Acess Condtro! for RDF stores

Policy Based Access Contirol
for RDF stores

Pavan Reddiva@g1m Fininrand
Anupam: Joshi UNIVERSITY

IN MARYLAND

http://ebiquity.umbc.edlilisapelntmijid/384/

Motivation: RDF for Knowledge Sharing

* A 90s vision was to achieve information
Inferoper-ability by tfurning sources into agents
speaking the same language

*KIF + shared ontologies for content

* KQML for speech acts and protocols
*RDF is the new KIF and SPARQL the hew KQML

* But they must be enhanced to support
updates, access conftrol, etc.

*RAP explores some of these issues
*Via an implemented prototype built on Jen

RAP in a Nutshell

*RAP models the actions that an agent

uses to modify or query an RDF friple
store

RAP supports policy rules that constrain

the actions a given agent is permitted
to do

Policy rules can involve any information
INn the a friple store, including:

e data e provenance
InNformation

Example Policy Rules

* Only agents designated as editors can insert/delete
triples

* An agent can only delete triples it previously inserted

* An agent can only add properties to classes it
infroduced

* No agent may see any values of the SSN property

* No agent may insert a triple that allows any agent to
infer a patient’s ‘HIV status’

* An agent may modify any data about itself
* An agent may not add a foaf:Person instance without

AN HONOFS UNIVERSI(Y IN MARY LAND

RAP Ontology: Actions

RAP has a simple RDFS ontology of which action is a key
class

actor | The agent requesting the action

The object that 1s the action’s target

effec An 1mplicit action caused by the action
erm : = =

%X ,] | The action’s computed explicit permission
per = e =

The action’s computed 1mplicit permission

insert || remove
action action

Nine action subtypes

AN HONORS UNIVERSITY IN MARYLAND

Insertion Actions

* An agent can directly insert a triple or set of
triples into the store's graph
* Insert(A,T): A directly inserts triple T into the graph
* InsertSet(A, {Tc}): A inserts the set {Ic} fogether

* AN agent can also perform the implicit action of
Inserting a triple into the store’s model

* InsertModel (A,T): A Inferinsert triple TIf A Insert (A T1)
and friple T can be inferred after inserting T1

insert(A,[usp:bush,foaf:mbox,bush@wh.gov]) has the effect
insertModel(A, [usp:bush,rdf:type,foaf.Person])

AN HONORS UNIVERSITY IN MARYLAND

Deletion Actions

* AN agent can directly delete a friple or set of
triples from the store’s graph

e Remove(A,T): A directly removes T from the graph
* RemovesSet(A, {Ic}): A removes the set {ITc} together

* AN agent can also perform the implicit action of
removing a triple from the store’'s model

e RemoveModel (A,T): A Inferinsert triple T If A Insert
(A, T1) and triple T can be inferred after inserfing Tl

remove(A,[usp:bush,foaf:mbox,bush@wh.gov]) may have the
effect removeModel(A,[usp:bush,rdf:.type,foaf:Person])

AN HONORS UNIVERSITY IN MARYLAND

Access Actions

* See (A,T): Agent A sees triple Tif It returned In
the response to one of A's queries.

* Use (A,T): Agent A uses triple Tif it is used in
answering one of A's queries.

 Update(A,T1,12): Agent A directly replaces triple
TT with T2

Explicit policies

* Policy Representation:
Modality (Action(A,T)) :- Condition

Modality: Permitted or Prohibited

A : Agent

T: Triple

Condition: Combination of simple constraints expressed as RDF
triple

e Metadata Specific Conditions: Conditions in the
policy can be based on metadata of the triples

permit(insert(A,(?,rdfs:type,C))) :- createdNode(A,C)

Explicit policies

e Conditions in the policy can be based on kind of triple
on which the action is being performed

* No agent can see any salaries
e prohibit(see(A,(2,.emp:salary,?))

e Conditions in the policy can be based on Agent and
Its properties

e Supervisors can update the salaries of their
supervisees

e permit(update(A,(P,emp:salary,?),(P,emp:salary,?))

existTriple (A,emp:Supervisor,P)
e Conditions in the policy can also be a combination of

Meta Policies

Proven
Permitted

- Before performing an action, RAP
trresto prove that it isperm |tted = ——LEemiis]
and that it prohibited Protbied

* RAP handlescaseswhere neither
orboth proofssuccesswith
meta-policiesfor:

Prohibited | Conflict

- default policy: A default policy specifies
the permission in caseswhere there isno
explicit policy to prove a permission.

- modality preference: A modality
preference policy isused to the deal with
the conflict situation.

RAP Ontology: metadata

RAP's ontology supports a many metadata
properties useful in defining policies

e isTripleOwner(A,T): This predicate determines ownership
of the triple. It returns frue if agent A created the triple T.

* isNodeOwner(A,N): This predicate determines
ownership of the node in the RDF graph. It returns true if
agent A was first to create the node N in the RDF graph.

* isSchemaPredicate(P): This predicate would return true
If P Is a predicate used to define RDF schema level
information (e.g., rdfs:subClass, rdfs:domain,etc).

* isSubProperty(P1,P2): tfrue if P1 is a Sub-Property of P2

AN HONORS UNIVERSITY IN MARYLAND

RAP rule compilation

The current implementation compiles RAP's policy
Info executable form as Jena forward chaining
rules

Gloss: “A supervisor of a Person can update that Person’s salary”
RAP rule: permit(update(A,(P.emp:salary,2),(P.emp:salary,?¢)) :-
existTriple (A,emp:Supervisor,P)

Jena rule:

(ex rdf:type rap:Update_Action) (¢x rap:Actor ey

(ex ap:oldTriple_object ¢z1) (¢x newlriple_object ¢z2)

(¢z] rdf:subject ¢sl)(ez] rdf:predicate emp: Salary)

(¢z2 rdf:subject ¢sl)(¢z2 rdf:predicate emp:Salary)

(¢y rap:Supervisor ¢sl)

=

ex rap:explicitPermission rap:Permitted

AN HONORS UNIVERSITY IN MARYLAND

'_A'=’ Version 1.0

Acess Control for RIDF stores

Act +Actor

(Insert (X type Person), Y) Result

Action Permission

Action Effect
Permission

Perform Act

Policies as

Policies ==)> | JenaRules ||

Policy Engine

RDFS
Inferencing
Rules

(Forward chaining RETE)

AN HONORS UNIVERSITY IN MARYLAND

—, A — Version 1.0

Pcess Control for RIDF stores

Current RAP prototype Is being build using the
JENA generic rule based Engine.

The rule engine is used in the RETE forward
chaining engine mode.

The RAP Polices and the RDFS inferencing
Polices are given as rules to the Engine

This Enables RAP to check for modality of
actions and their effects as in case of
iInsertModel and removeModel actions.

RAP Query Approach

RAP 1.0 uses the following process to answer a query
* Run the RDQL query to get result set

* For each result, get all triples used to prove this result.

* Remove any of the friples in the result that the agent
IS Not permitted to see.

e Using Jena'’s justification mechanism, remove any

results that depend on triples that the agent is not
permitted to use.

* Only the derivation used to infer the triple is noted as
there could more paths to inference the same triple

AN HONORS UNIVERSITY IN MARYLAND

Contribution and Future Work

Contributions

* Prototype implementation demonstrating feasibility of a
simple policy system for an RDF store.

* Policies can be defined over data, metadatq,
provenance an d usage history

* Increase usage of RDF stores in knowledge based
application

Future work

* Moving RAP to a standard rule language such as SWRL
or RuleML

* Integrating RAP ideas info SPARQL and into other RDF
stores

* Expanding RAPs ontology to include additional actions
(e.g., delegation) and predicates

e Extending RAP to include (some) OWL vocabulary

AN HONORS UNIVERSITY IN MARYLAND

HHHHHHHH
HHHHHHHHHH
HHHHHHHHHH

http://ebiquity.umbc.edu/

el © RAP Store

e Domain Knowledge and Policies are bound.

Provenanc
— @

AN HONORS UNIVERSITY IN MARYLAND

	Slide 1: Policy Based Access Control for RDF stores
	Slide 2: Motivation: RDF for Knowledge Sharing
	Slide 3: RAP in a Nutshell
	Slide 4: Example Policy Rules
	Slide 5: RAP Ontology: Actions
	Slide 6: Insertion Actions
	Slide 7: Deletion Actions
	Slide 8: Access Actions
	Slide 9: Explicit policies
	Slide 10: Explicit policies
	Slide 11: Meta Policies
	Slide 12: RAP Ontology: metadata
	Slide 13: RAP rule compilation
	Slide 14
	Slide 15: Version 1.0
	Slide 16: RAP Query Approach
	Slide 17: Contribution and Future Work
	Slide 18
	Slide 21: RAP Store

