
Utilizing Semantic Tags for
Policy Based Networking

Sethuram Balaji Kodeswaran, Olga Ratsimor, Anupam Joshi
Department of Computer Science and Electrical Engineering

University of Maryland Baltimore County, USA
{kodeswar,oratsi2,joshi}@cs.umbc.edu

Filip Perich
Shared Spectrum Company

Vienna, VA 22182, USA
fperich@sharedspectrum.com

Abstract— Policy based networks provide high levels of flex-
ibility by allowing definition of packet handling rules within a
network, resource allocation strategies, network management, or
access control. Commonly used policy specification mechanisms
are, however, limited in their expressibility and rely mostly
on packet headers that convey limited information about the
semantics of the content. We propose a new model for policy
based networking that utilizes the W3C Web Ontology Language
tags carried in data packets that can provide detailed semantic
information about the packet or stream. Using this model, a
policy decision point can reason over these tags and infer the
correct set of operations to invoke. Policies are expressed in the
W3C Semantic Web Rule Language using a common ontology
and take into consideration the content of the streams, relevant
contextual information and external domain constraints. Using
this framework, fine grained, highly specialized services can
be offered within the network that are context-aware, easy to
manage, deploy and verify for consistency.

I. INTRODUCTION

Policy based networks employ mechanisms that allow net-
work operators to specify at a high level, rules defining how
packet flows are handled within a network, how network
resources are allocated, define access control restrictions and
levels of service. The policies are enforced by configuring
the network devices with the requisite primitives so that the
desired actions are performed on the data streams. One of
the main challenges frequently faced is ensuring that network
configuration settings are applied consistently throughout the
network so that the correct actions are taken by the network
devices; however, this is often error-prone and difficult to
manage especially when there is a heterogeneity of network
devices and management protocols. Additionally, policies that
are commonly in use today are limited in their expressibility.
Rules such as “allow traffic from A higher priority over B”
and “permit user A” are easy to enforce but are limited in
their expressibility. For networks to offer highly specialized
services, administrators need to be able to specify more com-
plex handling rules such as “allow security surveillance video
streams higher priority than webcasts” (within an enterprise)
or “downsample any video to user A so as not to exceed
128 kbps” (due to different levels of service or capabilities
of the device associated with the user). For such policies,

This work was supported in part by DARPA under contract W31P4Q-06-
C-0395

enforcement cannot be performed by packet header inspection
alone as all the requisite details may not be directly accessible
from the data packets as they are today.

To solve this issue, we define an alternate model to
achieving policy based networks that provides fine grained
services for network traffic, automates network configuration
and eases network management. The model relies on two
key components; namely a tagging mechanism that allows
packets and/or streams to convey higher level semantic in-
formation that can be used in conjunction with the lower
level information garnered from packet header inspection and
a framework for specifying rules in an easy to use, formal
model that can be checked for consistency. The process of
converting the rules to the lower level primitives understood
by the network devices is also handled by the framework
allowing the network administrators to focus just on defining
the administrative policies. In our model, applications encode
data packets with descriptions conveying content semantics
using the W3C Web Ontology Language (OWL)[9]. Ideally,
the ontology used for this is provided by the network service
provider. This description is encoded as a special header that is
embedded into the data stream. Our motivation for using OWL
(specifically, OWL-DL) is capability of the language to express
formal semantics, defining class hierarchies and their relation-
ships, associated properties, cardinality restrictions while still
retaining decidability and computational completeness. Using
OWL for ontology specification makes the framework generic,
flexible and more scalable than using proprietary labeling
schemes that raise interoperability issues.

Utilizing the framework, interim routers that handle the
data packets, run a reasoning engine that can reason over the
OWL description and invoke rules depending on the correct
set of actions that need to be enforced. Our framework utilizes
the W3C Semantic Web Rule Language (SWRL)[7] as the
rule language which provides an easy to use mechanism
for specifying event-condition-action rules which is the ma-
jority of rules envisioned for a typical network. Using this
framework, content providers now provide metadata to the
network that can then be used by the network providers to
determine how best to handle a given packet or flow that
best suites that content. While our framework allows the
deployment of specialized handling routines into the network,
a key differentiator between our approach and that of active

networking[11], [2] with respect to packet handling is that
unlike active networks, the metadata is not a contract on how
the data should be handled but rather what the data is. The
network provider retains complete control of how the packets
are handled within the network and can fine tune policies to
offer the best service for that type of content.

In this paper, we focus on a typical service differentiation
use case and show how our architecture can be used to
provide different levels of fine-grained traffic prioritization that
are not feasible through traditional packet header inspection
techniques. We have developed a network ontology to describe
packets and flows and example policies to fine tune the levels
of service that they are offered. We have also developed
a simulation toolkit in NS2 to implement aspects of our
proposed architecture allowing us to simulate various scenarios
and how policies can be expressed to offer desired services.

II. PROPOSED ARCHITECTURE

The policy based networks managed using our framework
are envisioned as a multi-tier system. A typical enterprise can
be viewed as a collection of multiple Autonomous Domains
(AD) that may each be separately managed. Within each
AD, there may be multiple sub-domains. In our architecture,
policies can be classified as enterprise wide, specific to an
AD or specific to a sub-domain within an AD. Policies in the
system are distributed to the various ADs that are responsible
for enforcement of those policies within that domain and all
contained sub-domains. Each sub-domain, in turn, is respon-
sible for enforcing policies specific to that sub-domain and
so on thus providing a hierarchical policy enforcement. At
the lowest level of this hierarchy is an adaptation layer that is
responsible for translating the high level policies into low level
protocol specific configuration routines that can be applied to
the various network elements that are being managed.

Built into the architecture is a policy validation mechanism.
All network management policy changes specifically, adding
new policies, modifying existing policies and deleting policies
are first examined for correctness and validity before being
accepted into the system. Through this checking, the overall
consistency of the system can be maintained. The validation
actions themselves are expressed through policies set forth
typically by an enterprise network administrator. Figure 1
illustrates the various components of our proposed architecture
as applied to a generic enterprise comprised of several ADs
managed by different administrators (this could be due to
the departments being in different geographical locations,
company policy etc.) and may potentially contain equipment
from multiple vendors (our terminology is derived from [4]).

The Enterprise Policy Data Store (EPDS) is a central
repository of all of polices that govern the enterprise. The
EPDS contains a superset of all policies for each policy
repository within the system. In addition, the EPDS stores any
policies that govern the Enterprise Policy Arbitrator (EPA).
Internally, the EPDS can be setup to be a hierarchical data
store where for example, enterprise wide policies can be
stored separate from departmental policies. Each departmental

Fig. 1. Proposed Architecture

Policy Repository (PR), as part of its initialization, will contact
the EPDS to obtain the set of policies that are relevant to
this PR. This includes the enterprise wide policies and any
department and sub-department specific policies. The EPDS
is constantly synchronized with the PRs in the system. Any
policies approved for addition to a PR will be also forwarded
to the EPDS so that if that PR were to crash, it can come back
up and retrieve its original state from the EPDS.

The Enterprise Policy Arbitrator (EPA) validates any new
policies that are being added/removed/modified to the system.
The EPA is responsible for conflict resolution, dominance
check, bounds check, relation checks, consistency checks,
feasibility check etc. The EPA uses the policies stored within
the EPDS to perform these validation checks. The EPA is
governed by a set of its own policies that define how it does
the arbitration, validation and other checks. In this manner,
the EPA ensures that any policy entered into the system
conforms to certain global system constraints. All policies that
are submitted to a PR are first forwarded to the EPA. The EPA
is responsible for validating this policy against the policies in
the EPDS and either admits or rejects this submission. Based
on the response received from the EPA, the local PR either
installs the new submission or rejects it.

The Policy Repository (PR) is a data store for a collection
of policies. Typically this could be a AD specific PR (AD-
PR), department or sub-department specific PR (referred to
as local-PR) etc. The AD-PR contains all policies specific
to the enterprise and any policies specific to all departments
(and sub-departments) that are part of this AD. Each PR in
the system is synchronized with its parent PR and at startup,
retrieves all its policies from this parent. In this hierarchy,
the EPDS is the root parent. An AD-PR will retrieve all
policies from the EPDS including all enterprise wide policies,
all AD specific policies and all policies for any contained
departments or sub-departments. A departmental local-PR on
startup will contact an AD-PR to retrieve all relevant policies,
including enterprise specific policies, AD specific policies and

any department specific policies. Polices can be added, deleted
or modified from a PR through a Policy Editor. Any such
changes (regardless of whether the change is in an AD-PR
or a Local-PR) are first forwarded to the EPA for validation.
If they are consistent, the EPA applies these changes into the
EPDS. This addition will propagate to the PR chain so that
all the PRs in the hierarchy are updated. The synchronization
between the EDPS and the PRs (and between AD-PRs and
Local-PRs) can be through database replication or application
level write throughs with distributed transaction support.

The Policy Decision Point (PDP) is the entity that is
responsible for reasoning over the network traffic utilizing
the content metadata, network state and other contextual
information available to it and determining the policies that
need to be enforced. Each PDP operates with policies that
are stored in a corresponding PR. PDPs can be at different
levels, administrative domain (AD-PDP), department or sub-
department specific PDPs (local-PDP) etc. The PDP is respon-
sible for reasoning over the policies (using its Configuration
Reasoner) in its local-PR and translating them into commands
that can be sent to PEPs for enforcement (to the PEP’s
Configuration Conformance Enforcer). Additionally, the PDP
is responsible for reacting to events coming from managed
PEPs or subordinate local-PDPs that cannot be resolved at the
local-PDP level. In this manner, the PDP acts as the decision
making entity within the framework, the decisions being made
at multiple levels depending on the severity of the trigger.
The PDPs closer to the device deal with policies that are low
level, fine grain and possibly device/protocol specific and the
PDPs higher up the tree deal with more abstract and aggregate
policies.

The Policy Enforcement Point (PEP) is the entity responsible
for enforcing the policies at the device level. It resides on
the managed devices and is responsible for installing and
monitoring the health and status of a network device. PEP’s
main responsibilities and actions are:

• To request and store its configuration from the local-PDP
that is responsible for this device

• To delegate any policy decisions to the local-PDP by
extracting content metadata from data packets and adding
to this description, any additional information that may
be useful to the local-PDP

• Report errors and status updates to the local-PDP
The PEP is a vendor/device specific network management

protocol. The PEPs collectively form the adaptation layer to
abstract any device specific details into a normalized interface
represented using the standard system ontology.

The Network Ontology (NetOnto)is the OWL ontology
specified by the service provider or enterprise that is used
to mark up the content of data packets conveying information
such as application profiles (security requirements, delay, jitter
etc.) and user profiles (customer paying more for service, end
device capabilities). By using OWL rather than simple XML,
the language is semantically richer and highly extensible
which is very important especially when we have interdomain
interactions (such as peering arrangements, SLAs etc). Policies

are written using the concepts defined in NetOnto using SWRL
as the rule language. The content descriptions are carried
in the packet headers either as directly embedded, contain
a URL to the content description or use UUIDs that imply
a certain type of content. A PEP extracts this description
and adds to it, any extra contextual information including
aspects such as network state (congestion, link failures etc),
network technology (wired, hybrid, MANET, cellular) etc.
This information is then sent to the PDP and actions are
invoked based on the response. The response back from the
PDP will cause specific configuration to be installed by the
PEP on the device (for example, updates to IPtables, addition
of static routes and priorities, setup a label switched path etc).

The Policy Editor (PE) is the component that is used by a
system administrator to view, add, modify and delete existing
policies. The interface is typically a GUI allowing for ease
of operation. PEs can be at different levels. The Enterprise
Policy Editor (E-PE) provides a way for an enterprise system
administrator to specify enterprise wide policies. An Arbitrator
Policy Editor (A-PE) allows an enterprise system administrator
to specify policies that drive the EPA. Similarly, an AD Policy
Editor (AD-PE) allows an ADs system administrator to specify
AD specific policies. In general, a user uses the PE to request
changes to be made to a PR. This request will pass through
the EPA validation and the user receives an acknowledgement
of whether or not the requested change is allowed or rejected.
Additionally, the PE also offers views of the managed network
such as topology views, status of network devices and links
etc.

Utilizing this framework, devices can now be deployed in a
network and policies specified that can provide specialized
services (content adaptation, forwarding priorities, resource
reservations etc) to data packets. At each interim device,
packets are inspected to see if they carry a semantic header.
These packets are then offloaded to a separate forwarding path.
The semantic header is extracted, any additional contextual
detail available to the PEP is added to complete the OWL
description and sent to the PDP for reasoning. We use OWL’s
abbreviated XML encoding format for this purpose. The PDP
runs a reasoner that takes the OWL description and SWRL
rules to determine the actions that need to be initiated. This
information is then conveyed back to the PEP to be applied
to the offloaded packets (and possibly to the express lane) to
realize the necessary policies.

Fig. 2. Packet Flow

III. TYPICAL USE CASE

The use case we consider in this paper is that of a secure
enterprise that wants to enforce prioritization on types of
content that can flow across the links comprising its network.
The enterprise has profiled its network and assessed security
credentials to all the links and routers. As an example, a link
that is fully within the premises of the enterprise (physically
secure) is assessed as a “safe” link, one that is a VPN
running over an external service providers network may be
assessed as “potentially unsafe” while a wireless RF hop
may be assessed as “unsafe”. The enterprise applications are
“smart” and can encode content level tags into the data packets
that carry semantic information about the content as well
as the application/user/device. For this example, as we are
interested in the security semantics, applications additionally
provide information about the sensitivity of the content (such
as secret, top secret or normal), type of content and the security
credentials of the context within which they run. For such an
enterprise, the following policies would be appropriate:

• Only “Safe” links can be used to carry “TopSecret” data
• All data over “Open” links need to be encrypted
• Restrict multimedia flows in the network to max of 75%

link capacity
• Allow admin traffic preferential service over network

backups
• Allow user access to data only if user clearance is high

enough

IV. SIMULATION TOOLKIT

We used NS2 to simulate such an enterprise. The network
topology considered was a random network with links classi-
fied with a “security” tag that defined their safety levels. We
assume the nodes belong to a single AD and run a link state
routing protocol. We modified the standard FTP/CBR appli-
cations to allow for the specification of semantic descriptions
into the packet streams. For the network ontology, we used
Protege as the editor for specifying our ontology. Jess was
used as the reasoning engine. The choice of Jess was mainly
motivated by its easy integration with Protege. Other reasoning
engines can be used as a replacement if desired.

To begin, we defined an ontology to represent our enterprise.
The ontology is available online at [1]. In our implementa-
tion, our ontology also contains special instances of classes
representing the various actions that a PEP should take such
as dropping data, encrypting data etc. These special instances
also contain the low level primitive commands that need to
be invoked to realize the necessary behavior. In our case,
these commands are expressed as a snippet of Tcl code that
can be evaluated by NS2. For example, a policy such as
All unencrypted secret data over “open” links need to be
encrypted can be expressed logically in SWRL as:
DataTraffic(?d) ∧
datasensitivity(?d,?sensitivity) ∧
Secret(?sensitivity) ∧
encryptionstatus(?d,?encryptstatus) ∧

UnEncrypted(?encryptstatus) ∧
nextHop(?d,?nexthop) ∧
securityLevel(?nexthop,?securitylevel) ∧
Open(?securitylevel) ∧
EncryptData(?action)

→ inferredAction(?d,?action)
The EncryptData instance has the following Tcl command
encoded in it indicating the device understandable actions that
need to be taken.

set clsfr [get-classifier $interimRouterId]
$ns at [$ns now] ‘‘$clsfr install-interceptor

encryptdata $flowid $srcId $sport
$destId $dport $qdelay $overhead’’

Using this methodology, we can now define the various
actions that a PEP could take and assign to each of these
actions, the corresponding primitive commands (Tcl snippets).
The PDP was implemented as a Java process that received
OWL streams from a client PEP (a network router within
NS2), invoke the reasoner and send back the Tcl commands
depending on the actions that needed to be invoked. The PEP
(NS2) would then excute the commands received from the
PDP. The Protege IDE served the role of a Policy Editor.
Using this framework, we implemented our typical use case
scenarios.

A Traffic differentiation use case. In this experiement, a
typical dumbell shaped topology was chosen with senders
on one side and receivers on the other. The routers were
configured to support class based queues. We simulated VBR
and CBR streams over the links using applications that could
embed tags into the data packets. Our semantic flow classifier,
upon receiving a packet, constructs an OWL description of
the stream. This information includes information gathered
from the packet itself and additional contextual information
such as current queue lengths, next hop and network topology
information. The reasoner then reasons over the streams to
identify the correct classes that need to be applied to the
packet. Figure 4 and Figure 5 show the observed goodput of a
mixture of 2VBR and 2CBR streams. In Figure 4, the network
is responding by inferring that there is a high priority admin
traffic (surveillance video) that needs to be given the available
bandwidth currently being used by other background admin
traffic (network backups in this case). In Figure 5, the network
recognizes that the CBR streams are user video streams and
limits the impact of this traffic to network backups allowing the
network backups to proceed as before. Using semantic tags and
associated rules, the reasoner is smart enough to differentiate
between a network surveillance video (admin traffic) and a
regular movie clip which traditional techniques such as packet
header inspection cannot because both will appear as standard
MPEG flows. In addition, the reasoner can also specify intra-
flow packet prioritization driven by policies [8].
AdminTraffic(?d) ∧
CodeData(?action) →

inferredAction(?d,?action) ∧
newflowid(?action, 2)

UserMultimediaTraffic(?d) ∧
CodeData(?action) →

inferredAction(?d,?action) ∧
newflowid(?action, 12)

Fig. 3. Sample OWL Description

Fig. 4. Observed Goodput

V. RELATED WORK

Policy based networks and approaches have been the focus
of extensive research in recent years. Quality of service
oriented initiatives such as Intserv[6] and Diffserv[5] rely
on policies to drive flow classification, admission control,
resource reservations etc. However, the policies used are
limited in their expressibility and restricted to traffic for-
warding semantics with little support for features such as
content adaptation, specialized routing etc. In this respect,
the Active Networks[11], [2] took the approach of allowing
a more generic per packet handling semantic with the packets
determining what the router should do with them. A key
differentiator between our approach and the traditional AN
approaches is that while we rely on tags in the packet stream,
it is the router (using its specified policies) that controls how
the packet is handled and not the other way. [10], [3] are
relevant work directed at development of formal ontologies
and tools to facilitate network management and control.

Fig. 5. Observed Goodput

VI. CONCLUSION

In this paper, we present our architecture for realizing
intelligent policy based networks. The framework relies on the
use of smart decision points that can reason over contextual
descriptions of data streams to invoke policy decisions that
are most appropriate for that stream. Packets are augmented to
carry semantic rich tags decribing their content. A simulation
framework and an example ontology is also presented with
its application to an use case example. We are currently
implementing additional content adaptation capabilities that
can be tested out in the simulator and looking into mech-
anisms for policy aggregation, conflict resolution, validation
and prioritization.

REFERENCES

[1] http://www.cs.umbc.edu/ kodeswar/ontologies/NetworkOnto.owl.
[2] D. S. Alexander, W. A. Arbaugh, M. Hicks, P. Kakkar, A. Keromytis,

J. T. Moore, C. A. Gunter, S. M. Nettles, and J. M. Smith. The
SwitchWare active network architecture. IEEE Network Magazine,
12(3):29–36, 1998. Special issue on Active and Controllable Networks.

[3] F. Alonso, R. Fernandex, S. Frutos, and J. Soriano. Defining a semantic
web-based framework for enabling automatic reasoning on cim-based
management platforms. International Journal of Computer Science,
1(2):99–110, 2006.

[4] A.Westerinen, J.Schnizlein, J.Strassner, M.Scherling, B.Quinn,
S.Herzog, A.Huynh, M.Carlson, J.Perry, and S.Waldbusser. RFC 3178:
Terminology for Policy-Based Management, November 2001.

[5] S. Blake, D. L. Black, M. A. Carlson, E. Davies, Z. Wang, and W. Weiss.
An Architecture for Differentiated Services, December 1998. Status:
INFORMATIONAL.

[6] R. Braden, D. Clark, and S. Shenker. RFC 1633: Integrated Services in
the Internet Architecture: an Overview, June 1994.

[7] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and
M. Dean. Swrl: A semantic web rule language combining owl and
ruleml. Technical report, W3C Member submission 21 may 2004, 2004.

[8] S. B. Kodeswaran and A. Joshi. Content and context aware networking
using semantic tagging. In ICDEW ’06: Proceedings of the 22nd
International Conference on Data Engineering Workshops (ICDEW’06),
page 77, Washington, DC, USA, 2006. IEEE Computer Society.

[9] D. L. McGuinness and F. van Harmelen. Owl web ontology language
overview. Technical report, W3C Recommendation 10 February 2004,
2004.

[10] S. Quirolgico, P. Assis, A. Westerinen, M. Baskey, and E. Stokes. Toward
a Formal Common Information Model Ontology, volume 3307, pages
11–21. 2004.

[11] D. Wetherall, J. Guttag, and D. Tennenhouse. Ants: A toolkit for building
and dynamically deploying network protocols, 1998.

