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Abstract

The Semantic Web is well recognized as an effective infrastructure to enhance
visibility of knowledge on the Web. The core of the Semantic Web is ontology,
which is used to explicitly represent our conceptualizations. Ontology engineering
in the Semantic Web is primarily supported by languages such as RDF, RDFS and
OWL. This chapter discusses the requirements of ontologies in the context of the
Web, compares the above three languages with existing knowledge representation
formalisms, and surveys tools for managing and applying ontologies. Advantages
of using ontologies in both knowledge-base-style and database-style applications
are demonstrated using three real world applications.

1 Introduction

In philosophy, ontology studies the nature of being and existence. The term ‘ontology’
is derived from the Greek words “onto”, which meansbeing, and “logia”, which means
written or spoken discourse. Smith [1] reviewed the studies on the metaphysical as-
pect of ontologies since Aristotle’s time, and summarized the essence of ontology as
follows: “provide a definitive and exhaustive classification of entities in all spheres of
being”. In contrast to these studies, Quine’sontological commitment1 [2] drove on-
tology research towards formal theories in the conceptual world. Computer scientists
further extended Quine’s work into a new interpretation of ontology as “a specification
of a conceptualization” [3].

In computer science and information science, knowledge reuse is facilitated by the
use of explicit ontology, as opposed to implicit ontology, i.e., knowledge encoded into
software systems [4]. Hence, appropriate ontology languages are needed to realize
explicit ontologies with respect to three important aspects:

• Conceptualization.The language should choose an appropriate reference model,
such asentity-relationship modelandobject-oriented model, and provide corre-

1That is, one is committed as an existing thing when it is referenced or implied in some statements, and
the statements are commitments to the thing.
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sponding ontology constructs to represent factual knowledge, such as defining
the entities and relations in a domain, and asserting relations among entities.

• Vocabulary. Besides the semantics, the language should also cover the syntax
such as symbol assignment (i.e., assigning symbols to concepts) and grammars
(i.e., serializing the conceptualism into explicit representation).

• Axiomatization. In order to capture the semantics for inference, rules and con-
straints are needed in addition to factual knowledge. For example, we can use
rules to generate new facts from existing knowledge, and to validate the consis-
tency of knowledge.

On the other hand, web based knowledge sharing activities demand that human
and/or machine agents agree on common and explicit ontologies so as to exchange
knowledge and fulfill collaboration goals. In order to share knowledge across different
communities or domains, three requirements should be considered when developing
explicit ontologies:

• Extensibility. In the context of the Web, ontology engineers should be able to
develop ontologies in an incremental manner: reusing as many existing popular
concepts as possible before creating a new concept from scratch. For exam-
ple, the concept “woman” can be defined as asub-classof an existing concept
“person” in WordNet2 vocabulary. This requirement demands an expressive
common reference model as well as distributed symbol resolution mechanisms.

• Visibility. Merely publishing knowledge on the Web does not guarantee that
it can be readily understood by machines or human users. In order to make
knowledge visible on the Web, additional common ontological ground on syn-
tax and semantics is required between information publishers and consumers.
This requirement is especially critical to machines since they are not capable of
understanding knowledge written in an unfamiliar language.

• Inferenceability. An ontology not only serves the purpose of representation, i.e.
enumerating factual domain knowledge, but also serves the purpose of compu-
tation, i.e., enabling logical inference on facts through axiomatization. Hence,
ontologies on the Web should provide constructs for effective binding with log-
ical inference primitives and options to support a variety of expressiveness and
computational complexity requirements.

The Semantic Web inherits the power of representation from existing conceptu-
alisms, such asSemantic Networks[5], and enhances interoperability at both syntactic
and semantic levels. It can function as a distributed database or a collaborative knowl-
edge base according to application requirements. In particular,extensibilityis offered
not only by the underlying URI based vocabulary but also by the simple graph data
model of Resource Description Framework(RDF) [6]. Visibility is offered by web
based publishing mechanisms (i.e. “Anyone Can Make Statements About Any Re-
source”) which uses URI based vocabulary, XML syntax, RDF graph data model and

2http://wordnet.princeton.edu/
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some common ontology languages.Inferenceabilityis offered by the ontology con-
structs fromRDF Schema(RDFS) [7] ontology language andWeb Ontology Language
(OWL) [8] which connect knowledge statement to logical inference at different levels
of expressiveness and computational complexity. Formally defined semantics of RDFS
and OWL plays an essential role in inferenceability.

This chapter surveys the current deployment status of Semantic Web ontologies
and corresponding tools, and draws a practical road map on using ontologies in the Se-
mantic Web. Section two reviews the evolution of Semantic Web ontology languages
by comparing them with existing approaches in database and knowledge representa-
tion literature. Section three surveys existing tools for creating, publishing, extending
and reasoning with Semantic Web ontologies. Section four further surveys storage and
integration tools for applying Semantic Web ontologies. Section five details three ap-
plications to demonstrate the use of ontologies in building knowledge-base-oriented
and database-oriented applications in the Semantic Web with respect to the three re-
quirements.

2 Ontologies in the Semantic Web

Ontologies play an important role in fulfilling semantic interoperability as described
in the seminal article on the Semantic Web [9]. W3C has standardized a layered stack
of ontology languages that possess the advantages of both knowledge representation
(KR) formalisms and conceptual modeling methods for databases. Standardization
encouraged creating new ontologies and porting existing ontologies into the Semantic
Web.

2.1 Evolution of Semantic Web Ontology Languages

In the Semantic Web layer cake (see Figure 1), the semantic part is enabled by a stack of
evolving languages: Resource Description Framework (RDF) [6] offers a simple graph
reference model; RDF Schema (RDFS) [7] offers a simple vocabulary and axioms for
object-oriented modeling; and Web Ontology Language (OWL) [8] offers additional
knowledge base oriented ontology constructs and axioms.

Figure 2 shows similar evolutionary trends among three paradigms: KR formalisms,
conceptual modeling methods for databases, and the Semantic Web. The built-in se-
mantics increases in each paradigm along the vertical axis driven by the demand of
porting implicit semantics into explicit representation. For example,Semantic Net-
works, developed between the mid-60s and early 70s, are highlighted by their simple
but powerful relational reference model in supporting conceptualization;Frame Sys-
tems[10], which emerged in the mid-70s, incorporate additional constructs that model
classes and instances in a user-friendly manner;Description Logics[11], which came
out in the 80s as descendents of Semantic Networks and Frame Systems, are high-
lighted by their formal semantics and decidable inference. Similar evolutions can be
observed in the development of the databases and the Semantic Web. RDF was pro-
posed in 1998 as a simple graph model, followed a year later by RDFS. Independent
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Figure 1:The layer cake: enabling standards and technologies for the Semantic Web. (Adapted
from Tim Berners-Lee’s slides at http://www.w3.org/2002/Talks/04-sweb/slide12-0.html.)

contemporary efforts in DARPA Agent Markup Language (DAML)3 and Ontology
Inference Layer (OIL) [12] merged into DAML+OIL [13] in 2001 and finally evolved
into OWL, which was drafted in 2002 and became a W3C recommendation in 2004.

Figure 2: A comparison of knowledge representation formalisms (KB), conceptual modeling
methods in databases (DB), and Semantic Web ontology languages (SW-onto).

The rapid evolution of Semantic Web ontology languages was enabled by learn-
ing from the experiences in developing existing knowledge representation formalisms
and database conceptual models, and by inheriting and extending some of their useful
features. In particular, the Semantic Web significantly improves visibility and exten-
sibility aspects of knowledge sharing in comparison with the previous approaches. Its
URI-based vocabulary and XML-based grammar are key enablers to web scale knowl-
edge management and sharing.

3http://www.daml.org/
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2.2 A Comparison of Ontology Constructs

In order to gain insight into built-in semantics, Table 1 summarizes ontology constructs
in RDF/RDFS and OWL and compares them with other formalisms in knowledge base
(KB) as well as formal models in databases (DB).4

Table 1: A comparison of ontology constructs. Cat-1 divides constructs into those describing
either a class, a property (i.e., relation), or an individual (i.e., class instance); and Cat-2 divides
constructs into those describing concepts/relations or specifying axioms. Table cells are marked
to show how a ontology construct is supported by an ontology language or formalism: ‘X’
means fully supported; ‘()’ means supported with restriction; ‘-’ means not supported; ‘O’ means
optionally supported; and literal annotations the relations between RDF/RDFS and OWL.

2.2.1 RDF

RDF offers a simple graph model which consists of nodes (i.e. resources or literals)
and binary relations (i.e. statements). It is a type of Semantic Network and is very
similar to theRelational Model[14]. Such a simple model embodies a small amount

4Note that some auxiliary functional constructs are not included in this table: datatype constructs (e.g.
rdf:Literal, rdf:XMLLiteral); RDF reification (i.e. rdf:Statement, rdf:subject, rdf:predicate, rdf:object); col-
lections and container (e.g. rdf:List, rdf:Alt, rdf:Bag, and rdf:Set).
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of built-in semantics and offers great freedom in creating customized extensions; how-
ever, an extended or specialized semantic network is usually required in practice. John
Sowa identifies six categories of semantic networks based on relation semantics [15]:
(i) Definitional networks, which build taxonomies for conceptualisms with inheritance
(subclass) and membership (instance) relations; (ii)Assertional networks, which rep-
resent cognitive assertions about the world with modal operators; (iii)Implicational
networks, which focus on implication relations, e.g. belief network; (iv)Executable
networks, which focus on temporal dependence relations, e.g. flowchart, PetriNet; (v)
Learning networks, which focus on causal relations encoded in numerical value, e.g.
neural network; (vi)Hybrid networks, which combine features of previous types. In the
Semantic Web, most ontologies are defined using RDF(S)/OWL and thus fall in the first
category; the second category (assertional networks) emerges in the context of sharing
instance data and evaluating trustworthiness of such data, e.g., [16, 17, 18, 19, 20, 21];
and the third category (implicational networks) gains interests in ontology mapping
study [22, 23]. A variation of definitional networks is natural language encyclope-
dia such as dictionaries and thesaurus which uses a different set of relations rather
than class-property relation. WordNet5 and Simple Knowledge Organisation System
(SKOS)6 are their representative Semantic Web versions respectively.

2.2.2 RDFS

Under the influence ofFrame Systemsand theObject Oriented Model, RDFS has been
used to augment RDF to provide better support for definition and classification [24].
These models organize knowledge in a concept-centric way with descriptive ontol-
ogy constructs (such as frame, slot, and facet) and built-in inheritance axioms. Frame
Systems enable users to represent the world at different levels of abstraction with the
emphasis on entities, and this aspect makes it quite different from the planar graph
model offered by most semantic networks. In addition to inheriting basic features from
Frame Systems, RDFS provides ontology constructs that make relations less dependent
on concepts: users can define relations as an instance ofrdf:Property, describe inheri-
tance relations between relations usingrdfs:subPropertyOf, and then associate defined
relations with classes usingrdfs:domainor rdfs:range.

2.2.3 DAML+OIL and OWL

DAML+OIL and OWL extend RDFS and emphasize support for richer logical infer-
ence. Besides inheriting advantages from Frame Systems, these ontology languages
provide a rich set of constructs based on Model theoretic Semantics [25, 26]. Three
variants of OWL trade off computational complexity and the expressiveness of ontol-
ogy constructs.

• OWL-Liteis the simplest variant for building a basic frame system (or an object
oriented database) in terms of class, property, subclass relation, and restrictions.

5http://wordnet.princeton.edu/
6http://www.w3.org/2004/02/skos/
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OWL-Lite does not use the entire OWL vocabulary and some OWL terms are
used under certain restrictions.

• OWL-DL is grounded on Description Logics, and focuses on common formal
semantics and inference decidability. Description logics offer additional ontol-
ogy constructs (such as conjunction, disjunction, and negation) besides class and
relation, and have two important inference mechanisms: subsumption and con-
sistency. Horrocks and Sattler [27] argued that basic inference in most varia-
tions of Description Logics is decidable with complexity between polynomial
and exponential time. The strong Set Theory background makes Description
Logics suitable for capturing knowledge about a domain in which instances can
be grouped into classes and relationships among classes are binary. OWL-DL
uses all OWL ontology constructs with some restrictions.

• OWL-Full is the most expressive version of OWL but it does not guarantee de-
cidability. The biggest difference between OWL-DL and OWL-Full is that class
space and instance space are disjoint in OWL-DL but not in OWL-Full. That is,
a class can be interpreted simultaneously as a set of individuals and as an indi-
vidual belonging to another class in OWL-Full. The entire OWL vocabulary can
be used in without any restrictions in OWL-Full.

2.3 Swoogle’s Survey of Semantic Web Ontologies

This subsection surveys ontologies with emphasis on the Semantic Web context, in con-
trast to prior surveys on ontology development [28, 29]. According to a recent report by
Swoogle (http://swoogle.umbc.edu ), a search engine that indexes the Seman-
tic Web on the Web, over ten thousand Semantic Web ontologies have been discovered
on the Web. Table 2 lists some well populated Semantic Web ontologies discovered
by Swoogle. Existing Semantic Web ontologies can be classified into the following
four major categories (without clear-cut boundaries): meta-ontologies, comprehensive
upper ontologies, systematic domain specific ontologies, and simple specialized on-
tologies.

2.3.1 Meta-Ontologies

The ontology languages, namely RDF, RDFS, DAML+OIL and OWL, are in fact meta-
ontologies themselves; and their instances are Semantic Web ontologies. Such meta-
ontologies offer a small vocabulary and corresponding axioms as the building blocks
for any conceptualisms, and they are backed by inference engines with built-in sup-
port for their ontology constructs and axioms. For example, a RDFS inference engine
can understand the semantics ofrdf:subClassOfand infer RDF triples by propagating
rdf:typestatement through sub-class relations. Such ontologies only provide necessary
parts for the reference model without considering any domain concepts.

There are also some additional candidate ontology languages. In order to represent
the semantics of rules, rule/policy languages have been proposed, such as Semantic
Web Rule Language (SWRL)7 (a combination of OWL and RuleML) and Rei declar-

7see http://www.daml.org/2003/11/swrl/

7



Ontology Namespace URI # of Docs.
prefix Populated
rdf http://www.w3.org/1999/02/22-rdf-syntax-ns# 382K

rdfs http://www.w3.org/2000/01/rdf-schema# 82K

owl http://www.w3.org/2002/07/owl# 64K

daml http://www.w3.org/2001/03/daml+oil# 5K

dc http://purl.org/dc/elements/1.1/ 250K

rss http://purl.org/rss/1.0/ 165K

admin http://webns.net/mvcb/ 130K

sy http://purl.org/rss/1.0/modules/syndication/ 90K

foaf http://xmlns.com/foaf/0.1/ 77K

cc http://web.resource.org/cc/ 74K

content http://purl.org/rss/1.0/modules/content/ 60K

trackback http://madskills.com/public/xml/rss/module/trackback 56K

iw http://inferenceweb.stanford.edu/2004/05/iw.owl# 47K

bio http://purl.org/vocab/bio/0.1/ 35K

geo http://www.w3.org/2003/01/geo/wgs84pos# 25K

vCard http://www.w3.org/2001/vcard-rdf/3.0# 20K

Table 2:Popular Semantic Web domain ontologies (Swoogle, July 2005)

ative policy language [30]. In additional to the object-oriented constructs provided in
RDF(S) and OWL, ontology constructs for thesaurus alike concept organization (e.g.
concept, narrower-concept, related-concept) have been modeled in SKOS.

2.3.2 Comprehensive Upper Ontologies

Upper ontologies provide a high level model about the world using the ontology con-
structs provided by the meta-ontologies. Currently, Semantic Web researchers are
working to translate existing upper ontologies, such as Cyc [31], WordNet [32, 33], On-
toSem [34], and IEEE’s Standard Upper Ontology (SUO) [35], into RDF(S) or OWL
versions. OpenCyc8 published a 700MB OWL files encoding part of the CYC ontol-
ogy. WordNet has a RDF(S) version using the namespacehttp://xmlns.com/
wordnet/1.6/ 9, and a W3C’s task force10 has been formed recently aiming at bet-
ter RDF(S)/OWL based representation of WordNet. OntoSem is also being translated
into OWL [36, 37].

2.3.3 Systematic Domain Specific Ontologies

Unlike upper ontologies which require agreements across multiple domains,domain
specific ontologieshave been developed to build systematic vocabulary for certain do-
mains long before the inception of the Semantic Web, e.g. legal ontology [38], gene
ontology [39], chemical ontology [40], bio ontology [41], and spatial ontology [42].

8http://www.opencyc.org/
9http://xmlns.com/2001/08/wordnet/

10http://www.w3.org/2001/sw/BestPractices/WNET/tf.html
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Again, the Semantic Web makes it possible to improve the visibility of such domain
ontologies; hence, translation efforts such as building an RDF version of CIA world
fact book are ongoing. Domain ontologies can also contain some well-known class in-
stances besides class/property definition, e.g. an airport ontology not only defines the
class “airport”, but also enumerates all three-letter airport codes.

2.3.4 Simple Specialized Ontologies

One difficulty with comprehensive or systematic ontologies is that they are usually too
big to use. For example, no existing ontology inference engine can store and use the
complete OpenCyc ontology which has over 60,000 terms and is stored in a 700MB
file. Hence, many simple specialized Semantic Web ontologies have been developed
to overcome this difficulty by concentrating on a set of basic and commonly-used con-
cepts. Such ontologies are often used as interchange languages in knowledge sharing.

Dublin Core11 brought about a series of ontologies for document metadata, e.g.,
the well-known RDFS based ontology – Dublin Core Metadata Element Set12. RSS
news digest ontology (including rss, sy, trackback, and content as listed in Table 2) is
driven by the blogging community and has now become one of the most popular do-
main ontologies. W3C is also driving the Friend-Of-A-Friend (FOAF)13 ontology for
person information. The Inference Web ontology14 focuses on explicit representation
of justification steps produced by inference engines. The Creative Commons ontology
aims at recording copyright related information. Similarly, ontologies such as ‘geo’,
‘vCard’, and ‘admin’ have been developed with small vocabulary sets specialized to
capture relevant domain information.

3 Semantic Web Ontology Tools

Our discussion thus far has shown how ontologies play a critical role in Semantic Web
applications. Effective enabling tools are needed in order to implement Semantic Web
ontologies. Figure 3 depicts typical steps in managing ontologies, i.e., create, publish,
extend, and reason; and two common scenarios in applying ontologies: populating
instances of ontologies and integrating information encoded by different ontologies.
Accordingly, five tool classes are placed close to relevant steps or scenarios: tools for
managing ontologies are covered in this section; and tools for applying ontologies are
covered in Section four.

3.1 Ontology Editors

A good editor can save a significant amount of time when developing ontologies by
helping ontology engineers focus on the semantics without worrying much about syn-
tactic organization. This section offers a brief introduction to some popular and Se-

11http://dublincore.org/
12http://purl.org/dc/elements/1.1/
13http://www.foaf-project.org
14http://inferenceweb.stanford.edu
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Figure 3:Ontologies tools for managing ontology and applying ontologies. The ‘publish’ and
‘extend’ steps are parenthesized to indicate they are optional.

mantic Web related ontology editors for collaborative (or independent) ontology devel-
opment. A more comprehensive survey can be found in [43].

Protege[44] provides a standalone ontology development environment. It is high-
lighted by its syntax grammar independent user interface and pluggable infrastructure.
It is suitable for independent ontology development and has a large user community.

SWOOP [45] takes advantage of both Protege and Ontolingua [46] (a web-based
environment for editing, publishing, and sharing ontologies developed before the Se-
mantic Web) and provides a convenient web-based ontology browsing, editing, debug-
ging [47] and publishing interface.

3.2 Ontology Repositories

Although the Web improves the visibility of centralized ontology development, it is
hard to achieve a universal ontology for everything (e.g. Cyc) due to huge space com-
plexity. Hence, distributed ontology development is preferred in the Semantic Web,
i.e., small ontologies are authored by different sources in an incremental fashion. To
reuse existing ontologies, effective web based tools are in great need to browse, search
and navigate distributed ontologies. Table 3 compares some popular repositories for
publishing and searching ontologies on the Web, and their technical highlights are de-
tailed below.

DAML
Ontology
Library

SchemaWeb Ontaria Semantic Web Search Swoogle

RDF documents /ontologies 282/282 203/203 N/A N/A 337,348/4,176
search ontology listAll listAll; Full-text; keyword with resource search keyword
search RDF Document no no yes with resource search yes
search class/property keyword triple pattern keyword instance keyword keyword;

alphabetical
index

search RDF resource no triple pattern N/A instance keyword no
navigation no no yes no yes
annotation by user by user no no auto digest
auto discovery no no no yes yes

Table 3: A comparison of Semantic Web ontology access services
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1. DAML Ontology Library (http://www.daml.org/ontologies/) indexes user sub-
mitted ontologies and provides browse/search services. It organizes ontologies
by their URI, users’ annotations supplied during ontology submission (e.g. sub-
mission date, keyword, open directory category, funding source, submission or-
ganization), the defined class/property, or the used namespace. Users can run
sub-string queries over a defined class/property.

2. SchemaWeb(http://www.schemaweb.info/) provides services similar to DAML
ontology library with better human/machine user interface (i.e. both HTML and
web service interface). It adds more services: (i) for human user, it provides full-
text search service for indexed ontologies, and a customizable resource search in-
terface by letting users specify triple pattern; (ii) for machine agents, it searches
the “official” ontology of a given namespace or the resource with user specified
triple pattern; it also navigates RDF graph through RDFS properties (i.e. sub-
ClassOf, subPropertyOf, domain, range), and publishes RSS feeds about new
ontology submissions.

3. W3C’s Ontaria (http://www.w3.org/2004/ontaria/) stores RDF documents (in-
cluding ontologies) and provides search/navigation services in the repository. It
allows a user to (i) browse a RDF file as a list of triples, a list of used properties,
or a list of populated classes, and (ii) browse relations between RDF files.

4. Semantic Web Search(http://www.semwebcentral.org/) provides an object ori-
ented view of the Semantic Web, i.e. it indexes instances of well-known classes
including rdfs:Class, rdf:Property, foaf:Person, and rss:Item. It partially sup-
ports ontology search by finding instances ofrdfs:Classandrdf:Property; how-
ever, its search results are biased to terms from the namespace ofWordNet 1.6.

5. Swoogle(http://swoogle.umbc.edu) indexes millions of Semantic Web docu-
ments (including tens of thousand of ontologies). It enables users to search
ontologies by specifying constraints on document metadata such as document
URLs, defined classes/properties, used namespaces, and RDF encoding. More-
over, it provides detailed metadata about ontologies and classes/properties in an
object oriented fashion. It has an ontology dictionary that enables users to browse
the vocabulary (i.e. over 150KB URIrefs of defined/used classes and properties)
used by Semantic Web documents, and to navigate the Semantic Web by follow-
ing links among classes/properties, namespace and RDF documents. In addition,
it is powered by automatic and incremental Semantic Web document discovery
mechanisms and updates statistics about the use of ontologies in the Semantic
Web on a daily basis.

3.3 Ontology Language Processors

An ontology construct conveys descriptive semantics, and its actionable semantics is
enforced by inference. Hence, effective tools, such as parsers, validators, and inference
engines, are needed to fulfill the inferenceablity objective. Table 4 introduces several
popular tools for processing semantic web ontology languages by comparing how they
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support the actionable semantics. A detailed developers’ guide is available online15,
and experimental evaluation can be found in W3C’s OWL Test Cases report16.

OWL
JessKB

JTP Jena F-OWL FaCT++ Racer Pellet TRIPLE Sweet Rules

RDFS () () + () () () () () -
OWL-Lite () () () () + () () () -
OWL-DL - () () () () () () () -
OWL-Full - () () () - - - () -
RuleML - - - - - - - - +

Language Java Java Java Java C++ Lisp Java Java Java

Table 4:A comparison of the capabilities of Semantic Web ontology language processors. We
use the following notations: ‘+’ for full-support, ‘-’ for no support, and ‘()’ for partial support.

1. OWLJessKB (http://edge.cs.drexel.edu/assemblies/software/owljesskb/) is the
descendent of DAMLJessKB [48] and is based on the Jess Rete inference en-
gine.

2. Java Theorem Prover (JTP) (http://www.ksl.stanford.edu/software/JTP/), de-
veloped at Stanford university [49], supports both forward and backward chain-
ing inference using RDF/RDFS and OWL semantics17.

3. Jena (http://jena.sourceforge.net/), developed at HP Labs at Bristol [50], is a
popular open-source project. It provides sound and almost complete (except
for blank node types) inference support for RDFS. Current version of Jena also
partially supports OWL inference and allows users to create customized rule
engines.

4. F-OWL (http://fowl.sourceforge.net/), developed at UMBC [51], is an inference
engine which is based on Flora-218.

5. FaCT++ (http://owl.man.ac.uk/factplusplus/), developed at the University of Manch-
ester [52], is the descendent of FaCT [53] reasoning system. It provides full
support for OWL-Lite. Its future releases aim at providing complete support for
OWL-DL reasoning.

6. Racer(http://www.sts.tu-harburg.de/ r.f.moeller/racer/) is a description logic based
reasoner [54]. It supports inference over RDFS/DAML/OWL ontologies through
rules explicitly specified by the user.

7. Pellet(http://www.mindswap.org/2003/pellet/), developed at the University of
Maryland, is a ‘hybrid’ DL reasoner that can deal both TBox reasoning as well
as non-empty ABox reasoning [55]. It is used as the underlying OWL reasoner
for SWOOP ontology editor [45] and provides in-depth ontology consistency
analysis.

15http://www.wiwiss.fu-berlin.de/suhl/bizer/toolkits/
16http://www.w3.org/2003/08/owl-systems/test-results-out
17See also http://www.ksl.stanford.edu/software/JTP/doc/owl-reasoning.html
18Flora-2 is an object oriented language and has similar language constructs as OWL
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8. TRIPLE (http://triple.semanticweb.org/), developed by Sintek and Decker [56],
is a Horn Logic based reasoning engine (and a language) and uses many features
from F-logic. Unlike F-logic, it does not have fixed semantics for classes and
objects. This reasoner can be used by translating the Description Logics based
OWL into a language (named TRIPLE) handled by the reasoner. Extensions
of Description Logics that cannot be handled by Horn logic can be supported by
incorporating other reasoners, such as FaCT, to create a hybrid reasoning system.

9. SweetRules(http://sweetrules.projects.semwebcentral.org/) is a rule toolkit for
RuleML. RuleML is a highly expressive language based on courteous logic pro-
grams, and provides additional built-in semantics to OWL, including prioritized
conflict handling and procedural attachments. The SweetRules engine also pro-
vides semantics preserving translation between a various other rule languages
and ontologies (implicit axioms).

4 Issues in Applying Semantic Web Ontologies

In many practical scenarios, ontology tools introduced in the previous section are not
sufficient for application development on the Semantic Web. The rest of this section
surveys two important issues: (i) providing inference support in populating and storing
instances of Semantic Web ontology in large scale applications; (ii) mapping concepts
from different ontologies in ontology based information integration.

4.1 Storing Ontology Instances

Though technology in large scale relational models is relatively mature, the inference-
ability feature of ontologies introduces additional requirements on storing instances of
ontologies. Users should now be able to access the asserted knowledge as well as the
inferred knowledge which can be derived by ontology based inference. In the Semantic
Web, instances of ontologies (i.e, knowledge represented in RDF triples) are stored in
so-calledtriple storesor RDF databases.

There are three alternative strategies to manage inferred knowledge in triple store
as influenced by logic inference [57].

• Forward Chaining applies entailment rules as soon as RDF triples have been
added into a triple store. This approach eliminates run-time inference by enu-
merating and storing all possible knowledge; hence it will result in fast query
response at the cost of increased load time and storage space. Unfortunately,
this approach is not so promising since (i) there is no guarantee that the inferred
triples will be queried in the future and (ii) the additional storage space for in-
ferred triples can be prohibitively large and impose overhead in access.

• Backward Chaining applies entailments rules when the triple store is queried.
This approach performs run-time inference without the need of storing inferred
knowledge; Hence it will result in short load time at the cost of increased query
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response time. Since query response time is an important benchmark of ease-of-
use, too slow response time will decrease users’ adoption.

• Hybrid Inference combines both forward and backward chaining so as to avoid
the disadvantages of both.

There are two well-known storage options, namely in-memory storage and persis-
tent storage. Their performance has been evaluated by comparing the efficiency of
load/save operations [58], soundness and completeness of inference [59], and scala-
bility [60] 19. Table 5 compares basic features of some popular triple stores with the
emphasis on the persistent storage option since knowledge in the Semantic Web is ex-
pected to be in large amount. In the following text, the term ‘model’ is used to signify
the RDF graph including both asserted and inferred triples.

Jena RSSDB Kowari Sesame 3Store Instance Store DLDB
Query
Language

RDQL RQL iTQL,
RDQL

SeRQL OKBC,
RDQL

Racer, FaCT++
based

conjunctive
KIF

Level of
inference

RDFS,
OWL(partial)

RDFS Explicit
Rules

RDFS RDFS OWL-Lite,
OWL-DL

OWL-DL

Strategy F, B, H - F - H - F

Table 5:Capabilities of RDF Persistence Stores. The three kinds of inference strategies are ab-
breviated as follows: ‘F’ for Forward Chaining, ‘B’ for Backward Chaining and ‘H’ for Hybrid.
‘-’ is used when corresponding information is not available.

1. Jena[61] offers both in-memory and persistent storage options. It provides phys-
ical data independence through its Java based data access library which hides the
physical storage details; hence there is not much difference between accessing
persistence store or in-memory store.

2. RSSDB [62] implements persistent storage option. In addition to being a gen-
eral triple store, it improves data storage efficiency by storing instances of a class
in a specialized (Object-Relational) table at the expense that it assumes that do-
main ontologies are fixed and have defined classes with significant amount of
instances.

3. Kowari (http://www.kowari.org/) implements persistent storage using flat files
instead of conventional database products. It allows users to explicitly associate
various inference rules (e.g. axioms) with the asserted triples, and separates the
storage of asserted triples from that of the inferred triples.

4. Sesame(http://www.openrdf.org/) [63] implements persistent storage option us-
ing Forward Chaining and RDFS level inference, i.e., it enumerates and stores
all inferred triples according to RDFS semantics and domain ontologies.

5. 3Store[57] supports hybrid inference mechanisms. It classifies inference axioms
into those which generate comparatively fewer entailments and apply forward
chaining inference on them, and uses backward chaining to handle the rest.

19These evaluations covers more aspects, but only their highlights are remarked
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6. Instance store(http://instancestore.man.ac.uk/) [64] provides Description Log-
ics level persistent storage, and it relies on the FaCT++/Racer inference engine.

7. DLDB [65] supports persistent triple store by explicitly using the FaCT reasoner
which support Description Logics inference. Similar to Sesame, entailment is
pre-computed based on the assumption that ontologies change less frequently.
Similar to RSSDB, it uses a class-centric view for efficient query processing.

Table 5 lists the query languages provided and the ontology languages supported
by the above triple stores. A detailed discussion can be found in [66]. In addition, W3C
is standardizing SPARQL [67], a new common query language for triple stores.

Existing triples stores are weak in the scalability aspect, i.e., in-memory approaches
are limited by the size of main memory and persistent stores are not sufficiently scal-
able. Two research directions are tackling this issue. First, distributed storage approach
[68], Peer-to-Peer system based approach [69], and efficient index based approach [70]
have been proposed in contrast to the current centralized storage. Second, researchers
are also exploring efficient hybrid inference strategies which prevent full exploration
of search space and keep the inference overhead in processing users’ queries in an
acceptable range.

4.2 Ontology-Based Information Integration

The Semantic Web puts the onus of ontology creation on the user by providing common
ontology languages such as RDF(S) and OWL. However, ontologies defined by differ-
ent applications or agents usually describe their domains in different terminologies,
even when covering the same domain. The semantic-level heterogeneity between two
information sources refers to the use of conflicted or mismatched terms about concepts
in their corresponding ontologies, which can be identified into one of the following
categories:

(i) ambiguous reference– the same term (i.e., the symbolic identifier of a concept
in an ontology) means differently in different ontologies; (ii)synonymical reference–
two terms from different ontologies have the same meaning; (iii)one-to-many match-
ing – one term from one of the ontologies matches20 to several terms of the other
ontology; (iv) uncertain matching– one term from one of the ontologies has similar
but not exactly the same meaning to any terms of the other ontology; and (v)structural
difference– two terms with the same or similar meaning are structured differently in
different ontologies (e.g., different paths from their respective root concepts).

In order to support ontology-based information integration, tools and mechanisms
are needed to resolve the semantic heterogeneity problem and align the terms in dif-
ferent ontologies. This section reviews the literature about the existing works in this
topic, which is grouped into five different research directions in tackling the problem.

• One Centralized Global Ontology.Enforcing one centralized global ontology
prevents semantic heterogeneity since no more ontology exists and everyone is
using the same ontology. However, this approach is obviously impractical since

20‘match’ means that the subject and the object refer to exactly the same concept.
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(i) the creation and maintenance of such an ontology is usually prohibitively
expensive and (ii) it is usually impractical to develop an ontology with consent
from the user community at large.

• Merging Ontologies.Merging different ontologies into a unified one is another
natural approach to semantic integration when those ontologies overlap signifi-
cantly over a common domain. There are many heuristics to merge two terms,
such as (i) linguistic heuristics which uses term spelling or additional natural lan-
guage processing (NLP) techniques with manual validation, e.g.,FCA-MERGE
[71, 72], (ii) syntactic and semantic heuristics, e.g.,PROMPT[73] 21 andChi-
maera[74], and (iii) hybrid approaches [75]. However, this approach is usually
costly and not scalable. The merging procedure has to restart from scratch when
any of the input ontologies has been modified. When merging a large number of
ontologies, the merging result may not always meet application.

• Mapping Ontologies. Building a set of mappings (or matches) between two
ontologies is an alternative way to merging ontologies. A mapping between two
terms from two different ontologies conveys the fact that the terms have similar
or same meaning. Besides manually specifying mappings, there are some semi-
automated methods such as: (i) lexical similarity analysis on linguistic or lexical
ontologies [76, 77] such as WordNet, Cyc, and SENSUS; (ii) textual descrip-
tion analysis, which assigns a set of relevant documents to each term so as to
capture the meaning of the term, measures similarity between terms using ma-
chine learning based text classification techniques, and searches for mappings
based on the similarity matrix obtained, e.g.,CAIMAN [78], OntoMapper[79],
and GLUE [80, 81, 82]; (iii) ontology algebra and articulation, e.g.,ONION
[83], which is semi-automatic, with good scalability, easy to maintenance, but
slow; (iv) information flow and channel theory based approach [84]; (v) struc-
tural analysis, i.e., ‘similarity flooding’ – a graph matching algorithm based on
fixpoint computation [85]; and (iv) hybrid heuristics, sometimes combined with
the structural information of the ontology taxonomy, e.g.,Anchor-PROMPT[86]
andPROMPTDIFF[87]. A brief survey of existing approaches is provided by
[88], however, most of these approaches only study exact mappings, without tak-
ing the degree of uncertainty22 into consideration23. Since semantic similarities
between concepts can be easily represented probabilistically (but not logically),
Bayesian Networks (BNs) [89] stand out as a natural choice in tackling this prob-
lem: (i) Mitra et al. [90] improve existing mapping results by applying a set of
meta-rules to capture the structural influence and the semantics of ontology rela-
tions; (ii) Ding et al. [91] and Pan et al. [92] proposed a principled methodology
by first translating the source and target ontologies into BNs, and then mapping

21It initializes term-matching suggestions using linguistic similarity among class names, and then updates
suggestions automatically by resolving newly detected syntactic and semantic conflicts.

22It is often the case that a concept defined in one ontology can only find partial matches to one or more
concepts in another ontology

23Note that the methods in (ii) fail to completely address uncertainty in mapping since the degree of
similarity found between concepts will not be considered in further reasoning
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the concepts from the two ontologies based on evidential reasoning between the
two translated BNs.

• Ontology Translation. Given two ontologies, ontology translation is to trans-
late one of the ontologies into a target ontology which uses the representation
and semantics of the other ontology, sometimes with the help of an intermedi-
ate shared ontology. Based on a set of defined rules and transformation opera-
tors, Ontomorph[93] offers syntactic rewriting and semantic rewriting to sup-
port the translation between two different knowledge representation languages.
OntoMerge[94], an online ontology translation system24 based on ontology
merging (which requires a set of ontology bridging axioms produced manually
by domain experts) and automated reasoning, achieves term translations using a
first order theorem prover built on top of PDDAML (PDDL-DAML Translator)
25 (based on Jena) and OntoEngine26 (an inference engine based on JTP), in
either forward or backward chaining way. Ontology translation takes a further
step after mapping or merging, and is one of the most difficult tasks towarding
information integration.

• Runtime Ontology Resolution. Semantic differences can arise in run-time in-
teraction in a multi-agent environment since it is impractical to restrict all agents
to use the same ontology. Either merging, mapping, or translating ontologies are
impractical too since they are usually offline approaches which need to be done
before the deployment of the multi-agent system. One family of approaches
[95, 96, 97, 98] is inspired by language games, where agents identify and resolve
ontology conflicts through incremental interpretation, clarification, and explana-
tion by negotiating with one another when semantic differences have been de-
tected. An alternative approach utilizes approximate classification methods for
semantic-preserving context transformations, such as rough set theory, fuzzy set,
or probabilistic Bayes Theorem [99, 100].

Since the interoperability between different knowledge systems or agents relies
on their full understanding of the terminologies used by the peers, the resolution of
semantic heterogeneity between different information sources is necessary and impor-
tant. Hence, this aspect currently attracts significant attention from the Semantic Web
research community.

5 Using Semantic Web Ontologies

The semantics conveyed by ontologies can be as simple as a database schema or as
complex as the background knowledge in a knowledge base. By using ontologies in
the Semantic Web, users can leverage the advantages of the following two features:
(i) data is published using common vocabulary and grammar; and (ii) the semantic
description of data is preserved in ontologies and ready for inference. This section

24http://cs-www.cs.yale.edu/homes/dvm/daml/ontology-translation.html
25http://www.cs.yale.edu/homes/dvm/daml/pddldaml translator1.html
26http://projects.semwebcentral.org/projects/ontoengine/
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presents three real-world Semantic Web based applications to show the different roles
of Semantic Web ontologies played in different context.

The first application is calledsemantic service discovery, which builds an extensi-
ble ontology to describe the various data services in ad-hoc networks, and uses ontolo-
gies to reason the capability of sensors. It is highlighted by theextensibilityaspect of
the Service ontology. The second application is calledontology based personal profile
integration, which builds a web scale database for personal profiles. It is highlighted
by thevisibility aspect of FOAF ontology. The third application is calleddescription
logic based reasoning for adaptive sensors, which infers sensor states using the axioms
in OWL-DL. It is highlighted by theinferenceabilityaspect of Sensor State ontology.

5.1 Semantic Service Discovery

Avancha et al.[101] have used ontologies to represent service profile and infer the ca-
pability of service in ad-hoc networking environment like Bluetooth.

5.1.1 Service Ontology

Ontology-based service description is superior to UUID-based descriptions [102] be-
cause of the following merits of the former: (i) it enables extensible and richer descrip-
tion about the services, entities and the relationships between entities in application
domain; (ii) it supports inferring implied knowledge from the asserted descriptions.
and (iii) it captures domain knowledge in the explicitly represented ontology (instead
of hard-coded in source code) and thus make domain ontology independent to source
code. There are two consequent steps in building the service ontology as the following;

1. Choosing an appropriate Semantic Web ontology language.In order to achieve
successful semantic service discovery, a simple but powerful model is needed
for describing domain knowledge. It should be lightweight - easy to parse, easy
to manipulate and easy for a reasoning engine to use. It should be extensible, so
that any organization or person can create classes or properties that can be added
to an ontology. It should be scalable enough to handle huge number of resources
in a given ontology. Hence, RDFS was chosen as the ontology language because
it meets all the above requirements and no advanced feature from OWL is needed
in this application.

2. Building the service ontology which captures background knowledge.The root
of the service ontology is a class calledService. It has one subclass calledAd-
HocNetworkService. Specific services are described as subclasses of the latter.
The Service class has two properties –ServiceCostandProvidedBy. The latter
“points” to a class calledServiceProviderthat containsProviderNameandCon-
tactURI as its properties. Every property of theAdHocNetworkServiceclass,
exceptMemoryCapacity, is associated with avalueand apriority. The prior-
ity field is used to decide the ordering of properties, so that the highest priority
property (specified by the client in the query or assigned by the server) is used to
determine the correct service instance to match against. The client is allowed to
leave thepriority field(s) unspecified. The client may also leave thevaluefield(s)
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Figure 4:The service ontology. Oval nodes represent classes (concepts) and rectangular nodes
represent literal values. Labels on the arcs represent properties (relations) between the concepts.

unspecified. In such cases, the server uses a set of predefined priority values for
the properties.

Figure 4 shows a graphical representation of the service Ontology using an exam-
ple PrinterService. Thepriority andvalueproperty-types for all of the property-types
of theAdHocNetworkService, PrinterServiceandPrinter subclasses are not shown for
conciseness. ThePrinterServicesubclass has six property-types and thePrinter sub-
class has only one. However, it is emphasized that thePrinter subclass inherits all
property-types from its ancestors. Therefore, all the property-types can be associated
with values at the level of thePrinter subclass.

5.1.2 Applying Service Ontology and Evaluation

By reusing the service ontology written in RDFS,extensibilityfeature can be best
demonstrated when incorporating new devices or services, resources, capabilities and
constraints into the ac-hoc network. Description of new service can be greatly reduced
by inheriting property-types using sub-class relation. In addition, extending domain
knowledge does not require any code level changes.

By using inference engine which supports RDFS,inferenceabilityfeature can be
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demonstrated when matching service request with service description. The inference
engine combines the asserted and implied domain knowledge into the complete service
descriptions, and thus achieve better matching results.

Readers interested in the details of the approach and experimental results are re-
ferred to [103].

5.2 Ontology based Personal Profile Integration

Recently, the “Friend of A Friend” (FOAF) project has gained attention from both
academic and industrial communities. Aiming at publishing information about peo-
ple using machine understandable language, the FOAF project is highlighted by the
following features:

• Publishing personal profile with better visibility

• Enforcing unique person identity reference on the Web and thus supporting the
merge of partial data from difference sources.

• Representing and facilitating large scale social networks on the Web.

5.2.1 FOAF Ontology

The core of FOAF project is the FOAF ontology which is identified by namespace URI
http://xmlns.com/foaf/0.1/. The core concepts of FOAF ontology are shown in Figure
5: an agent could be a person, a group, or an organization, among which person is
the most used; afoaf:Personusually has her name, mbox, depiction(personal photo),
homepage, and etc.; and social network could be captured by thefoaf:knownsproperty
between two instances offoaf:Person.

Figure 5: Important concepts(classes and properties) in FOAF Ontology. Dashed arcs refer to
subClassOfrelation, and solid arcs refer to properties which links from the domain class to the
range class. The two gray oval nodes refer to two RDF concepts, and the rest refer to FOAF
concepts.
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5.2.2 Integrating FOAF Personal Profile

The simple and commonly adopted FOAF ontology make it possible to build a dis-
tributed database for personal information. Among millions of Semantic Web docu-
ments discovered by Swoogle [104], a large portion of them contribute a significant
amount of instances offoaf:Person. An interesting observation shows that the person
“Tim Finin” has been mentioned by some Semantic Web documents from UMBC and
CMU, and several of his email addresses have been mentioned in different documents.
According to the entity-equality semantics of FOAF ontology, the RDF graphs in those
RDF documents can be merged into a more complete personal profile. The integration
procedure is described as the following steps:

1. Swoogle discovers and indexes Semantic Web documents on the Web.

2. Search Swoogle for all Semantic Web documents that populate instances of
foaf:Person.

3. Parse those documents and store all instances offoaf:Personin a triple store.

4. Merge instances using the following heuristics: (i) two instances with the same
URIref; (ii) compare the identities of instance obtained from (inverse) functional
properties; and (iii) useowl:sameAsassertions over instances. In practice, most
instances are anonymous (i.e., without URI identifier) and the second heuristic is
heavily used. The merge could be implemented by computing connected com-
ponent on a graph where each node is a class instance and each arc conveys one
instance-equivalence relation.

5. Output each connected component as a merged personal profile.

Figure 6 shows the merged profile for “Tim Finin”. It should also be noted that
such merging has to consider possible errors in the source documents. The common
error is caused due to the wrong usage of inverse functional properties. For example,
a Semantic Web document27 mistakenly assign the same mboxsha1sum to thousands
of instances offoaf:Person. More observation could be found in [105].

5.2.3 Evaluation

The visibility of FOAF ontology based knowledge is boosted significantly through
URI-based vocabulary and RDF/XML based serialization. On the publisher side, many
social network websites, such LinkedIn, Orkurt, and LiveJournal, have adopted FOAF
ontology in publicizing their users’ profile and millions of Semantic Web documents
are published on such websites [105]. On the information consumer side, many XSL
based tools, such asFoaf ExplorerandFoafnaut28, have been developed to visualize
FOAF data in a user friendly format.

The extensibilityof FOAF ontology is exhibited in anopen sourcemanner – the
latest FOAF specification only lists one stable term –‘homepage’ and leaves many oth-
ers in ‘testing’ or ‘unstable’ stages. FOAF ontology uses WordNet ontology to define

27http://blog.livedoor.jp/rusa95/foaf00756.rdf
28http://www.foafnaut.org
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Figure 6: Fusing Tim Finin’s person profile. For each statement, the number of supporting
sources has been counted. All supporting sources are listed on left column.

its concepts such as foaf:Agent, and foaf:Person has been used by many other ontolo-
gies to restrict therdfs:domain. This feature differs from distributed databases in that
it preserves a common schema and allows additional customized schema provided by
different publishers.

The inferenceabilityof FOAF ontology is supported by part of OWL ontology lan-
guage. Some FOAF properties, such asfoaf:mboxandfoaf:homepage, are defined as
instance ofowl:InverseFunctionalPropertyand linked the unique identifier of a person.

5.3 Description Logic Based Reasoning for Adaptive Sensors

A wireless sensor network consists of energy-constrained nodes that are capable of
sensing their surrounding environment and communicating that information to a cen-
tral entity in the network for further processing. Such networks face many challenges
including energy management, network management, data management and security
[106]. An important and open research problem that combines the above challenges
is to design a wireless sensor network that can determine its current state (in terms
of energy, communications, security and sensor accuracy) and modify its behavior, if
required, to ensure continuous operation as desired by its users.

5.3.1 Sensor State Ontology

One solution to this problem is provided in [107]. In their framework for adaptivity, the
key mechanism is to describe the state of a sensor node and specifies actions that a node
should take in each state by a comprehensive OWL ontology that views a sensor node as
having multiple components. The ontology describes feasible states of each component
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and feasible combinations of those states which reflect feasible states associated with a
sensor node. The state of each component depends upon certain parameters associated
with it. When each parameter takes a specific value, the component is in a particular
state. Thus, by defining feasible values for each parameter, we arrive at feasible states
of the component.

The hierarchical design of the ontology places theSensorNodeclass at its root.
SensorNodehas properties that describe it in terms of its various components:Energy,
PHY, MAC, Routing, NeighborhoodandSensor. Figure 7 shows a snippet of the OWL-
DL ontology describing its top-level hierarchy. The first two properties only are shown,
due to lack of space. The other properties are defined in a similar manner.

<owl:Class rdf:ID="SensorNode">
</owl:Class>

<owl:ObjectProperty rdf:ID="hasEnergyComponent">
<rdfs:domain rdf:resource="#SensorNode"/>
<rdfs:range rdf:resource="#Energy"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasPHYComponent">
<rdfs:domain rdf:resource="#SensorNode"/>
<rdfs:range rdf:resource="#PHY"/>

</owl:ObjectProperty>

Figure 7: Top-level Hierarchy of SensorNode Ontology

5.3.2 Reasoning about Sensor State Using Subsumption

In order to show how the ontology enables a sensor node to determine its state, the
energy component of the sensor node requires further investigation. The energy com-
ponent is defined as shown in Figure 8. The state of the energy component depends
upon two parameters:remainingEnergyCapacityand energyConsumptionRate. The
former takes its value from a class calledAmount, which consists of two symbols
AmountNormalandAmountAbnormal. Similarly, the second parameter takes its val-
ues from theRateclass. The task of mapping numerical values of these two parameters
to logical symbols is performed in a separate module of framework [107] and is beyond
the scope of this chapter.

Continuing the example, Figure 9 shows the definition of aLowEnergyStateassoci-
ated with a sensor node. A sensor node is in a low-energy state if the remaining energy
capacity has an abnormal valueandthe rate of energy consumption is normal.LowEn-
ergyStateis an intersection of three classes:Energyand two anonymous classes that
assign particular values to the two parameters. Thus,LowEnergyStateis an implicit
sub-class ofEnergy.

Figure 10 shows how a sensor node in a low energy state is defined in the ontol-
ogy. SensorNodeInLowEnergyStateis defined as a sub-class ofSensorNodeand has
the property that itsEnergyComponent is in a low energy state.

The rest of theSensorNodeontology is designed along similar lines and thus, com-
prehensively describes feasible states associated with a sensor node. By asserting the
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<owl:Class rdf:ID="Energy"> </owl:Class>

<owl:ObjectProperty rdf:ID="remainingEnergyCapacity">
<rdfs:domain rdf:resource="#Energy"/>
<rdfs:range rdf:resource="#Amount"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="energyConsumptionRate">
<rdfs:domain rdf:resource="#Energy"/>
<rdfs:range rdf:resource="#Rate"/>

</owl:ObjectProperty>

Figure 8: Energy Component Definition

<owl:Class rdf:ID="LowEnergyState">
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Energy"/>
<owl:Restriction>

<owl:onProperty rdf:resource="#remainingEnergyCapacity"/>
<owl:hasValue rdf:resource="#Amount_Abnormal"/>

</owl:Restriction>
<owl:Restriction>

<owl:onProperty rdf:resource="#energyConsumptionRate"/>
<owl:hasValue rdf:resource="#Rate_Normal"/>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>

Figure 9: Low Energy State Definition

ontology into a forward-chaining or backward-chaining reasoning engine that supports
OWL-DL (e.g., Java Theorem Prover), a system that can reason over a giveninstance
of a sensor node and respond with a value that indicates the state of the node is created.
Thus, in the current example, when the complete instance of a sensor node is presented
to a Java Theorem Prover (JTP) containing the ontology, it responds with the correct
state of the node. Figure 11 shows a snippet of a sensor node instance; only the Energy
component is shown due to lack of space. The response from JTP is shown in Figure
12; again only the relevant responses are shown. The reasoning process is automated
by designing it as a client-server system. The JTP engine containing theSensorNode
ontology runs as the server (either on each node or centrally), waits for and receives a
sensor node instance, reasons over the instance, responds to the “client” and deletes the
current instance from the system. This process continues as long as the node functions.

5.3.3 Evaluation

Theinferenceabilityfeature of ontology has been highlighted in this application through
the above subsumption inference over sensor network state. The use of OWL-DL in-
ference also makes inference procedure decidable, which is very important to those
intelligent but constrained devices which have limited computing capabilities.
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<owl:Class rdf:ID="SensorNodeInLowEnergyState">
<rdfs:subClassOf rdf:resource="#SensorNode"/>
<owl:intersectionOf rdf:parseType="Collection">

<owl:Restriction>
<owl:onProperty rdf:resource="#hasEnergyComponent"/>
<owl:someValuesFrom rdf:resource="#LowEnergyState"/>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>

Figure 10: Sensor Node in Low Energy State

<wsn:SensorNode rdf:ID="SN175">
<wsn:hasEnergyComponent rdf:resource="#E_SN175"/>
<wsn:hasPHYComponent rdf:resource="#PHY_SN175"/>
<wsn:hasMACComponent rdf:resource="#MAC_SN175"/>
<wsn:hasRoutingComponent rdf:resource="#Rt_SN175"/>
<wsn:hasNeighborhoodComponent rdf:resource="#Nb_SN175"/>

</wsn:SensorNode>

<wsn:Energy rdf:ID="E_SN175">
<wsn:remainingEnergyCapacity rdf:resource="#Amount_Abnormal"/>
<wsn:energyConsumptionRate rdf:resource="#Rate_Normal"/>

</wsn:Energy>

Figure 11: Complete Instance of a Sensor Node

6 Conclusion

This chapter provides a pragmatic view on Semantic Web ontologies via comparison,
survey and case-study. The comparison on chronological evolution and built-in seman-
tics reveals how the Semantic Web inherits the merits from pre-existing knowledge
representation formalisms and reference models of databases. It also highlights the
advantages of using Semantic Web ontologies in terms of better visibility, extensibility
and inferencability. The practical aspects of Semantic Web ontologies is demonstrated
through both (i) the significant amount of Semantic Web ontologies and instances, and
(ii) the rich set of enabling tools for managing and applying Semantic Web ontolo-
gies. Finally, the three case-studies demonstrate how to use Semantic Web ontologies
in different application contexts with benefit evaluation in each of them.
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