model of the continental United States within a lower
resolution global model. Nested geographic areas add the complexity of having
to specify interactive one-way or two-way boundary conditions.
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Mesoscale Weather Forecast models are governed by the same dynamical
equations that govern the atmospheric motions of Global Weather Forecast mod-
els [13, 1]. Although regional models employ many of the same physical param-
eterizations as global models such as radiation, convection, and microphysics,
they also include processes such as vegetation surface scale modules, soil type
and depth, local topography for wildfires, surface runoff, and even local chemical
effects[4]. As a result of trade-offs in geographic coverage for increased spatial
resolution, regional models can numerically simulate atmospheric motions on do-
mains that are an order of magnitude smaller than global models. This increased
spatial resolution allows regional models to address local processes taking place
on shorter time scales such as boundary layer processes, wildfire models, air qual-
ity, snow cover and melt, and mountain effects, etc. However, higher spatial and
temporal resolutions come at the cost of increased compute time and resources
comparable to those of lower resolution global forecast models. Thus, while re-
gional models with very high resolution can realistically simulate more local
phenomenon such as wildfire spread and the dispersion of smoke from plumes,
they cannot provide real-time decision-making firefighting guidance, a desired
property of wildfire digital twin (for example).

4 A CERRA Data Driven FourCastNet for Regional
Predictions

We chose to employ the global AT model FourCastNet (FCN) [10] developed
by Nvidia, but limited to the domain of the CERRA data described above for
continental Europe. FCN is a model based on the use of Adaptive Fourier Neural
Operators (AFNO) by J. Gubias [3]. Each spatial variable at a given pressure
level in the training data set is stored as an image of the spatial domain of
the dataset for each timestep. First, FCN partitions the image into patches of
dimension (h,w). Each patch is then embedded as a large vector along with the
other variables and sent to an AFNO. The AFNO then transforms this input with
a Fast Fourier Transform (FFT) followed by a linear/softmax layer. In essence,
the model learns the change in the Fourier coefficients from this timestep to the
next. The coefficients are then sent through an inverse FFT (IFFT) and then
mixed back with the original input. This process is repeated some number of
times (eight by default) and then sent to a final linear layer to decode this back
into an image. See Figure 2 for an illustration of this process.

A model trained in this way would only be able to take in input over the
CERRA domain and would not know anything about the state of the atmo-
sphere outside it. Numerical models tackle this issue by employing nesting: a
low-resolution global forecast is run first, then the results of that forecast are
used to generate boundary conditions for a higher-resolution regional forecast.
This allows the global atmospheric state to drive the regional predictions.

In the case of our CERRA model, we used the results of a run of Nvidia’s orig-
inal global model trained with five years of ERA5 data as boundary conditions
for our regional model. We selected the same variables and years as our CERRA
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Fig.2: An illustration of the FourCastNet model. The input images are broken
down into patches which are then embedded and sent to a series of AFNOs, then
decoded back into images at the end.

model for the training data for this model. To implement nesting, we interpolate
from the low-resolution 30km ERAS5 grid to the higher-resolution 5.5km CERRA
grid. We then run inference using our regional CERRA-trained model, but after
each time step completes and errors and predictions are calculated, we integrate
all pixels that are within N pixels of the edge (either height- or width-wise)
on each variable’s image representation with the interpolated results from the
ERAb5-based model’s inference run, then resume inference as normal. We utilize
a relatively basic data assimilation technique to drive the regional variables: for
each variable, we simply replace all the relevant pixels with the corresponding
pixel on the interpolated global forecast.

5 Training Regional AI FourCastNet on CERRA
Reanalysis

We first modified FCN to support a regional domain. Although the version of
FCN we used lacks periodicity, it still required modification to take in data
of different resolutions and shapes to the original ERA5 dataset that it was
initially trained with. Since FCN makes no assumptions about the nature of
each channel/variable, we were free to choose any variables from the CERRA
reanalysis data. We selected temperature, geopotential, wind speed and relative
humidity to match the variables in the original ERA5 dataset, and selected 50,
500, 850, and 1000 hPa as our pressure levels for the same reason.

In particular, the specific CERRA dataset we used did not have surface-
level (2m) data for these variables, though future experiments will incorporate
other datasets that do. We also did not omit certain variables from certain
pressure levels, as Nvidia’s ERAS5 dataset did - every pressure level in our model
contains every atmospheric variable. Finally, our CERRA dataset did not provide
total column water vapor, mean sea level pressure, and surface pressure, as does
the ERA5 dataset. This is also something that we will incorporate into future
experiments.

The CERRA data we used had a resolution of (1069,1069), however, for
ease of patching, we used multiples of eight and achieved this by truncating



6 Sophia Hamer, Jennifer Sleeman, Milton Halem

the bottom of rightmost pixels of the image to achieve a size of (1024,1024) - a
spatial resolution of 5.5km (0.050). With 20 channels, this model has a tensor
input of (20, 1024, 1024). The CERRA dataset also has a temporal resolution
of three hours per time step rather than ERA5’s six hours.
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Fig.3: Plots of forecasted temperature (in Kelvin) at 1000 hPa and relative
humidity (in kg/kg) at 500 hPa at 0600 GMT on January 1, 2018 (two timesteps
into the forecast) with five years of training data.

Although CERRA reanalysis data sets are now available for 40 years, the
computational resources needed to store and train 150 epochs of a 40-year 5.5
km data set are still quite high. However, in an earlier study presented at the
2023 American Geophysical Union Annual Meeting[5], we showed that two years
of training with only 50 epochs in the ERA5 dataset approximates Nvidia’s
complete FCN model forecast for 2018 (which used 40 years of data at 150
epochs) reasonably well with less than a 20% RMSE error for one to two days.
This suggested that fewer training years for our regional model as well as fewer
epochs could be used to overcome hardware challenges while still maintaining
reasonable skill.

We conducted three relevant experiments with one, three, and five years of
available CERRA training data, respectively, starting in 2013 and ending in
2017. The one-year experiment was trained on just 2013, three years was trained
on 2013-2015, and five years was trained on 2013-2017. 2018 was used as the
testing year, just as in Nvidia’s initial FCN training on the ERA5 dataset. The
one-year training data experiment was used to test the execution of the regional
FCN model and was trained for the full 150 epochs.

Our two primary experiments were the three-year and five-year training data
runs, where we collected both images of completed forecasts and RMSE plots
for each variable for those forecasts. Both experiments were left to train for a
reduced number of epochs: 30 for three years and 60 for five years. Using trained
models, we produced five-day forecasts starting at 00:00 GMT on January 1,
2018. Examples of forecast images for the five-year run can be found in Figure
3, and examples of RMSE plots are found in Figure 4.
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Fig. 4: Plots of the RMSE of temperature (in Kelvin) at 1000 hPa and relative
humidity (in kg/kg) at 500 hPa at 0600 GMT on January 1, 2018 (two timesteps
into the forecast) given five years of training data

We used the computing resources made available on the NASA NCCS system
at Goddard Space Flight Center. We were limited to four Nvidia V100s each
with approximately 32GB of VRAM, which took approximately four days to
fully train each experiment. For comparison, NVidia’s initial training of FCN
(40 years of data, 150 epochs) on the ERA5 dataset was done across 64 A100s,
each with 80GB of VRAM, taking approximately 16 hours.

We now describe the nesting experiments conducted. We varied the boundary
size value N from 0 (meaning a completely unnested forecast) to 64. A special
512 boundary is included wherein the entire image is replaced with the ground
truth from the global dataset interpolated to the CERRA domain. We also ran
a set of experiments in which only geopotential was replaced.

6 Results of CERRA Regional AI Forecast

Running inference for a five-day forecast for both the three-year and five-year
training data models took less than 10 seconds on four Nvidia V100s and less
than a minute on a GeForce RTX 4080m laptop GPU. The RMSE inference
errors were calculated by differencing with the reanalysis data. Other validation
metrics (such as the anomaly correlation coefficient (ACC)) await the calculation
of a CERRA climatology and will be included in future work. In Figures 5 -
9 we show a comparison of RMSE over time for the three-year and five-year
training data experiments for all variables and pressure levels. For almost all 20
combinations of variable/pressure levels, the five-year training data experiment
performs noticeably better than the three-year. These results show forecast skill
for a full five-day forecast for three and five years of training data. We expect a
longer number of years of training to extend the range of forecast skills.

The results of the initial nesting experiment are shown in Figures 10-14. Here,
we found that our nesting scheme occasionally produced a small improvement in
our forecast performance for certain variables (relative humidity at 500 hPa, wind
velocity U at 850 hPa, and others) but was just as likely to be a detriment (wind
velocity u at 500 hPa, wind velocity V at 500 hPa, and others). One variable
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Fig. 7: Comparison of three-year and five-year experiment performance of Wind
Velocity U at each pressure level.
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Fig. 8: Comparison of three-year and five-year experiment performance of Wind
Velocity V at each pressure level.
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Fig.9: Comparison of three-year and five-year experiment performance of Geopo-
tential at each pressure level.

that stands out is geopotential: the five-year Nvidia model already predicted
geopotential consistently better than our regional model, and in those cases,
using nesting actually significantly improved our model’s performance (though
not to the point where it was performing as well as the five-year Nvidia model).

These experimental results led to an additional experiment in which only
geopotential variables were replaced. The results of this experiment are shown
in Figures 15-19. Note that for our only-geopotential replacement experiment,
we performed better at predicting geopotential for all pressure levels than we did
when we replaced all variables. This suggests that our model shows a genuine
skill improvement over the global five-year model and is able to actively benefit
from the boundary conditions of a global model. Importantly, we did not see
a drop in performance for the other (non-geopotential) variables, and in some
cases (such as wind velocity V at 1000 hPa) we saw a large drop in RMSE for
many boundary sizes. In several variables, we also found that a total replacement
of the geopotential (the 512 line) actually produced a large improvement in the
performance of almost every other variable. This opens an avenue of future
investigation, wherein we can explore leaving some atmospheric variables to be
predicted exclusively by global models and simply interpolated to a regional
domain for use in regional models.
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Fig. 10: Relative Humidity Comparison of the CERRA regional model and the
five years of data ERA5 global model (interpolated to the CERRA domain) for
different boundary sizes. For each size n, the n pixels closest to the border of
an image are replaced with predictions from the global forecast before each time
step. Forecast begins at 00:00 GMT January 1, 2018.
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Fig. 11: Temperature Comparison of the CERRA regional model and the five
years of data ERAS5 global model (interpolated to the CERRA domain) for
different boundary sizes. For each size n, the n pixels closest to the border of
an image are replaced with predictions from the global forecast before each time
step. Forecast begins at 00:00 GMT January 1, 2018.
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RMSE comparison between CERRA w/o surface variables model and
5 Years ERAS model (interpolated) for Wind Velocity U at 500 hPa
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Fig. 12: Wind Velocity U Comparison of the CERRA regional model and the
five years of data ERA5 global model (interpolated to the CERRA domain) for
different boundary sizes. For each size n, the n pixels closest to the border of
an image are replaced with predictions from the global forecast before each time
step. Forecast begins at 00:00 GMT January 1, 2018.
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Fig.13: Wind Velocity V Comparison of the CERRA regional model and the
five years of data ERA5 global model (interpolated to the CERRA domain) for
different boundary sizes. For each size n, the n pixels closest to the border of
an image are replaced with predictions from the global forecast before each time
step. Forecast begins at 00:00 GMT January 1, 2018.
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Fig. 14: Geopotential Comparison of the CERRA regional model and the five
years of data ERAS5 global model (interpolated to the CERRA domain) for
different boundary sizes. For each size n, the n pixels closest to the border of
an image are replaced with predictions from the global forecast before each time
step. Forecast begins at 00:00 GMT January 1, 2018.
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RMSE comparison between CERRA w/o surface variables model and RMSE comparison between CERRA w/o surface variables model and
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Fig. 15: Relative Humidity comparison of the above CERRA regional model and
the 5 years of data ERA5 global model (interpolated to the CERRA domain)
for different boundary sizes. For each size n, the n pixels closest to the border of
an image are replaced with predictions from the global forecast before each time
step. Here, only geopotential variables are replaced. Forecast begins at 00:00
GMT January 1, 2018.
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5 Years ERAS model (interpolated) replacing Z for Temperature at 500 hPa 5 Years ERA5 model (interpolated) replacing Z for Temperature at 850 hPa
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Fig. 16: Temperature comparison of the above CERRA regional model and the
5 years of data ERAS5 global model (interpolated to the CERRA domain) for
different boundary sizes. For each size n, the n pixels closest to the border of
an image are replaced with predictions from the global forecast before each time
step. Here, only geopotential variables are replaced. Forecast begins at 00:00
GMT January 1, 2018.
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5 Years ERA5 model (interpolated) replacing Z for Wind Velocity U at 500 hP 5 Years ERA5 model (interpolated) replacing Z for Wind Velocity U at 850 hP
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Fig.17: Wind Velocity U comparison of the above CERRA regional model and
the 5 years of data ERA5 global model (interpolated to the CERRA domain)
for different boundary sizes. For each size n, the n pixels closest to the border of
an image are replaced with predictions from the global forecast before each time
step. Here, only geopotential variables are replaced. Forecast begins at 00:00
GMT January 1, 2018.
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5 Years ERA5 model (interpolated) replacing Z for Wind Velocity V at 500 hP 5 Years ERA5 model (interpolated) replacing Z for Wind Velocity V at 850 hP
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Fig. 18: Wind Velocity V comparison of the above CERRA regional model and
the 5 years of data ERA5 global model (interpolated to the CERRA domain)
for different boundary sizes. For each size n, the n pixels closest to the border of
an image are replaced with predictions from the global forecast before each time
step. Here, only geopotential variables are replaced. Forecast begins at 00:00
GMT January 1, 2018.
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RMSE comparison between CERRA w/o surface variables model and
5 Years ERA5 model (interpolated) replacing Z for Geopotential at 50 hPa
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RMSE comparison between CERRA w/o surface variables model and
5 Years ERA5 model (interpolated) replacing Z for Geopotential at 500 hPa
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Fig. 19: Geopotential comparison of the above CERRA regional model and the
5 years of data ERA5 global model (interpolated to the CERRA domain) for
different boundary sizes. For each size n, the n pixels closest to the border of
an image are replaced with predictions from the global forecast before each time
step. Here, only geopotential variables are replaced. Forecast begins at 00:00
GMT January 1, 2018.

7 Conclusions and Next Steps

We have taken the first step towards demonstrating the first mesoscale Al
weather research forecast employing the FourCastNet model with one to five
years of training data in the 40-year CERRA reanalysis data set at 5.5km spatial
resolution. Even with limited training data and time, we still produce realistic
24-hour forecasts at 5.5 km. Our nesting experiments showed that our regional
model can indeed benefit from having a global model modify its boundaries at
each timestep under certain conditions. Although our model performs better for
most variables, a global model with the same amount of training data performs
better at predicting geopotential. Our experiments with switching out which
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variables we actually replaced suggest that our model benefits primarily from
the geopotential correction provided by the global model, and having this influ-
ence enables it to improve its performance at predicting other variables as well.
Our next steps are to experiment with other assimilation schemes for boundary
forcing and train the model with additional training data. We would also like
to extend our analysis beyond January 2018 to better assess our model’s perfor-
mance, as well as test our regional nesting scheme on other regions, such as the
continental US and Australia.

8 Acknowledgements

We recognize the NASA /ESTO FireSense Program Manager, Haris Riris, and
his staff for their support on our grant number 8ONSSC22K1405. We also ac-
knowledge the support from the NASA CISTO office in making GSFC/NCCS
computing resources available to this grant, without which these breakthrough
findings would not have been possible.

The authors have no competing interests to declare that are relevant to the
content of this article.



18 Sophia Hamer, Jennifer Sleeman, Milton Halem
References
1. Bao, J.W., Michelson, S., Grell, E.: Microphysical process comparison of three

10.

11.

12.

13.

14.

microphysics parameterization schemes in the wrf model for an idealized squall-
line case study. Monthly Weather Review 147(9), 3093-3120 (2019)

Darema, F., Blasch, E.P., Ravela, S., Aved, A.J.: The dynamic data driven appli-
cations systems (dddas) paradigm and emerging directions. Handbook of Dynamic
Data Driven Applications Systems: Volume 2 pp. 1-51 (2023)

Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A., Catanzaro, B.: Adaptive
fourier neural operators: Efficient token mixers for transformers. arXiv preprint
arXiv:2111.13587 (2021)

Ha, S., Kumar, R., Pfister, G., Lee, Y., Lee, D., Kim, H.M., Ryu, Y.H.: Chemical
data assimilation with aqueous chemistry in wrf-chem coupled with wrfda (v4. 4.1).
Journal of Advances in Modeling Earth Systems 16(2), e2023MS003928 (2024)
Hamer, S., Halem, M., Sleeman, J.: Towards a regional ai-driven digital twin fore-
cast model. AGU23 (2023)

Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Alet,
F., Ravuri, S., Ewalds, T., Eaton-Rosen, Z., Hu, W., et al.: Learning skillful
medium-range global weather forecasting. Science 382(6677), 1416-1421 (2023)
Malik, S., Rouf, R., Mazur, K., Kontsos, A.: A dynamic data driven applications
systems (dddas)-based digital twin iot framework. In: Dynamic Data Driven Ap-
plications Systems: Third International Conference, DDDAS 2020, Boston, MA,
USA, October 2-4, 2020, Proceedings 3. pp. 29-36. Springer (2020)

Matsui, E.: Huawei Cloud introduces regional AI weather forecast Pangu model
in China. https://www.huaweicentral.com/huawei-cloud-introduces-regional-ai-
weather-forecast-pangu-model-in-china/ (2024), [Online; accessed 27-March-2024]
Nguyen, T., Brandstetter, J., Kapoor, A., Gupta, J.K., Grover, A.: Climax: A
foundation model for weather and climate. arXiv preprint arXiv:2301.10343 (2023)
Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mar-
dani, M., Kurth, T., Hall, D., Li, Z., Azizzadenesheli, K., et al.: Fourcastnet: A
global data-driven high-resolution weather model using adaptive fourier neural op-
erators. arXiv preprint arXiv:2202.11214 (2022)

Ridal, M., Bazile, E., Le Moigne, P., Randriamampianina, R., Schimanke, S., An-
drae, U., Berggren, L., Brousseau, P., Dahlgren, P., Edvinsson, L., et al.: Cerra,
the copernicus european regional reanalysis system. Quarterly Journal of the Royal
Meteorological Society (2024)

Rokka Chhetri, S., Al Faruque, M.A., Rokka Chhetri, S., Al Faruque, M.A.: Dy-
namic data-driven digital twin modeling. Data-Driven Modeling of Cyber-Physical
Systems using Side-Channel Analysis pp. 129-153 (2020)

Skamarock, W., Klemp, J., Dudhia, J., Gill, D., Liu, Z., Berner, J., Wang, W.,
Powers, J., Duda, M., Barker, D., et al.: A description of the advanced research
wrf model version 4.3; no. NCAR/TN556+ STR (2021)

Zeng, W., Ren, X., Su, T., Wang, H., Liao, Y., Wang, Z., Jiang, X., Yang, Z.,
Wang, K., Zhang, X., et al.: Pangu: Large-scale autoregressive pretrained chinese
language models with auto-parallel computation. arXiv preprint arXiv:2104.12369
(2021)



