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THE LOGIC THEORY MACHINE
A COMPLEX INFORMATION PROCESSING SYSTEM

Allen Newell and Herbert A. Simon1
The RAND Corporation, Santa Monica, Calif.

and the Carnegie Institute of Technology,
Pittsburgh, Pa.

SUMMARY

In this paper we describe a complex information processing
system, which we call the logic theory machine, that is capable
of discovering proofs for theorems in symbolic logic. This
system, in contrast to the systematic algorithms that are
ordinarily employed in computation, relies heavily on heuristic
methods similar to those that have been observed in human
problem solving activity. The specification is written in a
formal language, of the nature of a pseudo-code, that is suit-
able for coding for digital computers. However, the present
paper is concerned_exclusively with specification of the systen,
and not with its realization in a computer.

The logic theory machine is part of a program of research
to understand complex information processing systems by specify-
ing and synthesizing a substantial variety of such systems for

empirical study.

1l

Paper presented at the Symposium on Information Theory, sponsored
by the Professional Group on Information Theory of the Institute
of Radio Engineers, September 10, 1956, Cambridge, Massachusetts.
The authors are indebted to Mr. J. C. Shaw of The RAND Corporation,
who has been their partner in many aspects of this enterprise, and
particularly in undertaking to realize the logic theorist in a
computer —work that will be reported in subsequent papers.
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INTRODUCTION

In this paper we shall report some results of a research
program directed toward the analysis and understaﬁding of com-
plex information processing systems. The concept of an informa-
tion processing system is already fairly clear and will be made
precise in Section I, below. The term "complex"™ is not so
easily disposed of; but it is the crucial distinguishing character-
istic of the class of systems with which we are concerned.

We may identify certain characteristics of a system that
make it complex:

l. There is a large number of different kinds of pro-
cesses, all of which are important, although not necessarily
essential, to the performance of the total system;

2. The uses of the processes are not fixed and invariable,
but are highly contingent upon the outcomes of previous processes
and on information received from the environment;

3. The same processes are used in many different contexts
to accomplish'similar functions towards different ends, and this
often resulté in organizations of processes that are hierarchical,
iterative, and recursive in nature.

Complexity is to be distinguished sharply from amount of
processing., Most current computing programs for high speed
digital computers would not be classified as complex according
to the above criteria, even though they may involve a vast amount
of processing, In general they call for the systematic use of a

small number of relatively simple subroutines that are only

slightly dependent on conditions. In eorder to distinguish such
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systematic computational processes from the processes we regard

as complex, we shall call the former algorithms, the latter

heuristic methods. The appropriateness of these terms will become

clearer as we proceed.

One tactic for exploring the domain of complex systems is
to synthesize some and study their structure and behavior
empirically. This paper provides an explicit specification for
a particular complex information processing system — a system
that is capable of discovering proofs for theorems in elementary

symbolic logic. We will call the system the logic theorist (LT),

and the language in which it is specified the logic language (LL).

This system is of interest for a number of reasons. First, it
satisfies the criteriaﬂof complexity we have listed above.
Second, it is not so large but that it ecan be hand simulated
(barely). Third, the tasks it can perform are well-known human
problem-solving tasks — it is a genuine problem-solving system.
Fourth, there are available algorithms, and a realization of at
leastvone of these algorithms (the Kalin-Burkhart nachine),2
that can perform these same tasks; hence, the logic theorist pro-
vides a contrast between algorithmic and heuristic approaches in
performing the same problem-solving tasks.

The task of this paper, then, is to specify LT with
sufficient rigor to establish precisely the complete set of
processes involved and exactly how they interact. This is a
lengthy ahd somewhat arduous undertaking, but one that the

authors feel is required in the present state of knowledge.

2Sce B.V.Bowden (ed.), Faster Than Thought (London: Pitman, 1953),
Pp. 181-198,
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As a result, the paper largely abstains both from comment on the
more general significance of the ideas and techniques introduced,
and from relating these to contemporary work.3

The plan of the paper is to give, in Section I, a des-
eription of the language, LL, in which LT will be specified.
In Section II there is given a verbal description of LT, which
is closely enough tied in to the formal program to motivate
most of the latter. Finally, in Section III, the program is

given in full detail.

1

———

Language for Information Processing Systems

The two major technical problems that have to be solved
in studying information processing systems by means of synthesis
may be called the specification problem and the realization
problem, fo study all but the simplest of such systems, it is
necessary to make a complete and precise statement of their

characteristics. This statement, or specification, must be

sufficiently complete to determine the behavior of the system
once the initial and boundary conditions are given. An example,
familiar to mathematicians, is a system specified by n first

order differential equations in n variables.

3We should like to make general acknowledgment of our indebtedness
for many of the ideas incorporated in LL and LT to two areas of
vigorous contemporary research activity: (1) to research on
automatic programming of digital computers, for the approach to the
construction of LL; and (2) to research on human problem solving,
for the basic structure of the program of LT. In addition we
should like to record a specific indebtedness to the work of 0.G.
Selfridge and G.P.Dinneen on pattern recognition, which clarified
many basic conceptual issues in the specification and realigzation
of complex information processes.
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Once the specification has been given, a second problem
is to find or construct a physical system that will behave in
the manner specified. This can be a trivial or an insurmountable
task. For example, it is relatively easy to find electrical cir-
cuitry that will behave like a system of linear differential
equations; it is rather difficult to represent by circuitry most
kinds of nonlinear systems., We will call the problem of finding

or constructing the physical system the realization problem,

and the particular physical system that is used the realization.k

Although this paper is concerned exclusively with the
specification problem, the form of language chosen is dictated
also by the requirements of realization. Since an important
technique for studying the behavior of complex systems is to
realize them and to study their time paths empirically under a
range of initial and boundary conditions, they must be specified
in terms that make this realization relatively easy.

The high speed digital computer is a physical system that
can realize almost any information processing system and our
research is oriented toward using it. Its limitations are in
over-all speed and memory, rather than in the complexity of the
processes it can realize., The machine code of the computer is
the language in which a system must ultimately be specified if
it is to be realized by a computer. Conversely, however, once

the system is correctly specified in machine code, the realization

b We prefer "realization" to "simulation", for the latter implies
that what is being imitated is another physical system. Since
the specification is an abstract set of characteristics, not a
physical system, it is not correct to speak of ™simulating" the
specification.
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problem is essentially solved; for the computer can accept these
specifications, and will behave like the system specified.

The machine code, although suitable for communicating with
the computer, is not at all suitable for human thinking or ecom-
munication about complex systems. For these purposes, we need
2 language that is more comprehensible (to humans), but one that
can still be interpreted by the computer by means of a suitable
program. Technically, such a language iz known as a pseudo-code
or interpretive language. Hence, the two problems of specifica-
tion and realization of an information processing system are
subsumed under the single task of describing the system in an
appropriate pseudo-code,

This paper is concerned solely with specifying the system
of LT. The particular language, LL exhibited here has not been
coded for a computer. However, one very similar to it, which
is less convenient for exposition, is in the process of being
coded and will be the subject of later papers. Here, no further
mention will be nade'of the relation of the logic language to
computers,

The terms of the language that are undefined — its
primitives —determine implicitly a set of information processes
that are to be regarded as elementary and not reducible, within
the language, to simpler processes. The more complex processes
are to be specified by suitable combinations of these elementary
processes, Generally speaking, the elementary processes in LL
are of the nature of information processes: that is, their inputs

and outputs are comprised of symbolized informatioen.
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Information Processing Systems: Basic Terms

An information processing system, IPS, consists of a set

of memories and a set of information processes, IP*s. The

memories form the inputs and outputs for the information pro-
cesses. A memory is a place that holds information over time in
the form of symbols. The symbols function as information
entirely by virtue of their capacity for making the IP's act
differentially. The IP's are, mathematically speaking, functions
from the input memories and their contents to the symbols in the
output memories. The set of elementary IP's is defined explicitly,
and through these definitions all relevant characteristies of
symbols and memories are specified.

Particular systems can be constructed from the memories
and processes of an IPS that behave in a determinate way once

the initial information in the memories is given (initial econ-

ditions), along with whatever external information is stored in
the memories during the course of the system's operation
(boundary conditions). Each such particular system we call a

program, IPP. Thus an IPS defines a whole class of particular

IPP's, and conversely, an IPP consists of an IPS together with

a set of rules that determines when the several information pro-
cesses will occur. The logic language is an IPS; the logic
theorist is an IPP. Many variations of LT could be constructed
with the same IPS.

Symbolic Logie

The logic language handles information referring to ex-

pressions in the sentential calculus and their properties. This
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Paper assumes some familiarity with elementary symbolic 1ogic,5
and only a resumé of the notation will be given.

The setential calculus deals with variables, p, q, e..,
A, B, «c., 8, b, ,.., which are usually interpreted to mean

sentences. These variables are combined into expressions by

means of connectives. The two connectives taken as primitive by

Whitehead and Russell (and by us) are "not" (-) and worm (v).
In this paper we shall have occasion to use only one other con-
nective: "implies™ (—), which is defined by:6

1.01 P> q = def -p v q (Read: (p implies ) is equivalent
by definition to ?not-p or q).)

Coding

A logic expression, X, is represented in the IPS by a set

of elements, E, one corresponding to each variable and to each
connective (excluding the punctuation dots and negation symbols)
in the logic expression. Each element holds a number of symbols
that refer to the various properties of the element. (Note that
the term "element™ and not the term "symbol"™ is used in this
paper to rof?r to the variables and connectives in logic ex-
pressions. Symbols denote properties of elements, and to each

element there correspond a number of symbols.) An example will

s For definiteness, we have used the system of A.N. Whitehead
and Bertrand Russell, Principia Mathematica, vol. 1, 2nd edition
(Cambridge: 1925). An introduction sufficient for our purposes
will be found in D. Hilbert and W. Ackermann, Principles of
Mathematical Logic (New York: Chelsea, 1950), Chapter 1.

6

For ease of reference, we shall use the numbers employed by
Whitehead and Russell to identify particular propositions and
definitions, only omitting the asterisk (#) that they insert in
front of the number.
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show what is meant by these terms.7 Consider the expression

1.7:

1.7 “P =+ Q V =p ( (not-p) implies (q or not-p).)

The entire sequence is the expression, X(l1.7). It consists of
the elements -p,», q, v, -p. The expression may be written
in "™tree" form, as follows, where the rectangles indicate the

elements:

Main element
| Righ
ght :
Left Right
Subelement - ‘—SEPelemggt‘- — — __  Subexpression
/////§ = none. — —r ~
~
/
pz v \e//
P=1 / P=R \
; q -p ‘
\ P = RL P = RR /
\ /
AN _ d
~ -

s
e — - —_— —

The main connective at the top is called the main element,
EM (1.7). The other elements are reached through a series of
Left and Right branches from the main element. With each

element there is associated a subexpression, namely, the sub-

tree of which that element is the top element.
The symbols in each element provide the following informa-

tion, which will be explained more fully as we proceed.

7 We follow Whitehead and Russell in using dots in place of
parentheses as punctuation. It is unnecessary here to give
exact rules for numbers of punctuation dots.
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Symbol

G The number of negation signs (-) before the ex-

pression. In the figure above, two elements -
those containing the variable p — have G = 1; all
the rest have G = 0., 1If a negation applies to a
whole expression it ;ppearé in the element associated
with that expression.

\ Whether the element is a variable or not.

F Whether the element is free, i.e., available for
substitution. This is relevant only if E is a variable.

c The connective (v or— ). This is relevant only if E

is not a variable,.

N The name of the variable or expression. In X(1.7),
there are variables named "p" and "qg".

P The position of the element in the tree. This is
represented by a sequence of L*'s and R'y, counting
branches from the main eleﬁent. In the figure,
the P for each element is shown beneath the element.

A The location of the whole expression (not the element)

in storage memory.
U Whether the element is to be viewed as a unit or not.
The term "unit™ will be explained later,
The eight symbols defined above characterisze completely
each element and the expression in whieh it becurs. For many
purposes, however, it is convenient to define additional symbols

("descriptive symbols™) that correspond to interesting or im-

portant properties of expressions. In LL, three such descriptive
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symbols, represented as small positive integers, are defined.

These are:

H The number of variable places in an expression. Thus

X(1.7) has three variable places: P = L, RL, and RR;
hence, H(1.7) = 3.

J The number of distinct variables (i.e., distinct

names) in the expression, ignoring negation signs.

Since X(1.7) contains the names "p" and "q", J(1.7)= 2.
K The number of levels in the expression. The number

of levels corresponds to one plus the maximum number

of letters in P for any element in the expression.

Hence, K(1.7) = 3.

Memory Structure

There are two kinds of memories, working memories and

storage memories. The major distinction — that all information

to be processed must be brought in from the storage memories to
the working memories and then returned — will be brought out
clearly when we define the elementary IP's, Structurally, the
working memories hold single elements, E, with additional spaces
for the symbols H, J, and K. Hence, we can picture a working

memory unit as:
W: E R}—J}-'—x

The storage memories consist of lists. A list holds either

a whole logic expression or some set of elementis generated

during a process, such as a set of elements having certain

properties. Each list of logic expressions has a location,
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symbolized by A, The elements are placed in the list in arbitrary
order, since the information in each element is sufficient to
locate it unequivocally in the tree of the logic expression.

(The ordering of the list is used only to carry out searches,)

For example, X(1.7) might be listed in the storage memory thus:

A (1.7): q,RL -p,L — VoR [ }~>,none -p sRR

No limitations are imposed here on number of memories,
either working or storage., 1In actual fact, the number used is
not large,

Three particular lists have special locations in storage
memory that can be referred to directly in IP's: (1) the theorenm
list, T, of all axioms and theorems that have previously been
proved; (2) the active problem list, P; and (3) the inactive
problem list, Q. Each list consists of the main elements of the
appropriate expressions (theorems or problems, respectively) in

arbitrary order. For the rest, the storage memory is entirely

.ww...unspecialized. . __ S I

Information Processes

A termrihat specifies an IP is called an instruction,

by analogy with computer terminology. As Figure 1 shows,
an instruction consists of an operation part, three

REFERENCE PLACES
OPERATION LEFT CENTER RIGHT BRANCH LOCATION

Figure 1
reference places (left, L, center, C , and right, R )»

and a branch location, B. The kinds of operations
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that can be performed by an IPS depend, first, on what elementary
IP*s are postulated, and second, on what restrictions are placed
on how they can be combined. For the moment, the exact nature

of the elementary processes is unimportant; for concreteness,

the reader may think of the following as typical: transferring
information from memory x to memory y, or adding the number in
memory x to the number in memory y.

The reference places refer to the working memories, so
that the same operation may operate on different memories at
different times and under different circumstances. The working
memories will be designated by small integers, 1, 2, ..., and
by the letters x, y, =z.

No direct reference is made in an instruction to any
storage memory, except T, P, and Q. Lists are located by the
A stored within elements belonging to the lists; and elements
within a 1ist are located by their relation to known elements.
An example will make this clear. A typical operation involving

the storage memory is:

OPER L CR B
FR Xy

which reads: Find the element that is the right ;ubeienent
of E(x) —i.e., of the element in working memory x —

and put it in working memory y. The operation is executed
thus: Working memory x contains the A(x) that is the
location of the expression in which E(x) occurs., Memory x
also contains the symbol P(x). Since we wish to put in y the

right subelement of E(x), P(y) is by definition obtained by

appending an R to P(x). Hence, we can determine P(y), and can




P-868
“lh-

locate E(y) by going to storagé memory A(x) and searching the
list of its elements in order until we find the element with
the correct P. We then transfer this element, which is the one
we want, to working memory y.

Programs and Routines

The rule of combination of IP's is simple: any one IP may
follow another. We shall consider time to be discrete, using
it essentially as an index, and shall assume that only one pro-
cess occurs at a time. We say that a pafticular IP has control
when it is occurring. Thus, when a sequence of IPts occurs one
after the other in consecutive time intervals, there occurs a
series of transfers of control from each IP to the next in the
sequence,

The operation of any IP includes a processing component
and a control component. The processing component changes the
memory content of the IPS; the control component transfers con-
trol to another IP. In some IP's, processing is the significant
component. In these the transfer of control is independent of the
memory cdntents at the time the IP occurs. 1In certain other IPts,
control is the significant component. These do not alter memory
contents, but transfer control to various IP's depending on the
memory contents when they occur. In other IP's both processing
and control components are significant.

Control. We allow only a binary branch in control at any
one instruction. Normally, control passes in a linear sequence
through a set of IP's., We write this sequence vertically. Each

instruction is considered to have a location in the sequence.
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For branch instructions (those in which the control component
transfers control to one of two IP's depending on memory con-
tent), control transfers either (1) to the next instruction in
the sequence or (2) to the instruction named in the branch
location, B These locations are designated by letters A, B,
Cyeee-o In Figure 2, Instruction #1 transfers control to #2;
#2 transfers conérol to #3 or branches to A (which is #4)
depending on memory content; #3 transfers control to #4; #4
transfers control to #5 or branches back to B, which is #1.
Each control operatioﬁ can be reversed in sense by putting
a minus sign in front of the operation name. The effect of
the minus sign is simply to reverse the condition of transfer,
That is, if CC-A transfers to A when two specified numbers are

equal, then -CC-A transfers to A when these numbers are unequal.

LOCN OPER LCBR B

C13-_....#1
'

7 Sy \
]

-
A———=fli——— - =B

4
etc. .

Figure 2

Roﬁtines. We will call such a list of instructions with a
control network a routine, again, in direct analogy to computer

terminology. Notice that a routine satisfies our definition of
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a program (IPP): if all the memories referred to have specified
initial contents, the routine determines their contents at all
later times covered by its duration.

If we postulate a set of elementary information processes,
each specified by an instruction, it might be supposed that
each routine would define a new (non-elementary) information
process. This is not the case, for in LL the format of an
instruction (Figure 1) allows reference to not more than three
working memories and to not more than one branch. Hence, only
those routines may be regarded as definitions of IP*s which
satisfy the following conditions:

l. The routine contains branches to not more than two
instructions outside the routine;

2. Not more than three working memories that are to be
referred to subsequently are changed by the routine. This means
that even though other working memories are changed, there is
no way to refer to these memories in subsequent routines.

Within these restrictions we can define a set of new IP's
in terms of the elementary IP's, then another set of IP's in
terms 6! both the elementary and defined IP's, and so on; thus
creating a whole hierarchy of IP's and their corresponding
routines. The elementary IP's and the hierarchy of defined IP's
IQ;WLT are given in Section III, and its structure is explained
in some detail in Section II.

The restrictions imposed above on numbers of branches and

working memories in IP's have the following two consequences

for the structure of the routines that are used to define IP*'s:
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l. A working memory can be used only within the routine in
which it is introduced. That is, working memories introduced in
a particular routine cannot be referrgd to when control is in
any other routine, except as noted in rule 2, For this reason,
no ambiguity arises from using the same names, 1, 2, ..., for
different memories in distinct routiﬁes.

2, Within the routine that defines a particular IP, refer-
ence may be made to the working memories that are designated
in the reference places of that IP. Let Il be an instruction
that appears in the routine defining 12. The symbols L, C,

R in I, refer, respectively, to the working memories in the
left, center, and right reference places of instruction 12, in
whose definition Il occurs. (See, for example, the first
instruction, FEF, in the routine given in full at the end of
this section.) Some such arrangement is obviously required if
the defining routine is to have any connection with the
instruction it defines.

Elementary Processes

In LT there are forty-four different elementary processes.
These represent variations on eight types of operations. The
remainder of this section will be devoted to a description of
these types, and an enumeration of the elementary processes
that belong to each type. Separate, explicit definitions for
each elementary IP are given in Section III. The first letter
in the name of an operation designates the type to which it

belongs: A for assign, B for branch, € for compare, F for find,

N for numerical, P for put, 5 for store, and T for test.
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Find instructions obtain information from storage memory
on the basis of stated relationships, and put it in specified
working memories. An example, FR-x-y (Find the right subelement
of E(x) and put it in y), has already been described. Two other
Find instructions are very similar: FL (Find the left sub-
element) and FM (Find the main element).

Other Find instructions involve the ordering relation on

the lists. An example is:

OPER L CR B
FEF Xy A

This reads: Find the first element in X(x)— the expression
associated with E(x)—in the 1ist A(x), and put this element

in y. Then go to next instruction, but if no element is found,
branch to instruction A. Here the order of elements is essential
since there may be many elements in X(x). This kind of opera-
tion is used to start a search and it is always combined with

an instruction, FEN, for continuing and terminating the search:

OPER L CR B
FEN Xy A

This reads: Find the element in X(x) that is next in order after
E(y) and put it in y. When such an element is found, branch to
A; if none is found, transfer control to the next instruction

in sequence. FEF and FEN together allow the familiar cycling

or iteration that is a common feature of computing routines:

FEF xy

}

Aj Process
on E(y)

FEN xy A

‘
(after 411 elements of X(x) have been processed)
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The complete 1ist of elementary Find instructions is:

FEF FL FM
FEN FR

Store instructions transfer information from working memory
back to storage memory. An example is:

OPER L CR B
S x

This simply reads: Store E(x) in the storage memory. If the
element in x is one that was previously withdrawn from storage,
it will be replaced in its original location within A(x); if
it is a new element in list A, it will be placed at the end of
the 1list.

Another elementary Store instruction is SEN, which puts E(x)
into storage memory at the end of the list A(y). A third is
*35X, which simply stores a copy of X(x) in memory location A(y)eo
The complete 1ist of elementary store instructions is:

S #5X *#SXL *#5)IM
SEN *SXE #SXR

Instructions belonging to the remaining six types are con-
cerned only with working memory (see Figure 3). No complex
processing may take place in storage memory, and eonversely, as
we have seen, no information may be stored in working memory

except on a temporary basis,.

Processing 1 :

(:>(:>(:) Working Storage
Control Memory Memory
©0O®
-
Figure 3
—
Certain of the Store instructions are marked with an asterisk.

These are treated as elementary operations in the present section
and I of Section III, but in Part II of Section III they

forfnek
are defined in terms of simpfer elementary operations.
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Put instructions transfer information and symbols around

the working memory. A typical Put instruction is:

OPER L CR B
PE xy

This reads: Put E(x) in E(y). The operation leaves E(x) un-
changed and duplicates it in E(y). The variations on this
instruction correspond to the different symbols in an element
that may need to be transferred. The list of Put instructions
is:
PE PCv PU
PX PCo PUB
Numerical instructions carry out the arithmetic operations.

An example is:

OPER L CR B
NAG x

This reads: Add 1 to G(x). Operations are required to permit
addition and subtraction for symbols G, H, J, K, and W. The
list of Numerical instructions is:

NAG NAH NAJ NSG
NAGG NAK NAW NSGG

Assign instructions write in new names and locations in
elements that are in working memory. One Assign instruction is:

OPER L CR B
AN x

This reads: Assign an unused name to E(x). The other Assign
instruction, AA, assigns new list locations. There are, then,
only two Assign instructions:

AA AN

Compare instructions belong to a class of pure control

instructions. They compare two symbols for equality (or, if
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appropriate, for the relation "greater™); then transfer to the
“branch location if the condition is satisfied or to the next

instruction in sequence if the condition is not satisfied. The

sense of the branch on these and all other branch instructions
can be reversed by a minus sign preceding the operation. A

typical example is:

OPER L CR B
cC Xy A

This reads: If C(x) = C(y), branch control to location A; if
not, go to the next instruction in sequence. That is, if the
connective in x is identical with the connective of y, we
branch to A. Notice that there is no change in memory content;
only a transfer of control has occurfed. The Compare instruc-
tions are:

CC CGG CWG
CN CKG CPS

Test instructions are also control instructions. They test
the properties of a single element, and transfer control
accordingly. The variations of the type deal‘with different
properties, An example is:

OPER L CR B
TU x A

This reads: If E(x) is a unit, transfer control to A; if not, go
to the next instruction in sequence., TC+ transfers control if
¢(x) is "implies™, goes to the next instruction if C(x) is "orw.

The Test instructions are:

TV TB TU TP
TC+ TN TGG
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Branch instructions are unconditional control instructions
that cause the program to branch to the indicated address
instead of going to the next instruction in sequence. The simplest
example is:

OPER L C R B
B b

When this instruction is reached, the program simply branches
to instruction b in the same routine.

When the instructions BHB or BHN occur in a routine, they
cause the program to branch to an address determined by the
higher-level instruction that the routine defines. For example,
suppose BHB appears as one of the defining instructions within
the routine:

OPER L CR B
MSb x b

Then, the occurrence of BHB will cause control to branch to the
address b of MSb.

Suppose, further, that MSb appears as one of the instruc-
tions in the routine Ex, and that the instruction MDt appears
immediately #fter MSb in Ex. Then, if BHN is one of the instruc-
tions in the routine MSb, its occurrence will cause control to
branch to the next instruction after MSb in the higher routine,
Ex, i.e., to MDt, Thus BHB and BHN are the instructions that
terminate control by a particular routine, and cause control
to transfer, respectively, to the branch designated in the
higher-level instruction defined by the routine, or to the higher-

level instruction that follows the routine. Instruction BHB

produces the former transfer, BHN, the latter. The three Branch
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operations are:
B BHB BHN

Example. It will clarify matters and provide some introduc-
tion to the complete program given in Section III if we set

forth in detail one of the simpler defined routines, the routine
NH. This routine consists of six instructions, all of them

primitives included in the list we have already given:

A OPER L CRB

Count the number of variable
places in X(x), and record.

NH the result in H (x).

]

FEF

A -CPS.
-TU

NAH

B FEN

C BHN

-
> WO

(1) FEF finds the first element in X(x) and puts it in working
memory l., If there is no element, it branches to C. (2) -CPs
(note the negative sense) determines whether E(1) is a sub-
element of E(x). If it is not, control transfers to B; if it is,
control transfers to the next instruction in sequence. (Hence-
forth we will abbreviate these transfers as 4B and -next,
respectively.) (3) -TU determines whether E(1) is a unit (i.e.,
is to be viewed as a variable). If it is not (negative sense),
4B, if it is, 4next. (4) NAH increases by 1 the number H(x).
(Because of the previous branches, NAH will occur only if the
element in 1 is viewed as a variable and is a subelement of the

element in x.) (5) FEN finds the next element in X(x), puts it

in working memory 1, and returns control to instruction A,
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whereupon the cycle is repeated from step (2). If there are no
‘more elements, Jnext. (6é) BHN terminates the routine after

all elements in X(x) have been examined, and transfers control
to the instruction that follows NH at the next higher level

of the hierarchy of routines.

Conclusion

We have now completed our description of the language LL.
We have outlined the coding system, the memory structure, the
structure of the information processes, the routines, and the
types of elementary processes. Further detail can be found by
consulting Section III. In Section II we shall construct in

this language a program, LT, that will permit the information

- processing system to solve problems in symbolic logic.
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I

The Logic Theory Machine

In the language we have constructed, we have variables

(atomic sentences): p, q, r, A, B, C, ... and connectives: - (not),

v (or), » (implies). The connectives are used to combine the

variables into expressions (molecular sentences). We have

already considered one example of an expression:
1.7 “P e9¢. Q V =p

The task set for LT will be to prbve that certain expressions
are theorems —that is, that they can be derived by application
of specified ruleslof inference from a set of primitive sentences
or axioms,

The two connectives, - and v, are taken as primitives. The
third connective, 9 , is defined in terms of the other two, thus:
l1.01 P *Q ®jer =P ¥ q

The five axioms that are postulated to be true are:

1.2 PV p.-Pp

1.3 P=qVDp

1.4 PYQgQasqvVvep

1.5 PVY.QVr:e:q V.pVvTr

1.6 P2 Qrvp-rvag

Each of these axioms is stored as a list in the theorem
memory I, with all its variables marked free, F, in their
respective elements.

From the axioms other true expressions can be derived as

theorems. In the system of Principia Mathematica, there are

two rules of inference by means of which new theorems can be
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derived from true expressions (theorems and axioms). These

are:

Rule of Substitution: If A(p) is any true expression con-

taining the variable p, and B any expression, then A(B) is
also a true expression.

Rule of Detachment: If A is any true expression, and the

expression A + B is also true, then B is a true expression.

To these two rules of inference is added the rule of replace-

ment, which states that an expression may be replaced by its
definition. In the present context, the only definition is
1.01, hence the rule of replacement permits any occurrence of
(-pvq) in an expression to be replaced with (p+q), and any
occurrente of (p4+g) to be replaced with (-pvq).9

In this system, then, a proof is a sequence of expressions,

the first of which are accepted as axioms or as theorems, and
each of the remainder of which is obtained from one or two of
the preceding by the operations of substitution, detachment,
or replacement,
Example; prove 2,01, p 9 -p .9, =-p!
(1) tpvp o+ p (axiom 1.2)10
(2) t-pvp .4 -p (by substitution of -p for p)

(3) 8 pa-p 4 -p (by replacement on left)

9As we shall see, 1.01 is not held in storage memory, but is
represented, instead, by two routines for actually performing
the replacements,

The exclamation point in front of an expression indicates that
the expression in question is asserted to be true. To designate
an expression whose truth has not been demonstrated, we will use
& question mark preceding the expression.
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The problem now is to specify a program for LT such that,
when a problem is proposed in the form of a theorem to be
proved (like 2.01 sbove), & proof will be discovered and con-
structed. First, it should be observed that there is a systematic
algorithm for constructing such a proof, should one exist.
Starting with the five axioms, we construct all the theorems
that can be obtained from them by a single application of the
rules of substitution, detachment, or replacement.ll We thus
obtain the set of all theorems that can be obtained from the
axioms by proofs not more than one step in length. Repeating
this process with the enlarged set of theorems, we obtain the
set of all theorems that can be derived from the axioms by
proofs not more than two steps in length. Continuing, we
finally obtain the set of theorems that can be derived by prbofs
not more than n steps in length.

Now, if the theorem in which we are interested possesses a
proof k steps in length, we can, in principle, discover it by
constructing all valid proof chains of length not more than k,
and selecting any one of these that terminates in the theorem
in question. This "™in principle" possibility is, in fact, com-
putationally infeasible because of the very large number of
valid chains of length k that can be constructed, even when k
is a number of moderate size., Under these circumstances, the

rules of inference do not give us sufficient guidance to permit

llA technical difficulty arises from the fact that there is an
infinite number of valid substitutions. This difficulty can be
removed rather easily, but the question is irrelevant for the
purposes of this paper.
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us to construct the proof we are seeking; and we need additional
help from some system of heuristic.

The problem will be solved if we can devise a program for
constructing chains of theorems, not at random but in response
to cues that make discovery of a proof probable within a
reasonable computing time. For example, suppose the rules of
inference were such as to permit any given proof chain to be
continued, on the average, in ten different ways. Then there
would bevten thousand proof chains four steps in length (10“).
The expected number of proof chains that would have to be
examined to find any particular proof by random search is five
thousand. Suppose, however, that LT responded to cues that
permitted eight of the ten continuations at each step to be
eliminated from consideration. Then the number of proof chains
four steps in length that would have to be examined in full,
would be only sixteen (2“), and the expected number would be
only eight.

The Program of LT

We wish now to describe explicitly the program of LT. The
program is given in full in Section III; hence, in the text we
shall refer frequently to Section III for detail. We shall refer
to each routine by its name (e.g., LMc for the matching routine),
but we shall need some additional notation to refer to the main
segments of routines that do not themselves have names. The
names of these segments are given in Section III in the column

marked "Seg." In each segment there is generally one main opera-

tion to be performed; and this main operation, or sub-routine,
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is usually surrounded by a number of procedural and control
operations that fit it into the larger routine. In ordinary
language, we would say that the "function™ of the segment is
to perform the main operation that is contained in it. For
example, the main operation in the third segment of LMc is LSby,
a substitution. The funetion of this segment in the matching
program is to substitute one sub-expression for another in one
of the expressions being matched. Hence, we will name the
segment after the main operation: LMc(Sby). Similar designa-
tions will be used for the other segments of routines. This
notation emphasizes the fact that each routine consists in a
sequence (or branching tree) of main operations that are con-
nected by procedural and test operations. Thus, an abbreviated
description of the matching routine might be given as:

LMc

T Perform diagnostic tests.

LMc Recursion of matching with next elements in logice
expression.

Sby Substitute the element y for the element x.
Sbx Substitute the element x for the element Yo

CN Compare variables in x and y.

Rp Replace connectives, if required and possible.

The Substitution Method

Let us take as our first example the very simple expression,
2,01, for which we have already given a proof. We suppose that,
when the problem is proposed, LT has in its theorem memory only
the axioms, 1.2 to 1.6, We wish to construct a proof (the one

given above, or any other valid proof) for 2.01.
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As the simplest possibility, let us consider proofs that

involve only the rules of substitution and replacement. We

may state the problem thus: how can we search for a proof of
the expression by substitution without considering all the valid
substitutions in the five axioms? We use two devices to focus
the search. Both of these involve "working backward"™ from the
expression we wish to prove — for by taking account of the
characteristics of that expression, we can obtain cues as to

the most promising lines to follow:

l. In attempting substitutions, we will limit ourselves to
axioms (or other true theorems, if any have already been proved)
that are in some sense "similar" in structure to the theorem to
be proved. The routine that accomplishes this will be called

the test similarity routine, CSm.

2. In selecting the particular substitutions to be made in
a theorem that has been chosen for trial, we will attempt to
match the variables in that theorem to the variables in the
expression to be proved. Similarly, we will try to use the rule
of replacement to match connectives. The routine in which these
various operations occur is called the matching routine, LMc.

Using these devices, the proposed routine for proving theorems-—

the method of substitution, MSb—works as follows. MSb(Sm): search

for an axiom or theorem that is similar to the expression to be
proved. MSb(Mc): when one is found, try to match it with the ex-
pression to be proved; if a match is successful, the expression
is proved; if the list of axioms and theorems is exhausted with-

out producing a match, the method has failed. (Reference to
Section III will show that there is another segment, MSb(NAW),
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that we have not mentioned. The function of this segment will
be discussed later in connection with the executive routine.)

To see in detail how the method operates, we next examine
the main operations, CSm and LMc, of the two segments of the
substitution method. For concreteness, we will carry out these
operations explicitly for the proof of the expression 2.01.
2,01 ? P 9% =P e9. =D

Test for Similarity, CSm. We must state what we mean by

similarity. We start from a common-sense viewpoint and regard
two propositions as similar if they ™look" similar to the eye

of a logician. 1In Section I we have already defined three
characteristics of an expression that can be used as criteria

of similarity. These are: X, the number of levels in the ex-
pression; J, the number of distinct variables in the expression;
and H, the number of variables in the expression.12

Applying these definitions to 2.01 (routines NK, NJ, and NH,

respectively), we find that K = 3, J = 1, and H = 3. That is,
2.01 has three levels, one distinct variable (p), and three variable

places. We may write this: D(2.01) = (3,1,3).

12The assertion is that two expressions having the same description
"look alike™ in some undefined sense; and hence if we are seeking
to prove one of them as a theorem, while the other is an axiom or
theorem already proved, then the latter is likely construction
material for the proof of the former. Empirically, it turns out
that with the particular definition of similarity introduced here,
in proving the theorems of Chapter 2 of Principia Mathematica about

one theorem in five that is stored in the theorem memory turns out

to be similar to the expression we are seeking to prove. It is

easy to suggest a number of alternative, and qui‘e different criteria
that would be equally symptomatic of "similarity". Uniqueness is of
no account here; all we are concerned with is that we have some
criteria that "™work™ --that select theorems suitable for matching.
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In the same way, we can write descriptions for the various
sub-expressions contained in 2,01 — in particular, the sub-
expressions to the left and to the right of the main connective,
respectively. We have for these: DL(2.01) = (2,1,2); and
DR(2.01) = (1,1,1).

Now, we say that two expressions, x and y, are similar if
they have identical left and right descriptions; i.e., if DL(x) =
DL(y) and DR(x) = DR(y). The routine for determining whether two
theorems are similar, CSm; consists of two segments: (1) csm(D),
a description segment, and (2) CSm(CD), a comparison of descrip-
tiéns. The description segment is made up of four description
routines, D, one each to compute DL(x), DR(x), DL(y), and DR(y).

The comparison segment is made up of two compare description

routines, CD, one of which compares DL(x) with DL(y), the other
DR(x) with DR(y).
A diagram of the hierarchy of principal sub-routines in

testing similarity will look like this:

In the case of 2.01, the segment MSb(Sm) will search the
list of axioms and theorems and will find that axiom 1.2 is similar
to 2,01:
1.2 ] PYDP et D
for it, too, has the descfiptions: pL(1.2) = (2,1,2); DR(1.2) =
(1,1,1). Moreover, 1.2 is the only axiom that has this descrip-

tion.
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Matching Expressions, LMc. Next we carry out a point-by-

point comparison between 2.01, the expression to be proved, and

l.2, the axiom that is similar to it. We start with the main
connectives, and work systematically down the tree of the logic
expressions — always as far as possible to the left. 1In the

present case, the order in which we will match is: main con-

nective (P = none), connective of left sub-expression (P=L), left
variable of sub-expression, (P=LL), right variable of sub-expression
(P=LR), and right sub-expression (P=R).

The matching routine is fairly complicated, consisting of
six segments, but not all segments are employed each time two
elements are matched. The first segment, LMc(T), and the initial
operations of most of the other segments, consist of tests that
determine whether the two elements to be matched are already
identical, whether they can be made identical by substitution
(1f one is a free variable) or by replacement (if both are con-
nectives), or — finally — whether matching is impossible. The
second segment, LMc(1Mc), is a recursion of the matching routine
with each of the next lower pair of elements in the tree of the
expression. This recursion segment operates only if the elements
to be matched in LMc are identical connectives (or have been

made so0).

The third and fourth segments, LMc(Sby) and LMc(Sbx), apply

the rule of substitution when the tests have shown this to be

appropriate. LMc(Sby), which is executed whenever E(x) is a free
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variable,13 simply substitutes the expression X(y) for E(x).
LMc(Sbx), which is executed whenever E(y) is a free variable, sub-
stitutes the expression X(x) for E(y). In both cases, of course,
substitution must take place throughout the whole expression in
which the free variable occurs. This is taken care of automatic-
ally by the process LSb. Also, since LMc matches X(x) to X(y),
LMc(Sby) has priority over LMc(Sbx), as a careful examination of
the test network will reveal.

The fifth segment, LMc(CN), reports the successful termina-
tion of the matching program if E(x) and E(y) are identical
variables, its failure if they cannot be made identical by sub-
stitution.

The sixth segment, LMc(Rp), operates when E(x) and E(y) have
different connectives. The segment replaces the connective in x
by the connective in y whenever this replacement is legitimate,
and then returns control to the recursion segment.

By virtue of the recursion segment, the matching routine
will attempt to match each pair of elements; if successful, will
proceed to the next pair; if unsuceessful, will report failure.
Hence, the routine will continue until it makes the theorem that
is being matched identical with the expression to be proved, or
until the matching fails,

The hierarchy of principal routines looks like this:

LRpvs
LRpav | = LMc

ijEssentially, & variable is free when no substitution has yet been

made for it. After any substitution it is bound and no longer

available for subsequent substitutions. As previously noted, all
ables in expressions stored in the theorem memory are free.

var
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Returning to our specific example of two similar expressions,
1.2 and 2.01, we carry out the matching routine as follows:

2.01 ' ? P 9 “P «9. =P
1.2 ! A v A .9. A
(We use A instead of P in 1.2 to indicate that the variable is
free (F).)

a. The main connectives agree: both are =.

b. Proceeding downward to the left, the connective is 4 in
2.01, but v in 1.2, To change the v to +, we must have (because
of the definition, 1.01), a - before the left-hand A in 1.2.

This we can obtain by making the substitution of -B for A in l.2.
Having carried out this substitution, and having then replaced
(-B v -B) with (B+ -B), we have the following situation:

2.01 ? P <9 =P o= =p

1.2 , ! B 3 «B .9. =B

c. Proceeding again to the left, we find B in 1.2, but p
in 2.01. We therefore substitute p for B in 1.2, and now find
(after recursion through the remaining two elements) that we have

a4 complete match: -

2,01 ? P? =P 9. =D
l.2n ] P* =P «3. =p

Thus, we have discovered a proof of 2.01 (in fact, precisely
the proof we gave before), which consists in-substituting the

variable -p for the variable in 1.2, and replacing the connective

v in 1.2 with 4.
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This completes our outline of the method of substitution as
a routine for discovering proofs in symbolic logic. The method
may be viewed as an information process that is composed of a con-
siderable number of more elementary information processes arranged
to operate in highly conditional sequences. Each of the main
components —the test for similarity routine, and the matching
routine — is made up, in turn, of sub-routines. The test con-
ditions that control the branchings of the sequences depend in
a number of instances upon the outcomes of searches through the
theorem memory. Hence, the method of substitution represents
a complex information process in the sense in which we have
"defined the term. Combining the two diagrams depicted above, we
can illustrate the hierarchy of the main operations that enter

into the substitution method:

The method is a heuristic one, for it employs cues, based on
the characteristics of the theorem to be proved, to limit the
range of its search; it does not systematically enumerate all
proofs. This use of cues represents a great saving in search,
but carries the penalty that a proof may not in fact be found.

The test of a heuristic is empirical: does it work?
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Moreover, the cues that are used in the method are not with-
out cost. For example, in order to limit matching attempts to
"similar™ theorems, theorems must be described and compared. The
net saving in computing time, as compared with random search,
is measured by the reduction in the number of theorems that have
to be matched less the cost of carrying out the search and compére
for similarity routines. Stated otherwise, cues are economical
only if it is cheaper to obtain them than to obtain directly the
information for which they serve as cues.

To be sure, we have found a proof for one proposition in
Principia; but how general is the substitution method? On examina-
tion of the 67 propositions in Chapter 2 of Princi ia, it appears
that some 21 can be proved by the method of substitution, in-
cluding for example: 2.01, 2.02, 2.03, 2.04, 2.05, 2,10, 2.12,
2,21, 2,26, 2,27, The remaining propositions evidently require
more powerful techniques of discovery and proof. It is evident,
for instance, that we must employ the rule of detachment.

The Method of Detachment

We will describe next the method of detachment, MDt, which, as

its name implies, incorporates the rule of detachment. The method,
of course, is not synonymous with the rule, but includes also
heuristic devices that select particular theorems to which the rule
is applied.

Let us review the principle of logic that underlies the

method. Suppose LT must prove that expression A is a theorem;

and assume “hat there are in the theorem memory two theorems, B
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and BsA. Then, by application of the rule of detachment to B and
BsA, A is derivable immediately.

We can generalize this procedure by combining matching (sub-
stitution and replacement) with detachment. Assume that the
theorem memory contains B"™ and B' 4 A'; that A is obtainable
from A* by matching; and that B'is obtainable from B" by matching.
Then we can construct a proof of A as follows: (1) By matching
with B", B* is a theorem. (2) Since B'9A' is also a theorem,
it follows by detachment that At is a theorem. (3) By matching
with A', A is a theoren.

This settles the problem of constructing a valid proof by
the method of detachment. From the standpoint of the discovery
of a proof employing this method, the trick lies again in
narrowing down the search for B'$A' and B", so that these do not
have to be sought through a very large scale trial-and-error
search and substitution program.

Structure of the Detachment Method. The basic structure

of the detachment method is quite similar to that of tpe sub-
stitution method, for both methods utilize the same basic
operations. The first two segments of the detachment method,
MDt (SmV) and MDt(SmCt), carry out searches for similar ex-
pressions, in a way that will be indicated more precisely below.
The next segment, MDt (Mec), carries out a matching of any ex-
pPression so found with the theorem to be proved. If the
matching is successful, a new problem is created by the segment
MDt(F). This problem is then attacked, in the final segment,

MDt (MSb), by the method of substitution.
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Again, designate by A the expression to be proved. In MDt(SmV)

we search the theorem memory for theorems whose right sides are

similar (by the test, CSm, descrived previously) to the whole
expression A, If we find such a theorenm (call it T), we go to
segment MDt(Mc), and apply the matching operation to the right
side of T and to A, If we are successful in the mateching, we
find the left side of T, MDt(P); and seek to prove by the method
of substitution that it is a theorem, MDt(MSb). For if the left
side of T is a theorem and T is a theorem, then by detachment,
the right side of T is a theorem. But A can be obtained from the
right side of T by substitution, hence is a theorem. (Note that
a check is made to see that T has 4 for a connective.)

Contraction. If the detachment method fails to find a proof

in the manner just described, a new attempt is made by means of
the second segment, MDt(SmCt), employing a different criterion of
similarity from the one we have used thus far. If the theorem

is similar, the method proceeds with the matching segment exactly
as before.,

To see what is involved in this generalized notion of
similarity, let us consider two expressions, A and A', with different
descriptions. If A has more levels and variable places than At,
it is still possible that A is derivable from At by substitution;
specifically, by substituting appropriate molecular expressions
for the variables of A, For example, take as A the expression:
2.06 ? P4Q «=: Q4r .+4. par,
for which we have DL(2.06) = (2,2,2), DR(2.06)= (3,3,4); and take

as A' the expression:

A? ? a .9. byc
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for which we have DL(A') = (1,1,1), DR(A') - (2,2,2).

If in A' we substitute p2q for a, g=r for b, and p=r for c,
we obtain 2,06, Operating in the reverse direction, if we
contract 2.06 by making the inverse substitutions, we obtain At.
We can therefore refer to A? as M2,06 viewed as contracted",

Since the purpose in searching for similar theorems is to
find appropriate materials to which to apply the matching routine,
there is no reason why we should not use this more general notion
of similarity if it proves effective in finding materials that
are useful,

In general, what parts of an expression should be considered
as units in the search for pProofs is not a "given" for the problem
solver. LT makes an explicit decision each time it looks for
similar expressions as to what subexpressions will be taken as
units, 1In contracting 2.06, a decision has been made that the
elements p, g, and r are too smali, and that more aggregative
elements, e.g., (p»q) = a, should be perceived as units.

Examination of the routines for describing expressions
(NH, NK, NJ) will reveal that these routines in fact count units
rather than variables. Normally, the variables are the units used
in description, for VvV precedes CSm in every program except MDt,
In the latter program, however, it is sometimes useful to view

expressions as contracted, by means of VCt.

Example of Proof by Detachment. To illustrate the method of

detachment, let us carry out explicitly the proof of 2.06:

2,06 ? P9Q ¢4: Qor .=. par
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The reader may verify that this theorem cannot be proved
by substitution in the axioms and earlier theorems. Moreover,
the detachment method without econtraction will also fail, for
there is no theorem whose right side is similar to 2.06. However,
we have already seen that when we contract 2.06, we obtain:

At ? a4 9. b9 ¢
where psq has been contracted to a, gq#r to b, and par to c. We
now have DL(A') = (1,1,1) and DR(A') = (2,2,2), descriptions
that are identical with the descriptions of the sub-expressions
of the right side of 2.04.

2.04 L A 3. B>5C :9: Ba. A a4 C

At a 2. baec

Having selected 2.04 by use of the routine MDt(SmCt), we now

proceed to match its right side with 2.06 in segment MDt(Mc):

2.04 3 A <. B -» C ta: B J. A - C
2.06 ? ‘ P#Q +9: Q3T 9. PpIT
2,04" : . Q9T «%: P3G ede PIT oi9ie PFQ o9 QIT o9 PIT

We have now created a new problem to replace the original one:
To prove that the left side of 2.04' (the part underscored) is a
theorem. We apply the method of substitution, MDt(MSb). The
search of the theorem memory discloses 2,05 to be similar to the
left side of 2.04', and we proceed to match them:
2,04tL ? Q9T «9: P9Q e+ pPaIT
2,05 ! " A9B +9: CoA .a. CaB

It is easy to see that with the substitution of q for A, r
for B, and p for C, the matching will be successful. Hence we

have B (2.05 with the indicated substitution), and BasA (2.04%),
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from which A (2.06) follows by the rule of detachment.

The diagram below summarizes the principal routines incorporated
in the method of detachment. A comparison of this diagram with
the one for the substitution method shows clearly that both
methods rest on the same component processes, with minor modifi-
cations and new combinations and conditions. The sole new process

involved in detachment is the viewing of theorems as contracted.

Vv

Vit \

MDt
CSm
LMc

MS5b

The Chaining Method

A number of expressions that do not yield to the method of
substitution ean be proved by the method of detachment. We shall
add an additional method, however, to the repertoire available to

LT. We shall call this method chaining, MCh. Like the methods

previously described, chaining involves heuristic procedures which
we shall consider first,

Theorem 2.06, which we have just proved, embodies one form of
the principle of the syllogism (2.05 is another form of this
principle). Now suppose Tl’ (p#q) is a true theorem, and T2,

(q9r) is another true theorem. Theorem 2.06 is of the form:

Tl +9. T 3 E
where E is (psr), an expression not known to be true. By detach-

ment, from 3 Tl and ¢ T1¢9:To4E, we get I TyaE. By a second

detachment, from 3 T, and 8 T,9E, we get 1 E. Hence, if we know

pP+q and p4r to be true, we can construct a proof of psr by means
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of two detachments with the use of 2,06, Instead of carrying
through this derivation explicitly in each instance, we simply
construct a program that makes direct use of the transitivity of
syllogism, This proof method is the basis for chaining.

Suppose that we wish to prove A-C. We search for a theorenm,
T (with + for a connective) whose left side is similar to A,
using the segment MCh(SmF). We match the left side of T with A,
MCh(McF), and if we are successful, we have then proved a theorem
of the form AqB, for T, as modified by matching, is of this form.
We check, first, in segment MEh (McR) whether we can simply
match B to C. If we succeed, we have proved the theorem. If we
fail, we now construct, by segment MCh{(P), the expression BaC,
and attempt to prove this expression by substitution, MCh(MSb).
If ie are successful, we now have a chain: A+4B, B9C. Then by
syilogism, as indicated above, we obtain A4C, the expression we
wished to prove.,

The procedure just described is chaining forward. Alter-
natively, we may chain backward. That is, to prove A4C, we may
search for a theorem of the form B4C; then try to prove A4B by
substitution,

Proof by the chaining method is illustrated by:

2,08 ? PP
A search for theorems that have left sides similar to 2.08 yields

1.3, 2.02, and 2,07. The latter is:

2.07 t Pe2+PVD
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If we take 2.07 as the (A9B) of the scheme given above,
then B is (pvp). Two theorems have left sides similar to B: 1.2
and 2.01. An attempt to match the left side of 2.01 to the
right side of 2.07 will be unsuccessful, but the matching is
immediate with 1,.2:
2.07 t Pe+DVP
1.2 3 PVYPedeP
Hence we can take 1.2 as the (B4C) of the chaining method. We
now form (A3C) by joining the left side of 2.07 to the right side
of 1.2 by . The result is 2.08:
2.08 PeeDP

The chaining method is summarized by the following diagram,
which shows that the method again makes use of tests for
siﬁilarity, matching, and substitution:

~

LM¢ ——— MCh

CSm

MSb

The Executive Routine

It remains to complete the specification of LT in two
directions; first, to assemble the three methods that have been
described into a coherent program; and second, to show how the
information processes in terms of which LT has been described here
can be specified precisely in terms of the elementary processes
listed in Section I, The latter task is carried out in detail
in Section III. We will turn our attention here to the former,

which is embodied in the executive routine, Ex.
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In its first segment, Ex(R), the executive routine reads a
new expression that is presented to it for proof, and places it
in a working memory.lh In the next three segments, Ex(MSb),
Ex(MDt), and Ex(MCh), successive attempts are made to prove the
expression by the methods of substitution, detachment, and
chaining, respectively., If a proof is obtained by one of these
methods, therexecutive routine writes the proof, Ex(WP); and
stores the newly-proved theorem (changing all its variables to
free variables) in the theorem memory, Ex(ST).

To explain what happens if the three methods are unsuccess-
ful, we have to take up some details that were omitted above.

These have to do with the creation of subsidiary problems and with

stop rules.

Subsidiary problems. Both detachment and chaining are two-

step methods. Suppose we wish to prove A. 1In detachment, we
try to find a theorem, B9A, and if we are successful, we then try

to prove B. The task of proving B we may call a subsidiary

problem,

Suppose we wish to prove asb. In chaining, we try to find a
theorem, a+c, and if we are successful, we then try to prove cab.

The task of proving c+9b is also a subsidiary problem.

lLCertain segments of Ex, in particular Ex(R), Ex(WP), Ex(ST) and

Ex(WNP), are not written formally in Section III in terms of the
primitives but are simply indicated by parentheses. It would be
rather simple to formalize them, but this would further lengthen
the description of the program.
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Within both the»detachment and chaining methods, only the
method of substitution is applied to the subsidiary problem. 1If
that method fails, failure is reported for the main problem,

But before control is shifted back to the executive routine, the
main element of the subsidiary froblem is stored in the problem
list, P, in the storage memory. (The operation that stores the
problem in the problem list is the operation SEN that can be
found in segment MDt(P) and segment MCh(P).)

When the three methods have failed for a given problem, the
executive routine stores it in the inactive problem list, Q. It
then selects from the problem list, P, an expression that is, in
a certain sense, the simplest — specifically, an expression with
the smallest possible number of levels, K, Ex(CK). It erases
this new subsidiary problem from P; checks to make certain it does
not duplicate one previously attempted, Ex(CX); and then tries

to solve this subsidiary problem by the methods of detachment and

°h8ining-ls This sequence is repeated until some subsidiary
problem is solved (in which case the main problem is also solved),
or until no problems remain on the problem list, or until the
other stop rule, to be described, comes into operation. In the
latter two cases, the routine reports that it is unable to prove

the theorem, Ex(WNP).

15

There is no need to attempt to prove the subsidiary problem by
substitution, since an unsuccessful substitution attempt was made
immediately before the expression was stored in the subsidiary
problem list,
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The check to prevent duplication of subsidiary problems,
Ex(CX), is handled as follows: for each problem that is selected
from 1ist P by Ex(CK), a check is made, by Ex(CX), against all
expressions in the inactive problem list, Q, and if the new
problem duplicates any expression found there, it is dropped.
The main operation of this segment, CX, applies the same basic
tests of identity of elements that are applied in the matching
program, but does not modify the expressions to make them match.

Stop Rules. Since all proof methods may fail, even if the

expression given to LT is a genuine theorem, the executive
routine needs a stop rule. On'® stop rule is provided by the
exhaustion of list P, but there is no guarantee that the list
will ever be exhausted. A second stop rule is provided by an
operation that measures the total amount of "™work™ that has been
done in attempting to prove a theorem, and that terminates the
program with a "no proof" report when the total work exceeds a
specified amount. The first operation in the substitution routine,
NAW, tallies one for each time the routine is used. This tally
is kept in a special location, W, in the storage memory. The
executive routine, just before it seeks a new subsidiary problem,
checks the cumulative tally in this register, Ex(CW), and if the
tally exceeds a given limit, terminates the program. Since the
substitution routine is used in each of the methods, the number

of substitutions attempted seems to be one reasonable index of

the amount of work that has been done.
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This stop rule operates as a global constraint on the total
work applied in tfying to prove a single theorem. The rule does
not govern the direction in which this effort is expended. The
latter is determined by the priority rule previously described
for selecting subsidiary problems from the problem memory and by
the other elements of LT's program.

Learning Processes

The program we have described is primarily a performance
program rather than a learning program. But, although the program
of LT does not change as it accumulates experience in solving
problems, learning does take place in one very important respect.
The program stores the new theorems it proves, and these theorems
are then available as building blocks for the proofs of sub-
sequent theorems., Thus, in the theorems used as examples in this
paper, 2.06 was proved with the aid of 2.05 and 2.04, and 2.08
was proved with the aid of 2.07. Without this form of learning

it is doubtful whether the program would prove any but the first

few theorems of Chapter 2 in a reasonable number of steps.
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III

The Complete Program
for the Logic Theorist

This Section is divided into two parts. The
first part constitutes the program as described in
the text, including the following routines: Ex;

MCh, MDt, MSb; LMc, LSb, LRpav, LRpvs, VV, VCt; CX;
CSm, CD, D, NK, NH, NJ. These routines are preceded
by a list of the most important primitive IP's —
those that are used in several routines. Following
each routine is a supplementary list of primitive
IP's used in the definition of that routine.

The second part of this Section consists of
routines for five IP's —those Store instructions
that are marked with asterisks (#) —which up to
this point have been treated as primitives.

Principal Primitive Instructions

A OPER L CR B

B b Branch to b (9b).
BHB In higher instruection, sb.
BHN In higher instruction, <next.

FEF xy b Find the first E in A(x) and
put in y; if none, 9b.

FEN xy b Find the E in A(x) next after
E(y), put in y; then »b. If
none (end of 1list), 4next.

FL Xy Find EL(x) and put in y; if
none, leave y blank,

FR xy Find ER(x) and put in y; if
none, leave y blank.

PE xy Put E(x) in E(y); E(x) remains.

S x Store E(x) back in A(x) (match

on P); if not there, store E(x)
at end of A(x).

SEN xy Store E(x) as next E in A(y);
E(x) now last item in A(y).
#5X xy Store a copy of X(x) at (new)
A(y)o E(X§ = M, ‘
TC x b If C(x) = 4 (implies), =b.
TV x b If E(x) = V, 9b.




A OPER L CR B

Ex

(Read problem X)
(Put EM(X) in 1)
-MSb
A =MDt
=MCh
SEN
CWG
B FEF
NK
C -FEN
NK
CKG
PE
PK
B

NDNONNYH T b et
N
o 0O U ;D o oaQ

E
FEF
CX
FEN
B

[} o = (=
OH+HOH
w\Www 'y

> =t o

(Write proof.)
(X(1) a theorem)
(stop)

H (Write:no proof)

Seg.

MSb
MDt
MCh

Cw
CK

CX

WP
ST

WNP
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Executive routine

X(1) is finished.

Find problem with
lowest K.

Remove duplicates
of previous problems.

Succeeds in proving P.

Fails to find proof.

(stop)
Primitives

CKG Xy b

CWG b

E Xy

If K(x)>K(y), 9b.
If W(work done) > limit, =b.
Erase E(x) in A(y).

Note: There are six IP's in the executive routine
that are not formally defined in LT. These are
written in parentheses above: read problem, find
problem and put in working memory 1, write proof,
store expression as theorem, write "no proof™,
and stop.
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A _OPER L CRB Seg.

Chaining method
If can't prove X(x) by
chaining, =b; Store new
problems in P.

MCh

]
o

-TCo
‘A
FL
FR
FEF
A -TCa
'A')
SX
FL
FR
-CSm
-LMc
~CSm
-LMe¢
FEN
BHB

D T C(x) must be 9.

W -

c T must have C = 4.

Copy, to work on T,

SmF
McF
SmB
McB

HoOMMDUVMHERFRWWWAAHH T

W NN O P
L e NN ol

Find next T and repeat.

5 OO0 W

PE
PE
-LMc
F AM

PCe
S
SEN
SXL
SXR
MSb
G BHN

Put E(2) and E(6) in
proper working memory.

Ut 2\

G McR
S Create EM for new X.
Fix connective.
Store parts.

NN 9NN ON
~3v

c MSb

Primitives

PCs x Put C{(x) = + (implies).
#SXL x ¥y Store X(x) in A(y) as XL(y).
#5XR xy Store X(x) in A(y) as XR(y).
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A OPER L CR Seg.
Detachment method
If can't prove X(x) by
detachment,+4b. Store
MDt x new problems in P,
FEF T1 T
A TCs 1 T must have C=a,
Vv 1l
FR 12
LA L SmV
CSm L 2
VCt L SmCt Change view.
CSm L2
B FEN T 1 Find next T and repeat.
C BHB
D SX 13 Copy to work on T.
FR 34
LMc L L Mc
FL 35 P
SXM 5 6 Create new X.
S 6 Store away fixed ME.
SEN 6 P
MSb 6 MSb
BHN
Primitives
#3XM x y Store X(x) at (new) A(y) as
main expression.
A OPER L CR Seg.
Substitution method
If can't prove X(x) by
MSb X substitution, 9b.
NAW NAW Count one unit of work.
v L Sm
FEF T1l
A VV 1
CSm L1
B FEN T1 Find next T and repeat.
C BHB
sX 12 Mc
LMc 2 L
BHN
Primitives
NAW Add one to W (work done).




A OPER

CR

LMc

»

o

CGG
CGG
TV
TV
-CC
FL
FL
LMc
FR
FR
LMc
BHN

A TV
-TF
B NSGG
FM
LSb
BHN

C T¥

D -TF
NSGG
FM
LSb
BHN

E TF
-TV
~CN

BHN

F <LRpsv
LRpvs
LMc
BHN

H BHB

Q

waorrFotrrrrorHoO
FEREWbDODHO

aleNeNeNel Qi
o

Qwn

ot

Primitives

Qe

OO

oxw

EXmQ

Seg.

LMc

Sby

Sbx

CN

Rp
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Matching routine

Match X(x) to X(y); if
cantt, 9b.

Now G(x) = G(y).

Mc left sub-expression.

Mc right sub-expression.

Assures Sb everywhere,

Assures Sb everywhere.

LEp's are self-testing.

cc
CGG
CN
FM
NSGG
TF

MMM NMMN

dY4dd

T

If C(x) = C(y), =»b.

If G(x) 2> G(y), +b.

If N(x) = N(y), +b.

Find EM(x) and put in y.
Subtract G(x) from G(y).
If E(x) is free, +b.
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A _OPER L CR B Seg.
Substitution routine
Substitute X(x) for
LSb X v 2 E(y) (=V) in X(z) (=M).
FEF L1 F F
A CPS 11 B E(1) must belong to X(x).
CN 1 ¢C G
B FEN L1 A
C FEF R 2 F Sb Search through X(z).
D ~CN 2 C E
PE L3
NAGG 2 3 Gt*s add in Sb.
SXE 32
E FEN R 2 D Find next E(z), repeat.
F BHN
G AN L LSb
LShb 4 CR
B c
Primitives
AN x Assign an unused name to E(r).
CN x b If N(x) = N(y)sb.
CPS xy b If E(x) subelement of E(y)=b
(p(x)2 P(y)).
NAGG x ¥y Add G(x) to G(y); result in
G(y).
*SXE x vy Store X(x) in A(y) in place
of E(y) (=V).
A OPER L CRB Seg.
Replacement of - with v,
If C(x)=3, replace
LRpasv x b . with v; if not +b.
TC9 L A T
BHB
A PCv L Pv Fix E(x).
S L
FL L1 Fix EL(x).
NAG 1l
S 1
BHN
Primitives
NAG x Add one to G(x)
PCv x Put C(x) = v.




A _OPER L C R

B

LRpva

-TCv
FL
TGG

-TV

-TSb

A BHB

ol ool = o8 o B

B PE
NAG
FM
LSb
FL

C PCo
S
NSG
g
BHN

HHEEEHERDONO
HHW N

Prinitivés

wea » |

Seg.

Sb

P
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eplacement of v with 4.
If C(x) = v and G(EL(x))
20, replace v with <;

if not -)b-

Fix x.

FM
NAG
NSG
PC
TGG

HHMMNN

S T T T

Find EM(x) and put in y.
Add one to G(x).
Subtract one from G(x).
Put C(x) = 4

If G(x)> o0, ab.

A_OPER L CR

I

vv

FEF
A PUB
-TV
PU
B 8
FEN
BHN

Bt b e g

Primitives

Seg.

View variables as units.

Erase o0ld unit.

Find next E and repeat.

PU x
PUB x

Make E(x) a unit, (U).
Make U(x) blank.
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A OPER L CRB Seg.
View as contracted
Make units of binary
expressions and
VCt x isolated variables
TV L C T
FL L1 VCt
FR L 2
TV 1 B
VCt 1 Recursion
TV 2 E
A VCt 2 Recursion
PUB L
S L
BHN
B TV 2 D
PUB 1l ct Blank V's of Ct unit
S 1
PUB 2
S 2
TN L c Give X(x) a name if needed
AN L
C PU L
S L
BHN
D PU 1 LA Make left (isolated)
S l variable a unit
B A XR(x) still to be done.
E PU 2
S 2 Make right (isolated)
BHN variable a unit.
Primitives
AN x Assign E(x) an unused name.

(See VV for PU and PUB)

TN x b

If E(x) has a name 5b.




A _OPER_L C

R

CX

]
by

CGG
CGG
TV
TV
-CC
FL
FL
-CX
FR
FR
-CX
BHB

o

wort+Harrar o
FEREWODDLODHO

A -TV C
-CN LC
BHB

B BHN

Primitives

o w > w o

Seg.

CX

CN
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Compare expressions

Compare X(x) with X(y); if
they match, 9b,

G(L) = G(R), otherwise B.

c(L) = c(R)
Recursion down tree of
expressions,

L and C both variables;
with identical names,

(For CC, CGG, and CN, see LMc)

A OPER L CRB

CSm Xy b
FL L1

FR L 2

D 1

D 2

FL C3

FR C 4

D 3

D 4

-CD 13 A
-CD 2 4 A
BHB

A BHN

Seg.

CcD

Similar expressions test

If DL(x) = DL(y) and
DR(x) = DR(y), +b.




A OPER

CDh

b

-CK

-CJ

-CH
BHB

A BHN

[l

a0 M

S
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Seg.
Compare descriptions
If K(x) = K(y), J(x) =
J(y), and H(x) = H(y)sb.

Def: If K{(x) = K(y)ab.,
Def: If J(x) = J(y)»b.
Def: If H(x) = H(y)sb.

A OPER

L

NK
NJ
NH
BHN

A OPER

MM oMM

t

CR

NK

b

TU
TB
FL
NK
FR
NK
CKG
PK
A NAX
B BHN

C PK
B

el R R ol el ol o

Primitives

[l o

Seg.

Describe

!

Seg.

Count levels

NK

CK
KL

KR

CKG
NAK
PK
TB
TU

KX MM

If K(x)> K(y),sb.
Add one to X(x).
Put K(x) in K(y).
If E(x) is blank +b.
If E(x) is a unit +b.
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A OPER L CRB Seg.
NJ x Count distinct variables
AA 1 List for counted-V.
FEF L 2 E F Find first E of X(x).
A -CPS 2 L D .
-TU 2 D
FEF l1 3 C Find first V of list.
B CN 23 D CN
FEN 13 B Find next V of list.
C SEN 21
NAJ L A
FEN L 2 A Find next E of X(x).
E BHN
Primitives
AA x Assign an unused list to A(x).
CN xy b If N%x) = N(y),9b.
CPS xy b If E(x) subelement of E(y),+b.
(P(x) » P(y)).
NAJ x Add one to J(x).
TU x b If E(x) is a unit,sb.
A OPER L CR B Seg.
NH X Count variable places
FEF L1 C
A =CPS 1L B
-TU 1 B
NAH L
B FEN L1 A
C BHK
Primitives
CPS xy b If E(x) subelement of E(y)4b.
(P(x)> P(y)).
NAH x Add one to H(x)
W x b If E(x) is a unit,+b.
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- PART 2: Reduction of procedural processes l}%

The Store instructions that rewrite expressions
in various ways can be reduced to processes more
like the rest of the primitive set. The new primi-
tives required are (a§ two (PA and CP) which belong
to types of operations already considered, and (b)
four of a new type to manipulate the P sequences.
The latter operations insert and delete subse-
quences from the front #nd of a given sequence. Thus
if P = LRRL and Pt = LERLRLR, then P™ = P' - P = RLR
and P" + P = LRRLRLR., Observe that subtraction can
only be performed when the subtrahand is an initial
segment of the minuend, and alsc that addition is not
commutative. All these routines involve bringing in
the elements, one by one, modifying them and storing
them in the new list.

Store a copy of X(x) at Store X(x) in A(y) in
(new) A(y) (E(x)=M). place of E(y) (E(y)=V)
(take E(x) from w.m.)
A OPER L CRB

A OPER L CRB

SX X y
SXE Xy
AA C
FEF L1 B FEF L1 D
A PE 1 2 A CP L1 E
PM C 2 CPS 1L C
S 2 PE 12
FEN L1 A B PM c 2
B BHN HSPP L 2
_ - HAPP C 2
- - S 2
Store X(x) at (new) C FEN L1 A
A(y) as main expression D BHN
A OPER L CRRB E PE L 2
B B
SXM XYy
CAA C
FEF L1 C
A CPS 1 1L B
PE 1l 2
PM C 2
HSPP L 2
S 2
B FEN L1 A

C BHN
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Store X(x) in A(y) Store X(x) in A(y)
as XL(y). as XR(y).
A OPER L CRB A OPER L CRB
SXL Xy SXR b 4
FEF L1 C FEF L1 C
4 CPS 1L B A CPS 1L B
PE 1 2 PE 1 2
PM c 2 PM C 2
HSPF L 2 HSPP L 2
HAPL 2 HAPR 2
HAPP C 2 HAPP C 2
S 2 S 2
B FEN L 1 A B FEN L1 A
C BHN ¢ BHN
Primitives
AA Assign an unused list to A(x).

x

CP xy b I1f P(x) = P(y) »b (locates
"same™ element even though V,
G, etc. have been modified).

CPs if E(x) subelement of E(y),=b

. (P(x) 2 P(y)).

™
g
o

HAPL x Add a Left to front of P(x).

HAPR x Add a Right to front of P(x).

HAPP x y Add P(x) to front of P(y).

HSPP x ¥y Subtract P(x) from front of
P(y).

PA xy Put A(x) in A(y).
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Conclusion.

In this paper we have specified in detail an information
processing system that is able to discover, using heuristic
methods, proofs for theorems in symbolic logic. We have con-
fined ourselves to description, and have not attempted to
generalize in abstract form about complex information processing.
Because of the nature of the description, involving considerable
rigor and detail, it may be useful to set out in conclusion the
main features of LT, especially as these appear to reflect
basic characteristics of complex systems.

First of all, LT can be specified at all only because its
structure is basically hierarchical, and makes repe;£ed use‘of
both iteration and recursion. So true is this, that one of
LT*s main features, the use of a problem-subproblem hierarchy,
is hardly visible in the program at all.

LT offers no gu&rantee of finding a proof; on the other
hand, it brings to its task a number of different heuristic
methods for achieving its goals. All of these methods are
important in making LT sufficiently powerful to find proofs in
most cases, and to fipd them with a reasonable amount of com-
putation, but not all of them are essential., Without chaining,
for instance, LT could still function. The methods MSb and
MDt still provide it with ways to prove theorems —and even some

theorems more easily provable by MCh would yield to the more

directly "brute force"™ approach of the other two.






