
A Policy Based Approach to

Security for the Semantic Web

Lalana Kagal, Tim Finin and Anupam Joshi

Outline

• Rei : A policy language

• Why is Rei needed ?

• Comparison with existing research

• Securing the Semantic Web

• Infrastructure for web resources

• Infrastructure for agents

• Infrastructure for web services

• Summary

Rei : A Polic y La ngua ge

: Japanese ‘Kanji’ character means ‘universal’ or ‘essence’

Kanji is a Japanese script

• A declarative policy language for describing
policies over actions

• Represented in RDF-S + logic like variables

• Based on deontic concepts and speech acts

• Possible to write Rei policies over ontologies in
other semantic web languages
• Rei policy engine + RDFS reasoner + other reasoners

• Different kinds of policies
• Security, privacy, conversation, etc.

Example : All entities in

the same group as John
have the right to use any
printer that John has the

right to use

Right

Prohibition

Obligation

Dispensation

Delegation

Revocation

Request

Cancel

Example : John has

the right to delegate
the right to revoke the
right to Print

Why is it needed ?

• Existing polic y languages

• XACML : OASIS eXtensib le Acc ess Contro l Markup Language

• Ponder

• EPAL : IBM Enterprise Privacy Authorization Language

• KeyNote

• KAoS : Knowledgeable Agent-oriented System

• Disadvantages

• Limited by language used

• Not very expressive in terms of constra ints

• Limited support for de legation

• Other speec h ac ts not handled at a ll

Rei

RDFS

Expressive

Good delegation
mng+ integrated
support for
other speech acts

Rei Specifications

• Policy

• Properties : Context, Default Policy, Grants

• Deontic objects

• Rights, Prohibitions, Obligations, Dispensations

• Properties : Actor, Action, Constraints

• Actions

• Properties : Actor, Target objects, PreConditions, Effects

• Composite actions : Seq, Choice, Once, Repetition

• Speech Acts

• Delegation, Revocation, Request, Cancel

• Properties : Sender, Receiver, Deontic object/Action

• Used to modify policies

Dispensation/

Revocation

Obligation/

Delegation
ProhibitionRight

Example : No student

 can enter the faculty
lounge after 4.30 on
weekdays

Example : John is

prohibited from any
action that causes
radiation

Rei Specifications

• Meta Policies

• Setting priorities between policies or rules

• E.g. Federal policy overrides the State policy

• Setting modality precedence

• E.g. Negative modality holds for all students of UMBC

Security framework

• Provide security for three types of entities

• Web resources

• Agents

• Web services

Classification of entities

• Entities can be one of 3 types

• Private -- No other entity has the right to access a private

service/agent/resource

• Secure -- Only entities that satisfy the associated policy of

the secure agent/service/resource have the right to access

it

• Open -- All entities have the right to access an open

resource/service/agent

Framework for web resources

User

Web server

http://www…../page.html +

Rei policy in RDF/XML

Agent

Request for resource

Reject OR

Redirect to credentials
page + policy requirements

Resource

Framework for agents

• Framework based on FIPA specs
• Agents exist on platforms that provide middleware

functionality
• AMS : Agent Management System (white page service)

• DF : Directory Facilitator (yellow page service)

• Main functions : registration and querying

• Two levels of security
• Platform

• AMS and DF use the platform policy and other policies to
decide whether to provide services to the requesting agent

• Agent
• Agent uses its own policy to decide whether to honor

requests from the platform or other agents

Security Module for AMS

AMS DF

Agent Platform

Register +

Policy (if sec-type is
secure)

Registration

1. Check platform policy

2. Update directory

3. (Save agent policy)

Agent

Accept OR

Reject + Requirements

Security Module for AMS

AMS DF

Agent Platform

Agent

Request for agent

ID
List of IDs

Querying

1. Check platform policy

2. Check requested agent’s

policy

3. If requester meets

 policy, return ID

Security Module of DF

• Similar to that of AMS

• Functionality

• Register a service

• Checks if agent meets platform’s policy for registering a
service

• Query for a service

• Checks if agent meets the platform’s policy for querying for
services

• Finds all matching services (either open or secure)

• Retrieves associated policies of services registered as secure

• Returns all open services and those secure services whose
policy requirements the requester meets

Agent security

• Security module in the agent is optional

• An agent can rely on the platform to provide

authorization to its services

• May have additional policy requirements after

initial filtering by AMS and DF

Framework for web servic es

Webservice

Directory

Functional Desc +

Policy

http://orbtiz.com#Service123

Does service have

the right to

register ?

Accept OR

Reject + Requirements

Registration

Framework for web services

http://orbtiz.com#Service123

Request = Func desc of

service + Credentials

1. Does requester have

the right to query ?

2. Check that requester

meets policy of matched

service

Reject + Requirements

Query

Webservice

Directory

List of (func + policy)

matched services

Example Policy 1

• Service123, of orbitz’s namespace, permits users
who are in the same current project as an

orbitz’s platinum club member to use it

Logic

Right(User, service123, Constraints).

Constraints =

 currentProject(User,Project),
currentProject(SomeUser, Project),

member(SomeUser, orbitz-platinumClub)

Rei Example Policy 1

:x a rei:Variab le.

:y a rei:Variab le.

:p a re i:Variab le.

:R a re i:Right;

 rei:agent re i:x;

 rei:ac tion [a orb itz:findtic kets;
rei:target orb itz:Servic e123].

:ws-polic y a rei:Policy;

rei:grants [a rei:granting;

 rei:to x;

 rei:deontic R;

 rei:oncondition [a
rei:AndCondition;

rei:First [a rei:SimpleCondition;

 rei:subject y;
 rei:predicate orbitz:member;

 rei:object orbitz:platinumclub];

 rei:Second[a rei:AndCondition;

 rei:First[a rei:SimpleCondition;

 rei:subject y;

 rei:predicate
 foaf:currentproject;

 rei:object p];

 rei:Second[a rei:SimpleCondition;

 rei:subject x;

 rei:predicate
 foaf:currentproject;

 rei:object p]]]].

Example Policy 2

• All graduate students have the right to delegate a printing
action on the HPPrinter in UMBC to any undergraduate
student

Logic

Right(Grad, delegate(Grad, UnderGrad, right(UnderGrad,
print(UnderGrad, umbc-hpprinter, _, _)_), _), Constraints).

Constraints =

 student(Grad, graduateStudent),

 student(UnderGrad, undergraduateStudent)

Rei Example Policy 2

:s a rei:Variable.

:r a rei:Variable.

:R a rei:Right;

 rei:agent rei:s;

 rei:action [a rei:Delegate;

 rei:Sender s; rei:Receiver r;

 rei:Content [a
 univ:PrintingAction;

 rei:target umbc:HPPrinter];

 rei:constraints[a
rei:SimpleCondition;

 rei:subject r;

 rei:predicate rdf:type;

 rei:object
univ:UndergradStudent].

:policy a rei:Policy;

rei:grants [a rei:granting;

 rei:to s;

 rei:deontic R;

 rei:oncondition [a

rei:SimpleCondition;

 rei:subject s;

 rei:predicate rdf:type;

 rei:object univ:GradStudent]

Testbeds

• The past: Rei’s ancestor was used in
• The EECOMS supply chain management project to

control access to information between enterprises

• The Vigil pervasive computing framework to control
access to pervasive services

• The present: Rei is currently being used in
• An agent-based collaboration application (GENOA II) to

control team formation and information access

• The Fujitsu Task Computing framework to control access
to pervasive services

• The future: Rei will be used in
• The CoBrA pervasive computing system for privacy

policies

Future Work

• Reimplementation in F-OWL
• We are in the process of reimplementing Rei using the F-

OWL reasoning system

• Incorporating OWL rules
• We hope to use OWL rules in the RDF syntax for Rei if a

consensus proposal appears soon

• Reasoning about policies
• We are extending the reasoner to be able to detect more

inconsistencies in policies

• The Rei policy editor

• We are developing an IDE for Rei policies using the Eclipse
framework

Summary

• Security Framework
• Policy based

• Distributed

• Every entity is responsible for its own policy

• Use of speech acts to modify policies

• Security is either part of the central directory or controlled by the individual
web entity

• Similar framework for all entities

• Policy Language
• Based on RDFS + logic

• Speech acts are tightly coupled with the policies

• Mechanisms for conflict detection and resolution

• Can be used for security, management, privacy policies

For More Information

 http://rei.umbc.edu/

	Slide 1: A Policy Based Approach to Security for the Semantic Web
	Slide 2: Outline
	Slide 3: Rei : A Policy Language
	Slide 4: Why is it needed ?
	Slide 5: Rei Specifications
	Slide 6: Rei Specifications
	Slide 7: Security framework
	Slide 8: Classification of entities
	Slide 9: Framework for web resources
	Slide 10: Framework for agents
	Slide 11: Security Module for AMS
	Slide 12: Security Module for AMS
	Slide 13: Security Module of DF
	Slide 14: Agent security
	Slide 15: Framework for web services
	Slide 16: Framework for web services
	Slide 17: Example Policy 1
	Slide 18: Rei Example Policy 1
	Slide 19: Example Policy 2
	Slide 20: Rei Example Policy 2
	Slide 21: Testbeds
	Slide 22: Future Work
	Slide 23: Summary
	Slide 24: For More Information

