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Finding how the Semantic Web has evolved can help understand the status of Semantic Web community
and predict the diffusion of the Semantic Web. One of the promising applications of the Semantic Web is
the representation of personal profiles using Friend of a Friend (FOAF). A key characteristic of such social
networks is their continual change. However, extant analyses of social networks on the Semantic Web are
essentially static in that the information about the change of social networks is neglected. To address the
limitations, we analyzed the dynamics of a large-scale real-world social network in this paper. Social net-
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Evolution knows relations between persons, and the latter was based on revision relations. We found that the social

network evolves in a speckled fashion, which is highly distributed. The network went through rapid
increase in size at an early stage and became stabilized later. By examining the changes of structural
properties over time, we identified the evolution patterns of social networks on the Semantic Web and

Structural properties

provided evidence for the growth and sustainability of the Semantic Web community.
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1. Introduction

Semantic Web enables a new generation of decentralized
knowledge management by enhancing information flow with ma-
chine-processable metadata (Cayzer, 2004). Since the vision for the
Semantic Web was explicitly laid out in 2001 (Berners_Lee, Hen-
dler, & Lassila, 2001), Semantic Web technologies have undergone
significant advancement and the Semantic Web community has
witnessed tremendous growth in scale and diversity. However,
some argue that it is unrealistic to expect busy people and novice
users to create and use enough metadata to make the Semantic
Web work (cf. Borland, 2007). Additionally, it is not a trivial task
to create and maintain ontologies that enable the representation
of conceptual relationships. Therefore, it is important for both
researchers and practitioners to understand how the Semantic
Web community has actually been evolving.

Semantic Web is a platform that allows knowledge to be shared
and reused across application, enterprise, and community bound-
aries. One way to generate new knowledge is by a process of social-
ization (Nonaka & Takeuchi, 1995). Socialization is one of the
modes for transferring individual’s knowledge and for expanding
organizational knowledge (Nonaka, 1994). The emergence and
wide adoption of social networking Web sites (e.g., del.icio.us for
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bookmarking and Flickr and YouTube for online media sharing) of-
fers unprecedented opportunities for knowledge management.
Semantic Web standards such as Friend of a Friend (FOAF) provide
rich features that can be used to represent and infer social actors
and ties. In this paper, we focus on studying social networks on
the Semantic Web.

Despite a long standing history in studying traditional social
networks in the physical world (e.g., Coleman, 1990; Freeman,
1979; Milgram, 1967), the availability of large online social net-
works has raised new questions and challenges. Much work to date
has focused on the structure of a static snapshot of an evolving so-
cial network. To understand the evolving patterns of social net-
works requires longitudinal network data combined with
information about individuals’ attributes. However, longitudinal
network data are rare, especially from the Semantic Web. Only a
couple of recent studies have analyzed FOAF networks (Ding, Finin,
& Joshi, 2005; Finin, Ding, Zhou, & Joshi, 2005). Their focuses were
on cross-sectional or static analysis, or on social network metrics of
individuals but not patterns of social structures. To address those
limitations, we aim to investigate the evolution of Semantic Web
technologies through the len of dynamic social network analysis.

Our contributions are: (1) We consider this work as an attempt
to bridge the dynamics of a salient social network with social
structures on the Semantic Web. (2) We provide the first empirical
evidence for the evolution and growth of the Semantic Web com-
munity. (3) We discover the trend and patterns for social network
evolution on the Semantic Web. (4) We lay the groundwork for
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building lifecycle models for knowledge management on the
Semantic Web.

The rest of the paper is organized as follows. We first provide
background on social networks on the Semantic Web and the evo-
lution of social networks. Then, we analyze the evolution of social
networks on the Semantic Web using a longitudinal real-world
data set. Next, we discuss implications of our research findings
and suggest future research directions. Finally, we conclude the pa-
per by highlighting research contributions.

2. Background and research questions

We review related work and pose research questions in this
section.

2.1. Social networks on the Semantic Web

A social network consists of a finite set or sets of actors and the
relation or relations defined on them (Wasserman & Faust, 1994, p.
20). In case of human social networks, actors refer to individual
persons while relations could be interpreted in a variety of ways.
Depending on the source of data, relations in a social network
could come from a verbal or written communication, scientific col-
laboration, kinship, physical or virtual proximity, and so on. Based
on whether the links are explicitly described, we classify social net-
works into two types: salient and latent social networks. In latent
social networks, social links are formed through shared resources
or context such as co-membership and conversation relationship.
As a result, two persons who are directly linked in a latent social
network do not necessarily know each other. In contrast, in a sali-
ent social network, links are explicitly articulated in social net-
works such as FOAF, and such links generally reflect actual social
relations.

On the Semantic Web, social network relations are represented
with semantic information. FOAF defines a set of terms for letting
users describe personal profiles including whom they know. Spe-
cifically, foaf:knows relations can form ties in social networks on
the Semantic Web by directly linking two foaf:person. FOAF has
been recognized as means of sharing social network data between
social networking Web sites, and the ease of producing Semantic
Web data is promoting this evolution (Golbeck & Hendler, 2006).

Social networks on the Semantic Web are considered as both
online and salient. Online social networks are characterized by
their openness and scale, where many actors come and go all
the time. These features have an impact on the structure of social
networks. Salient social networks in the traditional physical are
featured with a small world phenomenon (Milgram, 1967) that
there is a high tendency to form groups and communities. How-
ever, there is repeated evidence showing that many online social
networks follow scale-free model rather than random or small
world model (e.g., Faraj, Wasko, & Johnson, 2008; Finin, Ding,
Zhou, & Joshi, 2005; Xu & Chau, 2006). In a scale-free network,
a large percentage of nodes have just a few links, while a small
percentage of the nodes have a large number of links. It remains
unclear about the important properties of the social networks
on the Semantic Web.

2.2. Dynamic social networks

Social networks are dynamic in essence and evolve over time
(Doreian & Stokman, 1997). This is driven by the shared activities
and affiliations of their members, by similarity of individuals’ attri-
butes, and by the closure of short network cycles (Watts, 1999).
The dynamics of social networks may be considered in two ways
- the dynamics of behavior within a network structure, or the evo-

lution of the network itself over time (Metcalf & Paich, 2005).
According to social network theory related to social dynamics, sta-
bility and dynamics operate in balance through many structural
patterns (White, 2004).

Many of the extant studies were performed on static social net-
works whereas most real-world social networks are dynamic and
evolving by nature. The dearth of papers that study the evolution
of real-world social networks is partly due to the difficulty in
obtaining time stamps for the arrival of every actor and tie arrival
in an evolving real-world social network. Moreover, the study of
network dynamics adds complexity to social network analysis. So-
cial network analysis is an established field which proposes to ana-
lyze the relationships between social actors in a social network
(Wasserman & Faust, 1994). The social network is often repre-
sented as a graph. In its simplest form, a social network graph con-
tains nodes representing actors (generally people or organizations)
and edges representing relationships or communications between
the actors. Such information then enables reasoning about the
individual actors and the network as a whole using graph-theoretic
approaches. The analysis of dynamics social networks needs to go
beyond traditional social network analysis by incorporating the
temporal dimension of the network.

A typical way to address dynamics in a social network is to take
snapshots of the network at various points in time and use these
snapshots to make inferences about the evolutionary process
(e.g., Kumar, Novak, Raghavan, & Tomkins, 2005). Additionally,
each snapshot can be accumulative or constrained by a sliding
window (Horn, Finholt, Birnholtz, Motwani, & Jayaraman, 2004).
There are studies of structural properties of different snapshots
of the world-wide web graph (Fetterly, Manasse, Najork, & Wiener,
2004; Ntoulas, Cho, & Olston, 2004). One of the studies (Leskovec,
Kleinberg, & Faloutsos, 2005) gives insights into the evolution of
graph properties over time. The dynamics of social ties in a social
network can be shown by tracking the changes in large-scale data
by periodically clustering data and examining the extracted tem-
poral clusters (Kubica, Moore, Schneider, & Yang, 2002).

The properties of a dynamic social network could have great im-
pact on the evolution of Semantic Web community and knowledge
management practice on the semantic Web. However, extant social
network research on the Semantic Web has mostly focused on static
networks. It is assumed that all relations are essentially static in that
all information about the time when the relations are forms is over-
looked. The static nature of the findings can give incomplete and
inaccurate information about structural patterns of the networks.
Additionally, the static graph representation prevents us from even
answering some fundamental questions about either the temporal
patterns or the evolution of social structures. For example, how do
the size and stability of social structures change over time? It re-
mains unclear which model the evolution of semantic social net-
works follows. Therefore, we are mainly interested in the
following research questions: Are the structural properties of social
networks on the Semantic Web dynamic? How do they change over
time? What's the lifecycle of Semantic Web documents?

To be able to answer these questions, we need to have informa-
tion about when social relationships are formed, which allows us
to examine social structure from the longitudinal perspective. This
paper mainly attempts to address the discovery of temporal prop-
erties of social networks and the dynamics of social network pat-
terns on the Semantic Web. As a secondary objective, the paper
aims to understand the lifecycle of online social networks.

3. The evolution of social networks on the Semantic Web

In this paper we seek to explore how groups develop and evolve
in large-scale social networks on the Semantic Web, specifically in
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the social networks formed between persons via foaf:knows rela-
tion within FOAF documents. Additionally, the ties between FOAF
documents were created based on revision relations extracted
from a longitudinal dataset.

There is a large body of work on identifying tightly-connected
clusters within a given graph. The purpose of those work is to infer
potential communities in a network based on the density of link-
age. In contrast, social ties in FOAF social networks are explicitly
identified and actors deliberately join together. In addition, we ex-
tract network data not just from selected communities but from
the entire Web. Therefore, the questions addressed in the past lit-
erature are quite different from the focus of the current study.

3.1. A longitudinal Semantic Web dataset

We first detail our collection of a social network dataset. One
needs a large, realistic social network containing a significant col-
lection of explicitly identified groups, and with sufficient time-res-
olution that one can track their growth and evolution at the level of
individual nodes (Backstrom, Huttenlocher, Kleinberg, & Lan,
2006). In this study, we take advantage of rich FOAF datasets and
computational models for describing the process of group
evolution.

The creation of the dataset took more than two years’ effort
spanning from January 2005 to March 2007. Compared with other
types of Semantic Web documents (Ding et al., 2004), FOAF docu-
ments are unique in that FOAF offers a standard mechanism for di-
rectly expressing relationships between persons in triples.
Therefore, we focus on studying social networks extracted from
FOAF documents and their triples. In view that, the FOAF network
is a salient social network, its dynamics is triggered by explicit
revisions of FOAF documents. Thus, we captured the creation and
revision history of FOAF documents on the Semantic Web, which
has not been investigated in previous studies. The dataset consists
of 688,298 FOAF documents, which totals about 1.3 M revisions
comprising 270 M triples.The dynamic properties of the FOAF net-
work were analyzed by taking snapshots at multiple time points.
This approach involves generating a series of networks, each of
which represents the FOAF network at a specific point in time. Each
social network is represented as a directed time graph G=(V, E),
where V and E denote a set of nodes (e.g., persons) and edges
(e.g., knows relation), respectively. For every node v € V and an
associated directed edge e=<u, v> € E (u € V), they have time
stamps t on the time axis (t is a point in time within the given
timeframe). v, or <u, v>; indicates the time when node v or edge
e is part of the graph. In particular, for any time t, there is a graph
G; that comprises the most recent versions of all the nodes and
edges that remain alive by time t. We adopt the notion of time
graph (Kumar, Novak, & Tomkins, 2006) in the analysis of proper-
ties that are specific to the dynamic networks and use graph dy-
namic networks the instantaneous network at any point in time
such as the final network.

A window size of 9 months was used to divide the dataset. The
choice was made base on the analysis of the distribution of revision
cycles of FOAF documents that have ever been updated. Specifi-
cally, there are 454,678 (66%) FOAF documents only have one revi-
sion (i.e.,, they have remained unchanged ever since they were
discovered), and the rest have 3.5 revisions on average. Addition-
ally, based on the cumulative frequency distribution of revisions,
as shown in Fig. 1, FOAF documents are revised at a relatively infre-
quent pace. For example, there are only about 10,000 documents
that have over 10 versions and there are about 1000 documents
that have over 20 revisions. In view of the observed periodicity
of revision activities, sampling at nine-month interval would pro-
duce a reasonable approximation, of structural changes. Accord-
ingly, we took four snapshots of the FOAF network, including

G2005-01, G2005-09, G2006-06» and Gago7-03, to analyze its evolution
patterns.

3.2. Antecedents to network dynamics

In order to understand the magnitude of the antecedents to net-
work dynamics (growth or loss), we analyzed 233,620 FOAF docu-
ments that have at least two revisions by tracking their changes
from the first revision to the last revision. Fig. 2 summarizes the
changes in the number of person instances and knows relations be-
tween the first revision and the last revision.

It is revealed from Fig. 2 that about half (50.82%) of the changes
to FOAF documents (i.e., no change) was in semantic content other
than FOAF person and knows relation or only in descriptions of
FOAF persons. The above changes would keep social network in-
tact. The rest of the changes to FOAF documents (49.185%) would
contribute to the dynamics of social networks on the Semantic
Web. These changes can be classified into four major categories:
both growth, both loss, person growth only, and others. Among
them, growth in both person instances and knows relations
(35.94%) dominates the changes, and loss in both person instances
and knows relations accounts for a relatively small percentage
(10.52%). Compared with adding only persons to FOAF documents
(2.13%), the chance of adding only knows relation is smaller
(0.37%). This indicates that when a person is included in a FOAF
document, he or she is likely to be connected via knows relation.

To help understand the overall changes of FOAF documents over
time, Fig. 3 displays the trend of accumulative FOAF document
revisions. The figure shows that the accumulation of FOAF docu-
ment revisions increases steadily in a linear trend.

A further look into FOAF documents revisions reveals that the
revisions can be classified into two major types: update of existing
documents and creation of new documents. The distribution of the
types of FOAF document revisions over time is reported in Fig. 4. It
is noted from Fig. 4 that there is a spike of new creation activities in
August 2005, which could have been caused by the upgrade of our
crawler. There was a second spike around early 2006, suggesting
an influx of new users to some FOAF online communities. The up-
date frequency stays relatively constant but still reveals a general
trend of high activities at the beginning and ending periods and
low activities in between.

3.3. Structural properties of the FOAF network

Since we collected the FOAF dataset from a large number of re-
sources on the Web, the network exhibits some unique structural
properties and evolves in its own way. In this section, we first iden-
tify the structural properties of the entire FOAF network and then
analyze their evolution in FOAF time graph by taking snapshots at
different points in time.

Based on our analysis results, the FOAF network is mainly com-
posed of two types of structural or (sub-)graph patterns: singletons
and (connected) components. A singleton is a node that has no con-
nection to other nodes, and a component is a set of nodes that are
connected. As shown in Fig. 5, a singleton either has no edge or a
self-loop edge. In fact, every node in the FOAF network has a
self-loop because a person always knows herself. A component is
a connected graph and disconnected with any other component.
The components in the FOAF network can be further divided into
four major sub-types namely star, non-star tree (ns-tree), twin,
and complex components. A tree is a component having n nodes
and (n — 1) edges. A star is a special type of tree in which all but
one node has zero out-degree. The remaining three types of com-
ponents are collectively called non-star components. A twin is a
component consisting of two nodes that are linked to each other,
and a complex component is more complex than a tree or a twin.
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The distribution of the above structural patterns is important
information because it reflects the integration and complexity of
the FOAF network. It will be more revealing to produce a time
graph of the distribution. It is shown from Fig. 6 that the number
of nodes in all types of structures keeps increasing over time,
and the distribution of different types of structural patterns re-

mains almost constant except for a slight change in the order be-
tween ns-tree and twin in Gygg7-03.

Compared with other types of patterns, star is dominant across
all the snapshots of the FOAF network. Star outnumbers the rest by
at least one order of magnitude in the last three snapshots, and sin-
gleton is consistently ranked the second. In the last snapshot, star
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accounts for 90% of the nodes, and the other non-singleton compo-
nents only totals less than 1% of the nodes. The number of non-star
components is very small because most person instances (99.92%)
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in FOAF documents are defined as blank-nodes, which are local
within their residing documents. Therefore, we hypothesize that
the authors of FOAF documents do not want to publicize their
friends due to privacy concerns, and if they do, they prefer to use
other types of social identities rather than Uniform Resource Iden-
tifier (URIs) to link their friends. Such a decision could be explained
from three perspectives: (1) it is harder to remember an URI than
most other types of social identities; (2) the population who has
adopted URI remains small; and (3) it is practically challenging
for an individual to maintain a permanent URI on the Web despite
that it is well intended.

Among the non-star components, complex components consis-
tently contain the most nodes. In sum, Fig. 6 shows that the FOAF
network is rather distributed and disconnected. If nodes do get
connected beyond stars, they tend to have a complex structure.
This motivates us to look deep into complex components in the
next section.

The node distribution across different component patterns may
be biased because some types of patterns contain significantly
more nodes that others by nature. In order to provide a complete
picture for the distribution of structural patterns, especially com-
ponents, we generated two benchmark statistics: (1) the overall
population (component frequency) and (2) the average size (num-
ber of nodes). Fig. 7a shows that star is by far the predominant type
of component, outnumbering other types of components by about
three orders of magnitude. Such an observation provides prelimin-
ary evidence in support of our hypotheses that users prefer to link
to their friends indirectly. Fig. 7b shows that complex components
on average involve much more nodes than any other types of com-
ponents, especially after the space of FOAF documents has evolved
over time. We also noted a non-trivial number of non-star trees
and twins among the non-star components, and our decision on
setting the two apart from complex components is mainly due to
their simple structure and tiny size (see Fig. 7b).

Despite a general trend of growth in both the overall population
and the average size of components, we noticed a slight drop in the
average size of complex components in G,gg7-03. This is mainly be-
cause, compared with Gyggs.06, the relative increase in the number
of components (12.2%) outweighs the relative increase in the num-
ber of nodes in Gygg7-03.

Degree analysis helps us understand the level of connectivity in
FOAF components. We first compute the average in-degree (or out-
degree) for every component, and then derive the average of aver-
age in-degree for every type of structural patterns by aggregating
all the components of that type. The results are plotted in Fig. 8.
It is not surprising that the average of average in-degrees of com-
plex components is significantly higher than others and continues
to grow until Gygps-06. A slight drop in average degree of G,007-03
is caused by the merging of some stars into existing complex
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(a) overall population

2007-03

2005-01 2005-09 2006-06

(b) average size
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Fig. 7. The evolution of population and average size of components (grouped by structural patterns).
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components. The average in-degrees of other types of components
range between 0 and 1.

In view that the FOAF network is directed, we are interested in
the extent to which ties are reciprocated. It is argued that a net-
work with a predominance of asymmetric ties may be unstable
and unequal (Borgatti, Everett, & Freeman, 2002). Thus, stars and
trees are unstable by definition, whereas twins are in equilibrium
state because ties in twins are always reciprocated. Thus, we focus
on analyzing the reciprocity of complex components. Commonly
used empirical measures of reciprocity are based on unweighted
ties and differentiate between null and asymmetric dyads versus
mutual dyads (Wasserman & Faust, 1994). We are concerned with
the number of ties that are involved in reciprocal relations relative
to the total number of actual ties. Results show that the average
reciprocity of complex components increases from 30% for
GZOOS*O] to 35.3% for 62005,09 and then to 43.1% for G2006706~
There is a slight decrease in the average reciprocity to 41.3% for
G2007-03, A4S shown in Flg 8.

Finally, we examine the density of FOAF components. The den-
sity of a network is the number of actual connections between
nodes divided by the number of possible connections (Scott,
2000). Density values range from O to 1. The higher the density
the more connected the group members are. The average density
values of FOAF component time graphs are reported in Fig. 9. Gen-
erally speaking, the densities of FOAF components except twin are
not high. The moving trends of average density are more diverse
than other network properties. For example, the average density
of star decreases, and that of twin stays the same, but those for
non-star tree and complex components increase over time. The re-
sults indicate that, as FOAF components evolve, there is a tendency
for non-star tree and complex components to move toward equi-
librium but star tends to move in the opposite direction.

3.4. Structural properties of the largest component

By tracking network properties with respect of the largest FOAF
component, it is possible to measure the rate and extent of integra-
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Fig. 9. The evolution of density distribution of components (grouped by structural
patterns).

tion of the community over time. Specifically, we analyzed the
temporal patterns of component network properties, including
average in-degree, reciprocity, diameter, density, clustering coeffi-
cients, and average distance.

The evolution of the largest star and non-star components are
plotted in Fig. 10. At each time point, components are listed from
the left to the right in the descending order of their size. A compo-
nent is represented as a rectangular block. To differentiate star
components from non-star ones, the star components are marked
with “x” in the corresponding blocks. The number listed at the
top of a blank denotes the identifier and the two numbers at the
bottom denote the total number of persons and the total number
of ties in the component, respectively. The evolution relationship
between components for different points of time is depicted as ar-
rows on the vertical dimension, which was derived through tracing
the movement of persons in specific components over time.

We observed several interesting evolution patterns of compo-
nents from Fig. 10. First, the largest non-star component remains
as the largest over time. For example, components 38,382,
18,772, and 1532, which fall on the same evolution path, are also
the largest in G2005-09, G2006-06, and G2007-03 Separately. The size
of the largest component increases from 984 persons along with
1938 ties in Gyggs-09 to 8140 persons along with 12,815 ties in
G2006-06, and then to 9035 persons along with 5381 ties in Gygo7-
03- Second, two or more non-star components could be combined
into one largest component. For example, component 18,772 is
combined with component 1532 in G;pgs.0s and become one com-
ponent in Gygp7-03. Third, a star component can follow three evolv-
ing paths: merge into a non-star component such as component
178,110 in Gypos.09, grow on its own such as component
25,532,381 in Gygps.g9, and completely disappear such as compo-
nent 25,554,051 in Gygos.g9. Since the power in a star component
is highly centralized, the component could break down as along
as the powerful person goes away.

Given the lack of diversity in the structures of star component,
the analysis of the largest component focuses on non-star compo-
nents. First, the overall reciprocity of the largest complex compo-
nent in Gyogs.g9 Was 2.43%, which was increased significantly to
13% in Gygpe-0s and then to 14.29% in Gygg7.03. The continual in-
crease in reciprocity indicates that the ties in social networks on
the Semantic Web move toward mutuality as in traditional social
networks. Nonetheless, the level of reciprocity remains at a low le-
vel. We can find two alternative explanations for this phenomenon.
First, there exists asymmetry in terms of the power or the social
role of individuals. As a result, it is more likely for a person at a
low power to link to other persons at high power positions than
the other way around. Second, given the distributed nature of the
Semantic Web, there is some natural delay in reciprocating social
ties from different FOAF documents.

At the individual level, we also analyzed the diameter, mean
node in-degree (or out-degree), and average shortest distance of
the largest components. The results are reported in Fig. 11. The
mean in-degree and mean out-degree are the same for a directed
network. Nonetheless, the mean standard deviations of the out-de-
gree are generally much higher than those of in-degree. For exam-
ple, the ratio of standard deviation of in-degree to that of out-
degree was 10.43:3.34. There is a slight decline in the mean in-de-
gree in Gygps.0s and then the trend was reversed in Ggg7-93. It sug-
gests that the grow in the number of persons in a FOAF component
precedes the grow in the number of ties. This also explains the
trends of diameter and average distance, which show significant
jumps at the beginning and then level out later.

Further, we also looked at the density of these graphs. The den-
sity of the largest component time graph is depicted in Fig. 12
where the value of density is increased by a factor of 100. Gener-
ally, the density of the largest remains quite low over time low.
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For example, the largest density is only 0.002, which occurs at the
first time point. It implies that information diffusion in the current
Semantic Web may not be efficient.

Unlike certain citation graphs that become denser over time
(Leskovec et al., 2005), Online social networks exhibit three clearly
marked stages (Kumar et al. 2006): an initial upward trend leading
to a peak, followed by a dip, and the final gradual steady increase.
Given that the density of the largest component in the FOAF social
network undergoes a decline stage and then a stable stage, as
shown in Fig. 12, we expect that the density is likely to increase
and the network is likely to grow tighter in future. The FOAF com-
munity will finally set into a phase of organic growth in which both
membership and ties increase.

Finally, the clustering coefficient is the likelihood that any two
nodes that are connected to the same node are connected them-
selves (Watts & Strogatz, 1998). As shown in Fig. 12, the clustering
coefficient follows an increasing trend, and the trend slows down
over time. The result shows that there is a tendency for localized
neighborhood or communities to emerge on the Semantic Web.
The increase in the size of the community enhances the above
trend.

4. Discussion

From the perspective of the Semantic Web community, an in-
flux of new members could bring new ideas with them to stimulate
Semantic Web research and adoption. On the other hand, high vol-
atility of community members could endanger the formation of
community identify. By examining the dynamics of structural
properties of the FOAF network from the longitudinal perspective
at both community and individual levels over time, we advance
our knowledge about the evolution of FOAF social networks. We
discuss the findings of this study and their implications to the
Semantic Web and social network research in this section. We also
discuss limitations and future research issues.

4.1. Findings and implications

There are several key takeaway points from this study. The first
is that the Semantic Web community is highly distributed, which is
similar to the traditional Web. It does not belong to the type of net-
work with a highly connected core but rather contains a collection
of disconnected components. Moreover the FOAF network grows in
a “speckled” fashion. Further, as the Semantic Web continues to
grow, there is a tendency for the community to become more inte-
grated and stabilized.

Second, the FOAF social network community contains the
majority of its mass outside the largest component, and the struc-
ture outside the largest component is largely characterized by sin-
gletons and stars. The large number of singletons and stars largely
results from blank nodes where people do not directly link to their
friends in FOAF documents.

Third, social networks in the Semantic Web appear to go
through distinct stages of growth, characterized by specific behav-
ioral patterns in terms of density, reciprocity, degree, and regular-
ity of component structure. For example, the distribution of
different types of structural patterns in components is fairly con-
stant. Both the size and average degree of components undergo ra-
pid increase, slow increase, and relatively stable or slow decline
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phases. It would be instrumental to develop a more detailed model
of the lifecycle of online social networks.

Fourth, our results also have research implications for time ser-
ies and cross-sectional network analysis. This study shows that dif-
ferent network structural properties are in equilibrium (Doreian &
Stokman, 1997) but exhibit varying levels of stability over time
with respect to a 9-month elapse.

This study contributes to a growing body of research focused on
large-scale networks. By studying FOAF social networks at both
individual and community levels, we are able to provide a deeper
and more complete understanding of how individuals manage im-
plicit knowledge embedded in salient social networks. This study
also contributes to knowledge management research by revealing
the temporal patterns of FOAF document maintenance. Previous
work has either used a single version of FOAF documents or fail
to link different versions of the same documents together. Tracing
the versioning relationship between documents would enable the
discovery of lifecycle of social network management. Further, the
findings of this study shed light on the evolution of online FOAF
community in specific and the Semantic Web community in gen-
eral. They reveal that the community has grown at a steady pace
into a more integrated space. Nonetheless, there is much room
for the community to grow into tight connection given the huge
number of components and low average degrees. We should seek
a balance between dynamics and stability to enhance the growth
and the sustainability of the Semantic Web community.

4.2. Limitations and future research

As with any study, there are limitations that could be addressed
in future studies. First, only the foaf:knows relationship was ex-
plored for social networks on the Semantic Web. FOAF provides
additional personal information such as foaf:see also and
foaf:interest that are potential candidates for building online social
networks. Questions regarding how strong the relationships be-
tween FOAF members are require an analysis of a more complete
set of relationships. Second, our analysis of revision history of on-
line social networks is unique and appropriate to the present study
of the evolution of dynamic social networks on the Semantic Web.
It would require a deeper analysis of the evolving patterns of indi-
vidual FOAF documents or expressed relationships to develop a
formal lifecycle model for Semantic Web documents or dynamic
online social networks. Third, although FOAF promotes the idea
of associating each individual with a unique identifier, entity reso-
lution (Aleman-Meza et al., 2006; Finin et al., 2005) remains to be
an issue in processing real-world data. There is still a lack of perfect
solutions for resolving identities in an online environment, which
merits future improvement. Fourth, we assume that the social net-
work relationships persist over time. In reality, some FOAF docu-
ments may temporarily go offline or may permanently disappear.
It would be interesting to investigate the motivations for creating,
revising, and deleting online social networks. Fifth, the number of
time points selected for analysis restricts the types of dynamics
that could be observed in this study. Nonetheless the duration of
our data collection and the number of observations are unmatched
in any of the previous studies of FOAF networks. We believe the
duration of data collection is large enough to capture all the critical
events. An analysis at a more granular level of time would help re-
veal more subtle dynamics of online social networks.

Although it is risky to generalize findings from FOAF social net-
works to the entire online social networks, this study highlights
the need to examine the evolution of salient online social networks
from the perspective of knowledge management. Future research
would to investigate the impact of social network evolution on
other types of knowledge management processes through social
network analysis. For example, the analysis of structural changes

and shared interests of dynamic social networks can provide in-
sights into knowledge sharing and diffusion, which could be key
drivers in the healthy growth of online social networks.

5. Conclusions

This study presents a first examination of the relationship be-
tween salient social networks and knowledge management to
highlight the greatest social assets accrued to the Semantic Web
community over the past few years. By exploring the ways in
which communities in FOAF social networks dynamically grow
over time — both at the level of individuals and at a global level
of communities, this study discovers the evolution patterns of so-
cial structures and predicts future trend. It is hoped that the find-
ings of this research will motivate a closer more investigations of
the distinct characteristics of salient online social networks that
can be used to support the management and sharing of implicit
knowledge.
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