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Abstract—Today’s networked cyber-physical environments con-
tain a wide range of agents, including fixed sensors, unmanned
aerial vehicles (UAVs), and unmanned ground vehicles (UGVs),
which help accomplish the objective(s) of a given mission.
These collaborating agents support informed decision making
for humans to accomplish mission objectives such as surveillance
or search and rescue. However, these agents and their sensors
are subject to various failures, including power, communication,
hardware, and environmental factors. In contested environments,
these failures also result from the kinetic or cyber actions of the
adversary. This can result in conflicting information and the loss
of a shared notion of the truth, leading to impaired situational
awareness and poor decision-making. To overcome this challenge,
we present CONFLICTRESOLVER, a policy-driven knowledge-
graph framework that can identify agents that share conflicting
information and resolve conflicts using agent negotiation and
reasoning. In doing so, it also infers/updates the trustworthiness
measures of the sensing agents. This framework analyzes the
information available within the collaborative agents to identify
conflicts, acquire mission-critical objectives from the operator,
determine triggering actions, and self-organize and reconfigure
the agents’ capabilities in accordance with mission-criticality
to remain resilient in contested environments. As part of our
test bed, we deploy UGVs equipped with multimodal sensors to
demonstrate how agents handle conflicts and establish trust.

Index Terms—Collaborative Autonomous Systems, Information
Conflict, Resilience, Autonomous Agents, Machine Learning

I. INTRODUCTION

A distributed system of collaborating, autonomous agents
can provide independent observations from on-board sensors
to enhance situational awareness and improve decision-making
for operators [3] in a variety of contexts, including the
battlefield. The data generated by these autonomous agents
are heterogeneous in nature, as they can come from vari-
ous types of sensors (e.g. cameras, LIDAR, RADAR, GPS),
from operational metrics (e.g. speed, direction, fuel or battery
levels, maintenance status), from measures of environmental
conditions (e.g. weather, traffic patterns, object detection),
and communication logs (e.g., logs of interactions between
the autonomous agent and control centers, other autonomous

systems, and infrastructure). The real-time data generated by
the agents aid in effective decision making by providing the
most current and accurate information.

However, the information reported by the autonomous
agents is not always accurate, making it difficult to achieve
a shared and coherent notion of the truth. These inaccuracies
can arise from sensor malfunctions, environmental interfer-
ence, and adversarial cyber attacks, especially in contested
environments. They can cause challenges [16] such as incorrect
decision-making, mission failures, increased risks to personnel
and equipment, and resource misallocation. Therefore, there is
a need to demonstrate resilience in collaborative autonomous
agents to have them automatically adapt and recover from
situations when there are inconsistencies in sensed information.

Recent efforts have focused on improving reliability by
proposing solutions to identify inaccuracies in the data gener-
ated by the agents [19], [27]. These solutions may not always
be effective and can significantly hinder the decision-making
process during mission-critical events. Our own previous work
has described the ontologies that these agents can use to share
data and potential actions that might resolve conflicts [7]. But
it is also essential to consider how and when to trust the
information the agents may share.

We present CONFLICTRESOLVER, which allows for the au-
tomatic resolution of inconsistencies across distributed agents,
helping to maintain a shared and coherent notion of truth.
We identify conflicts by integrating the information shared by
agents to analyze and correlate data from similar sensors across
different autonomous systems. Metadata about the information
generated by the autonomous agents is stored in a knowledge
graph. We use this information to calculate a composite score
that combines the standard deviation, range, and entropy
to provide a single measure of the overall disparity in the
information. This disparity can lead to the resolution process
being invoked. Information about the mission objectives and
their criticality is also stored in the knowledge graph [7].
The key contribution of this work is a policy-driven, agent



negotiation based engine that aims to resolve inconsistencies
and conflicts by querying [25] and reasoning over information
in the knowledge graph to dynamically choose a resilience
strategy. This strategy can involve multiple steps in an agent
negotiation process.

To validate and evaluate our approach, we set up an indoor
testbed with autonomous agents (UGVs) that mimics realistic
deployment scenarios for a surveillance mission. In these sce-
narios, the UGVs report conflicting data. With our framework,
we show how we can identify conflicts by monitoring the
information stream from the agents and storing them as facts
in the knowledge graph, resolve disputes in soft real-time by
reasoning over the facts while querying for mission criticality
in the policy engine using RDFox [18], and update the agent
trust scores post-resolution.

II. RELATED WORK

The problem of truth maintenance [21] and Byzantine agree-
ment [12] in distributed systems has a long history. However,
these models often assume benign faults rather than adver-
sarial agents that deliberately inject misleading information,
as considered in our threat model. Several fault diagnosis
schemes have been developed in the past to identify false
information shared by sensors [1], [14], [26] without the
benefit of cross-checks from other sensors. Identifying conflicts
in collaborative autonomous systems from multiple sources
results in higher data accuracy and system reliability as it
allows for a system-wide perspective where the behavior of one
sensor can be assessed in the context of others. There has been
an increase in interest in collaborative inference at the edge
across many different domains, such as autonomous driving
[22], swarm robotics [8], and smart homes [15]. However, our
scope primarily focuses on identifying and resolving conflicts
in the information about the shared environment.

Moreover, the tools developed in the past for identifying
conflicts require large volumes of data to train machine learn-
ing models and may only work in known environments [4],
[9], [11], [13]. This makes them less suitable for dynamic and
resource-constrained deployments like battlefield or disaster-
response scenarios. Our framework can scale with additional
new devices by grouping the information shared based on
proximity and modality. As a result, we do not require
large volumes of data to identify conflicts. Knowledge graphs
and ontologies can help integrate information from multiple
sources. For example, Mittal et al. [17] issued real-time alerts
to security analysts by reasoning about contextual information
gathered from security-related tweets. We monitor autonomous
agents to identify and reason over conflicts to resolve them.

Autonomous systems must be capable of dynamically ad-
justing their operations to mitigate risks and maintain continu-
ity of service. However, current techniques isolate or ignore de-
vices that share inaccurate information [2], restart, or perform
a fail-safe rollback to handle faults [19]. These methods may
not work in contested or constrained environments, especially
when there is a need for immediate situational awareness.

Other methods isolate supposedly malfunctioning components
without considering mission-critical context or long-term trust
dynamics. Through our framework, we can also provide an
immediate response where indicated by our reasoning process
by activating additional modalities or bringing in trusted de-
vices to share details about the region of interest based on the
criticality of the situation.
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Fig. 1: Architecture of our CONFLICTRESOLVER framework.

III. THREAT MODEL

As discussed earlier, variations in sensed data among agents
can happen for a variety of causes. For the variations caused
by adversarial attacks, we assume that the adversary is able to
subvert one of more of the sensors by gaining unauthorized ac-
cess to the autonomous agents. False data can then be injected
into a subset of sensor systems to create inconsistencies. We
make no assumptions about how many sensors are attacked,
so do not assume that we always have 3n + 1 total sensors for
n attacked ones. The adversary can also use kinetic action to
disable agents and thus prevent them from sharing information.

IV. CONFLICTRESOLVER FRAMEWORK

The information shared by autonomous agents can be in-
accurate due to constrained environments susceptible to ad-
versarial attacks, harsh environmental conditions, or sensor
failures. This can result in inconsistencies between the sensors.
CONFLICTRESOLVER framework shown in Figure 1 aims to
resolve inconsistencies by monitoring the data continuously to
check for inconsistent information in the same modality. We
resolve the conflicts based on mission criticality and additional
sensor modalities. In this section, we describe the components
of this framework.

A. Context Gathering from Autonomous agents

This module gathers the data generated by the autonomous
agents and sensors and stores it as facts. The data types col-
lected are diverse and crucial for a robust understanding of the
operational environment. The sensor data includes output from
cameras and radars, providing real-time insights into activities
on the ground. Environmental data includes information about
weather conditions, terrain, and different geographical features
that can significantly affect the operations.



We store the above information in the Resource Description
Framework (RDF) data model in the policy engine described
in Section IV-G. The RDF triples are composed of three
components: Subject, which denotes the entity being described;
Predicate, which indicates the attribute or relationship of the
subject; and Object, which represents the value or another
entity related to the subject through the predicate. RDF triples
provide a standardized data-sharing format, allowing the oper-
ators to efficiently understand and use the data from multiple
autonomous agents and their components. In addition, the data
captures the context and relationships between data points,
offering a richer semantic understanding of the sensor data.

B. Knowledge Graphs Population

Integrating ontology with sensor-generated data, as de-
scribed in Section IV-A, into knowledge graphs enables a
representation of, and reasoning over, situational contexts.
These graphs represent entities and their intricate relationships
and allow for dynamic querying and updating of data.

In this paper, we use two ontologies from our previous work,
IoBT [6] to support information integration from multiple
autonomous agents and sensors and the Unified Cyberse-
curity Ontology (UCO) [23] to capture information about
cybersecurity-related events. These ontologies are linked with
the data generated by the agents to populate knowledge graphs.
We use SPARQL queries [25] to efficiently retrieve specific
data and insights from the knowledge graphs.

C. Conflict Identification among Autonomous agents

In this module, we identify inconsistencies in the data
generated by the autonomous agents. We start by querying
data from various agents, including sensors, devices, or other
data sources, each possibly using different modalities (e.g.,
visual, thermal, acoustic) required for the mission objectives.
The ontology from our prior work [7] aids in grouping sensors
of similar modalities in a specific region of interest, as the
data generated by multiple agents are in different modalities.
For example, all thermal sensors in a region would form one
group. We calculate the conflict score with the data grouped
by modality and region. This score quantifies the disparity or
conflict within the data of each group.

There are many reasons for the sensors to report an anoma-
lous value, such as low, high, or zero. During a network failure,
the sensors might report no value or a missing value. Hardware
failure or an attack can cause the sensor to report a static or
stuck value.

In these cases, we use the following well known metrics:

e Mean Imputation: Handle missing values by imputing
them with the mean of the observed values

o Standard Deviation: Measure overall spread of the data

« Range: Measure the difference between the maximum and
minimum values

« Entropy: Measure data’s randomness or unpredictability

Finally, these metrics are combined into a composite score
that reflects the overall disparity. We establish pre-defined

ranges for the composite score that indicate a conflict or no
conflict, considering the components that make up the score
and their typical values in scenarios considered normal versus
abnormal.

D. Mission Criticality

The mission’s overall criticality plays a pivotal role in de-
termining appropriate resilience strategies. Mission criticality
refers to the importance and urgency assigned to a mission
based on potential consequences, risks, and strategic value.
This criticality determines the need to allocate resources,
the response strategies that need to be triggered, and the
attention required. In addition, the importance of a particular
sensed value to the mission is also factored in. In our current
implementation, We categorize the mission’s criticality into
low, medium, and high levels. Our framework also permits a
finer or coarser categorization. In the mode where the operator
is “in the loop”, the operator is requested to respond once to
ascribe importance to the mission, and each time an inconsis-
tency is detected to identify how important that information
is to the overall mission. High criticality tasks are directly
linked to immediate response and safety, medium ones support
strategic objectives, and lower ones address broader, often non-
immediate issues. By properly understanding and classifying
mission criticality and the importance of particular sensed
information, operators can effectively achieve their objectives
and use resources more efficiently. Where the operator is “on
the loop”, these measures can be provided to the system ahead
of time and the operator merely informed as decisions are
made.

E. Resilience Strategies

We present a flexible and extensible framework that en-
ables the integration of diverse resilience strategies aligned
with varying levels of mission criticality. These strategies
are formalized as Datalog rules within the RDFox reasoning
engine [18] and are activated based on contextual cues and
agent negotiation. For example, if the mission is not very
critical or the particular sensed data is not that important,
one available strategy involves majority voting to resolve
conflicts by prioritizing consistent sensor inputs. However, this
is just one of many strategies that agents can adopt based
on predefined rules and mission requirements. At medium
criticality, for instance, the system can negotiate with the agent
to verify its sensed data by triggering supplementary sensing
modalities. For example, if a camera sensor is not detecting
tanks that other nearby sensors are showing, it can be asked to
send data from its microphones, which can be used to estimate
if tanks are nearby using engine noise. If the mission is critical,
or if the sensed value is key to the decision making, the central
agent can for instance retask a trusted agent. The negotiation
process allows agents to dynamically evaluate and agree on
the most appropriate strategy, ensuring that conflict resolution
remains context-aware, scalable, and resilient across mission
scenarios.



E. Trust Scores for Autonomous agents

In this module, we describe how to calculate the trust
score for each agent once the conflict is resolved. We create
a Bayesian Belief Network representing the dependencies
between sensor readings and their initial trust scores. The
network will have nodes for each sensor and trust score, with
edges indicating the influence of sensor accuracy on trust.

Consider a surveillance setting where S = {S1, Sa,..., 5.}
represents sensors across autonomous agents, each with a trust
score T;. Observations O; € {detects,does_not_detect} are
reported per sensor. Each trust score is initialized as Ti(o) =
5. When conflicts arise, we update trust scores using Bayes’
theorem:

P(O;|T;) - P(Ty)

P(T;|0;) = S, P(OITy) - P(Ty) ey

The updated trust scores are stored in the knowledge base for
future decisions. This allows operators to assess the reliability
of sensor reports during conflict evaluation.

G. Policy Engine

The policy engine is integral to our CONFLICTRESOLVER
framework. It enables the integration of data from multiple
agents in the form of RDF triples and stores it as facts
as described in Section IV-A and evaluates policies, which
are rules written in RDFox’s Datalog-like format [18] by
querying the facts using SPARQL queries [25]. Here, the facts
represent data generated by autonomous agents, environmental
conditions, and mission-criticality levels. The policy engine
queries the knowledge graph described in Section IV-B to
reason over contextual information aligned with the structured
semantic understanding of the operational environment to
identify inconsistent information as described in Section I'V-C.

Contextual information encapsulates details about the inter-
action of autonomous agents in conflict, the mission criticality,
the importance of particular sensed values, etc. The policy en-
gine reasons about the context and available conflict resolution
strategies to identify the appropriate resilience strategy, such
as the examples mentioned in Section IV-E. The policy engine
also supports updating the trust scores of autonomous agents
that share incorrect information as described in Subsection
IV-F.

V. EVALUATION

This section presents the surveillance of a region of interest
as a use-case scenario. We set up the testbed, which consists
of multiple autonomous agents continuously monitored in real-
time to identify conflicts. We simulate conflicts caused by an
adversarial attack, hardware failures, and hostile environmental
conditions to show the resilience capabilities of our framework.

A. Experimental Setup

In this section, we outline the resources used for the indoor
experiment, which included four Boston Dynamics Spot robots
equipped with multiple sensors and processing units.

o Navigation and Object Avoidance: The Velodyne LiDAR
VLP-16 captures LiDAR data processed on a Jetson
Xavier NX. This unit features a 6-core NVIDIA Carmel
ARM V8.2 64-bit CPU and a 384-core NVIDIA Volta
GPU with 48 Tensor cores, enabling efficient navigation
and crash prevention through object avoidance.

e Object Detection: The Jetson Orin Nano runs the
YOLOVS8 object detection model [24] to identify and track
objects in the environment using the video feeds captured
by an Intel RealSense Depth Camera D435i.

o Moving Target Detection: We detect moving targets using
a combination of digital signal processing (DSP) methods
[5] by employing the AWR 1642 BOOST millimeter-
wave radar from Texas Instruments.

These autonomous systems communicate through a client-
server architecture, sending and receiving data over the net-
work to coordinate their actions and responses with the RDFox
reasoning engine [18] setup on a Jetson Nano. The reasoning
engine acts as a centralized hub that captures interactions in the
region of interest to identify conflicts and determine resilience
strategies to resolve them as described in Section IV.

B. Implementation

CONFLICTRESOLVER demonstrates resilience under simu-
lated conditions that create conflicts and inconsistencies among
the autonomous agents in the region of interest. We describe
two of them below:

1) Surveillance Inconsistencies with Video Feed Cameras:
The surveillance system uses cameras mounted on three UGV
positioned at different angles to maximize coverage and reli-
ability in detecting people. In one scenario, UGV-1 detects
10 people, UGV-3 detects 50, while UGV-2 reports none,
simulating an adversarial takeover of UGV-2 as in prior work
[10]. The framework identifies this conflict via a composite
score and queries the mission’s criticality level.

We evaluate the framework across low, medium, and high
mission-criticality levels, illustrating possible resolution strate-
gies. For low criticality, the system applies majority voting.
For medium, the inconsistent agent activates a secondary
sensor (e.g. radar) for validation. For high, a trusted reserve
UGV is retasked for independent verification. Trust scores are
continuously updated using a Bayesian Belief Network based
on data accuracy.

2) Inconsistencies in Surveillance with Millimeter Wave
Radar: In this scenario, a millimeter wave radar on a UGV
detects motion in the area of interest. To verify its reliability,
the framework queries the radar’s trust score from a Bayesian
Belief Network, which accounts for past false positives. The
policy engine for this instance checks the mission’s criticality:
for low criticality, it accepts the radar’s inference; for medium,
it consults weather station data to rule out wind-induced errors;
and for high, a nearby UGV is retasked to provide visual
confirmation. This tiered approach resolves inconsistencies
while minimizing resource use.



In addition, we conduct ten experimental runs for each
criticality level (low, medium, high) resulting in total 30 runs
with 50 simulated conflict instances. Each run involved 4-10
UGVs in a controlled indoor setting, simulating adversarial
control (e.g., spoofed data from UGV-2), hardware failures
(e.g., constant sensor value), and environmental noise (e.g.,
radar misreadings due to wind). All these scenarios (e.g.,
inconsistencies with video feeds and millimeter wave radar)
were controlled using a fixed random seed (seed=42) to ensure
repeatability.

C. Results

We evaluate the CONFLICTRESOLVER framework under
varying mission criticality levels to understand its performance
in detecting and resolving conflicting sensor data. Our eval-
uation focuses on three metrics: conflict detection Fl-score,
resolution latency, and trust convergence time.

1) Conflict Detection Accuracy: We evaluate conflict detec-
tion accuracy using Fl-score, based on composite scores com-
puted from standard deviation, range, and entropy. Ground-
truth conflict labels are assigned to simulated scenarios and
predictions are compared using precision, recall, and F1-score.
As shown in Table I, detection accuracy improves with mission
criticality, as it should. CONFLICTRESOLVER achieves an F1-
score of 0.94 in high-criticality settings, compared to 0.85
under low-criticality, due to the use of additional modalities
and trusted agents that reduce false positives. The more critical
the mission or the sensed value, the more resources we use to
ensure that it is correct.

TABLE I: Evaluation Across Mission Criticality Levels

Criticality | Detection F1-Score | Resolution Latency (s) | Trust Convergence (s)
Low 0.85 0.7 35

Medium 0.91 1.2 4.1
High 0.94 2.5 6.8

2) Resolution Latency: Resolution latency is defined as the
time elapsed between the detection of the conflict and the
implementation of a resilience strategy. For high-criticality
missions, latency increases due to the invocation of alternate
modalities or the retasking of additional agents. Nonetheless,
response times remain under 2.5s, demonstrating the system’s
capability to function in near real-time.

3) Trust Score Convergence: We analyze the time taken
by the Bayesian Belief Network to converge to update trust
values for sensors involved in conflicting reports. Higher mis-
sion criticality produces longer convergence due to increased
contextual evidence, ranging from 3.5s to 6.8s.

To illustrate the ability of the framework to identify and
suppress malicious agents over time, we plot the evolution
of trust scores for ten UGV agents during a high-criticality
surveillance scenario. Figure 2a presents a heatmap where each
cell reflects the trust score of an agent at a specific time step,
with color encoding to highlight changes in trust.

In this scenario, UGV-3 and UGV-7 are configured to share
adversarial or conflicting data. As the mission progresses,

CONFLICTRESOLVER detects these inconsistencies and re-
duces their trust scores accordingly through the Bayesian
trust update process. By contrast, UGV-1, UGV-2, and UGV-
5 consistently report aligned observations and are rewarded
with increased trust scores. Agents with limited or neutral
participation maintain relatively stable trust levels. This dy-
namic adjustment highlights the system’s resilience to incorrect
or adversarial data and reinforces its ability to prioritize
information from reliable agents when resolving conflicts.

4) Baseline Comparison: To evaluate the effectiveness of
CONFLICTRESOLVER, we compare it with three baseline
techniques lacking the comprehensive integration of context,
mission criticality, and dynamic trust modeling.

« Simple Majority Voting is a naive approach that assumes
the most frequently observed value is correct.

o Rule-Based Filtering Employs static heuristics (e.g.,
range and threshold rules) for conflict detection. This
method does not incorporate a reasoning engine or knowl-
edge graph for adaptive conflict resolution, and does not
differentiate between high, medium, or low criticality
levels, as discussed in Section IV-E.

« Random Forest Classifier [20] uses a machine learning
model trained on historical sensor data. While more
sophisticated than the previous two, it requires large vol-
umes of labeled training data and lacks semantic context
integration (Section IV-B). Furthermore, it is not robust
to novel or adversarial disruptions, which are dynamically
handled in our approach (Section IV-C).

Table II summarizes the performance of each method in
terms of detection accuracy and resolution latency. The results
demonstrate that CONFLICTRESOLVER offers a substantial
improvement over the baselines, achieving higher detection
accuracy and policy-aware adaptability. Its resilience-oriented
architecture ensures suitability for real-world deployment in
adversarial and resource-constrained environments.

TABLE II: Comparison for Conflict Detection and Resolution

Method Detection F1-Score | Resolution Latency (s)
Simple Majority Voting 0.78 0.5
Rule-based Filtering 0.82 0.9
Random Forest Classifier 0.87 1.6
CONFLICTRESOLVER 0.94 2.5

D. System Overhead and Scalability

To assess the scalability of the CONFLICTRESOLVER frame-
work, we evaluate its runtime and memory performance across
increasing numbers of autonomous agents. We focused on
three metrics: average SPARQL query latency, RDFox memory
footprint, and overall decision latency as the system scales.
Here, simulated environments consist of 4 to 10 UGVs, each
contributing real-time sensor data in multiple modalities. Fig-
ure 2b shows the increase in RDFox knowledge base (KB)
size and average SPARQL query response time. We observed
that while KB size grows linearly with the number of agents,
SPARQL query latency remains below 120ms even at peak
load, supporting near real-time performance.



Figure 3: Trust Score Evolution Over Time Across Agents Scalability Analysis: RDFox Latency and KB Size vs. Agent Count
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Fig. 2: (a) Trust dynamics under adversarial conditions. (b)
Latency and KB size trends as agents scale from 4 to 10.

VI. CONCLUSION & FUTURE WORK

The CONFLICTRESOLVER framework aims to resolve con-
flicts and maintain the shared notion of truth among multiple
autonomous agents in collaborative networks. It monitors
multiple autonomous agents by grouping information that
belongs to a similar modality, identifies conflicting information
while gathering mission criticality, and achieves resilience by
reasoning over the available and additional information. It can
make informed and reliable decisions for mission objectives
by considering automatically updated trust scores assigned to
each autonomous agent. Using a realistic UGV testbed, we
describe multiple scenarios demonstrating the possibility of
information disagreement due to the battlefield’s constrained
environments and how our framework helps resolve possible
inconsistencies among collaborative autonomous agents in real
time by selecting appropriate resilience strategies based on
operational urgency, and update agent trust scores to support
reliable decision-making.

While CONFLICTRESOLVER demonstrates promising results
using interpretable components. In the future, we plan to
explore online learning techniques to refine trust estimation
over time, and investigate data-driven policy optimization to
reduce reliance on predefined resolution strategies.
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