
Policy Based Access Control
for RDF stores

Pavan Reddivari, Tim Finin and
Anupam Joshi

http://ebiquity.umbc.edu/paper/html/id/334/

Page 2

Motivation: RDF for Knowledge Sharing

•A 90s vision was to achieve information
interoper-ability by turning sources into agents

speaking the same language

•KIF + shared ontologies for content

•KQML for speech acts and protocols

•RDF is the new KIF and SPARQL the new KQML

•But they must be enhanced to support

updates, access control, etc.

•RAP explores some of these issues

•Via an implemented prototype built on Jen

Page 3

RAP in a Nutshell

•RAP models the actions that an agent
uses to modify or query an RDF triple
store

•RAP supports policy rules that constrain
the actions a given agent is permitted
to do

•Policy rules can involve any information

in the a triple store, including:

• data • provenance
information

• schema metadata • history of past

actions

• RAP actions

Page 4

Example Policy Rules

• Only agents designated as editors can insert/delete

triples

• An agent can only delete triples it previously inserted

• An agent can only add properties to classes it

introduced

• No agent may see any values of the SSN property

• No agent may insert a triple that allows any agent to

infer a patient’s ‘HIV status’

• An agent may modify any data about itself

• An agent may not add a foaf:Person instance without

also providing a foaf:name property and either a

foaf:mbox or foaf:mbox_sha1sum property

Page 5

RAP Ontology: Actions
RAP has a simple RDFS ontology of which action is a key

class

action effect

object

actor

perm
expl

perm
impl

The agent requesting the action

The object that is the action’s target

An implicit action caused by the action

The action’s computed explicit permission

The action’s computed implicit permission

insert
action

remove
action

•••

Nine action subtypes

Page 6

Insertion Actions

•An agent can directly insert a triple or set of

triples into the store’s graph

• Insert(A,T): A directly inserts triple T into the graph

• InsertSet(A, {Tc}): A inserts the set {Tc} together

•An agent can also perform the implicit action of

inserting a triple into the store’s model

• InsertModel (A,T): A InferInsert triple T If A Insert (A,T1)

and triple T can be inferred after inserting T1

insert(A,[usp:bush,foaf:mbox,bush@wh.gov]) has the effect

insertModel(A,[usp:bush,rdf:type,foaf:Person])

Page 7

Deletion Actions

•An agent can directly delete a triple or set of

triples from the store’s graph

• Remove(A,T): A directly removes T from the graph

• RemoveSet(A, {Tc}): A removes the set {Tc} together

•An agent can also perform the implicit action of

removing a triple from the store’s model

• RemoveModel (A,T): A InferInsert triple T If A Insert

(A,T1) and triple T can be inferred after inserting T1

remove(A,[usp:bush,foaf:mbox,bush@wh.gov]) may have the

effect removeModel(A,[usp:bush,rdf:type,foaf:Person])

Page 8

Access Actions

• See (A,T): Agent A sees triple T if it returned in
the response to one of A's queries.

• Use (A,T): Agent A uses triple T if it is used in

answering one of A's queries.

• Update(A,T1,T2): Agent A directly replaces triple

T1 with T2

Page 9

Explicit policies

• Policy Representation:

 Modality(Action(A,T)) :- Condition

 Modality: Permitted or Prohibited

 A : Agent

 T: Triple

 Condition: Combination of simple constraints expressed as RDF
triple

• Metadata Specific Conditions: Conditions in the

policy can be based on metadata of the triples

permit(insert(A,(?,rdfs:type,C))) :- createdNode(A,C)

Page 10

Explicit policies

•Conditions in the policy can be based on kind of triple

on which the action is being performed

•No agent can see any salaries

•prohibit(see(A,(?,emp:salary,?))

•Conditions in the policy can be based on Agent and

its properties

•Supervisors can update the salaries of their

supervisees

•permit(update(A,(P,emp:salary,?),(P,emp:salary,?))

:-

 existTriple(A,emp:Supervisor,P)

•Conditions in the policy can also be a combination of

conditions on the Agent and the Triple

Page 11

Meta Policies

• Before performing a n ac tion, RAP
tries to p rove tha t it is p ermitted
a nd tha t it p rohib ited

• RAP hand les c a ses where ne ither
or b oth proofs suc c ess with
meta -p olic ies for:

• default policy: A defa ult po lic y spec ifies
the permission in c a ses where there is no
exp lic it po lic y to prove a permission.

• modality preference : A mod a lity
p referenc e p olic y is used to the d ea l w ith
the c onflic t situa tion.

ConflictProhibited

Permitted?
Proven

Prohibited

Proven

Permitted

Yes

YesNo

No

Page 12

RAP Ontology: metadata

RAP’s ontology supports a many metadata
properties useful in defining policies

• isTripleOwner(A,T): This predicate determines ownership
of the triple. It returns true if agent A created the triple T.

• isNodeOwner(A,N): This predicate determines
ownership of the node in the RDF graph. It returns true if

agent A was first to create the node N in the RDF graph.

• isSchemaPredicate(P): This predicate would return true
if P is a predicate used to define RDF schema level

information (e.g., rdfs:subClass, rdfs:domain,etc).

• isSubProperty(P1,P2): true if P1 is a Sub-Property of P2

Page 13

RAP rule compilation

The current implementation compiles RAP’s policy
into executable form as Jena forward chaining
rules

Gloss: “A supervisor of a Person can update that Person’s salary”

RAP rule: permit(update(A,(P,emp:salary,?),(P,emp:salary,?)) :-

 existTriple(A,emp:Supervisor,P)

Jena rule:

(?x rdf:type rap:Update_Action) (?x rap:Actor ?y

(?x ap:oldTriple_object ?z1) (?x newTriple_object ?z2)

(?z1 rdf:subject ?s1)(?z1 rdf:predicate emp: Salary)

(?z2 rdf:subject ?s1)(?z2 rdf:predicate emp:Salary)

(?y rap:Supervisor ?s1)

 ->

(?x rap:explicitPermission rap:Permitted)

Page 14

Version 1.0

Policies

RDF Store

RAP RDF Store Web Service API

Policy Engine

(Forward chaining RETE)

Act +Actor

(Insert (X type Person), Y) Result

Policies as

Jena Rules

RDFS

Inferencing

Rules

1. Action Permission

2. Action Effect

Permission

3. Perform Act

Page 15

Version 1.0

• Current RAP prototype is being build using the

JENA generic rule based Engine.

• The rule engine is used in the RETE forward

chaining engine mode.

• The RAP Polices and the RDFS inferencing

Polices are given as rules to the Engine

• This Enables RAP to check for modality of

actions and their effects as in case of

insertModel and removeModel actions.

Page 16

RAP 1.0 uses the following process to answer a query

• Run the RDQL query to get result set

• For each result, get all triples used to prove this result.

• Remove any of the triples in the result that the agent

is not permitted to see.

• Using Jena’s justification mechanism, remove any

results that depend on triples that the agent is not

permitted to use.

• Only the derivation used to infer the triple is noted as

there could more paths to inference the same triple

RAP Query Approach

Page 17

Contribution and Future Work

Contributions
• Prototype implementation demonstrating feasibility of a

simple policy system for an RDF store.
• Policies can be defined over data, metadata,

provenance an d usage history
• Increase usage of RDF stores in knowledge based

application

Future work
• Moving RAP to a standard rule language such as SWRL

or RuleML
• Integrating RAP ideas into SPARQL and into other RDF

stores
• Expanding RAPs ontology to include additional actions

(e.g., delegation) and predicates
• Extending RAP to include (some) OWL vocabulary

Page 18

http://ebiquity.umbc.edu/

Page 21

RAP Store

• Domain Knowledge and Policies are bound.

Domain Specific

Schema and Instance

policie

s

Provenanc

e data

	Slide 1: Policy Based Access Control for RDF stores
	Slide 2: Motivation: RDF for Knowledge Sharing
	Slide 3: RAP in a Nutshell
	Slide 4: Example Policy Rules
	Slide 5: RAP Ontology: Actions
	Slide 6: Insertion Actions
	Slide 7: Deletion Actions
	Slide 8: Access Actions
	Slide 9: Explicit policies
	Slide 10: Explicit policies
	Slide 11: Meta Policies
	Slide 12: RAP Ontology: metadata
	Slide 13: RAP rule compilation
	Slide 14
	Slide 15: Version 1.0
	Slide 16: RAP Query Approach
	Slide 17: Contribution and Future Work
	Slide 18
	Slide 21: RAP Store

