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Current access control research follows two parallel themes: many efforts focus
on developing novel access control models meeting the policy needs of real world
application domains while others are exploring new policy languages. This paper
is motivated by the desire to develop a synergy between these themes facilitated
by OWL. Our vision for the future is a world where advanced access control
concepts are embodied in models that are supported by policy languages in a
natural intuitive manner, while allowing for details beyond the models to be
further specified in the policy language. In this paper we specifically study the
relationship between the Web Ontology Language (OWL) and the Role Based
Access Control (RBAC) model. Although OWL is a web ontology language and
not specifically designed for expressing authorization policies, it has been used
successfully for this purpose in previous work. We show two different ways to
support the NIST Standard RBAC model in OWL and then discuss how the
OWL constructions can be extended to model attribute-based RBAC or more
generally attribute-based access control.
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1 Introduction

We live in a world awash with information. Much of it is personal, recording
detailed information about our daily activities – healthcare data, transportation
information, financial records, telephone usage, etc. Steady advances in infor-
mation integration, data mining and machine learning mean that much can be
learned from aggregating and correlating this data. This can produce important
benefits, both to us individually and to society as a whole. Yet in doing so,
we must protect the confidentiality of sensitive information and appropriately
respect the privacy of individuals.

Traditional access control policies are often based on the concept of “need
to know” and are typified by predefined and often rigid specifications of which
principals and roles are pre-authorized to access what information. This can and
does lead to systems which discourage the sharing of information by requiring
principals to be known in advance, depreciating interoperability, ignoring con-
text, and being unresponsive to novel and unexpected situations. One of the
recommendations of the 9/11 commission [1] was to find ways to move from this
traditional perspective toward one that privileges the “need to share”. This high-
level goal needs to be explored and understood concretely and technically, i.e.,
what new concepts, principles and systems promote information sharing while
maintaining appropriate information confidentiality and privacy.

As applications become more sophisticated, intelligent, and function in open
and dynamic environments, they require greater degrees of decision making and
autonomy. A long range vision is to have societies of intelligent, adaptive, au-
tonomous agents, but even today, we find the new levels of autonomy emerging in
infrastructures such as Grid computing, web services and pervasive computing.
These systems must exchange information about services offered and sought and
negotiate for information sharing. A new challenge is to secure these applications
in open, dynamic environments.

Two parallel themes in access control research are prominent in recent years.
One has focused on efforts to develop new access control models to meet the
policy needs of real world application domains. These have led to several suc-
cessful, and now well established, models such as the RBAC96 model [2], the
NIST Standard RBAC model [3] and the RT model [4]. This line of research
continues with recent innovations such as Usage Control models [5, 6]. In a par-
allel, and almost separate thread, researchers have developed policy languages
for access control. These include industry standards such as XACML [7], but
also academic efforts ranging from more practical implemented languages such
as Ponder [8] to theoretical languages such as [9] and finally to Semantic Web
based languages such as Rei [10] and KAoS [11]. Policy languages grounded in
Semantic Web technologies allow policies to be described over heterogeneous do-
main data and promote common understanding among participants who might
not use the same information model. This paper is motivated by the considera-
tion that these two parallel efforts - accesss control models and Semantic Web
based policy languages - need to develop synergy to enable the development
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of security infrastructures with verifiable security properties for emerging open,
and dynamic environments.

A policy language in the abstract without ties to a model gives the designer
too much freedom and no guidance. Conversely a model may not have the ma-
chinery to express all the policy details of a given system or may deliberately
leave important aspects unspecified. For instance the NIST Standard RBAC
model only allows for the specific constraints of static and dynamic separation
of duties. There is no room for any additional constraint. On the administrative
front, the NIST Standard RBAC model is silent on how users and permissions
are added to roles. On both counts a policy language built around the NIST
Standard RBAC model would be useful in specifying these additional but very
important details that are not captured directly in the model. Our vision for
the future is a world where mature access control concepts are embodied in
models, which are supported by policy languages in a natural intuitive manner,
while allowing for details beyond the models to be further specified in the policy
language. We expect a many-to-many relation between access control models
and policy languages in that a single model such as the NIST Standard can be
supported by multiple policy languages, and conversely a single policy language
such as Ponder can support multiple models.

Now what does it mean for a policy language to support a model? Clearly
there must be some way of expressing the components and behavior of the model
in the language. To be useful this expression must be “natural” in some intuitive
sense so that it provides leverage to a human in thinking along the lines of the
model while expressing model details in the language. As we will see an expressive
language will have multiple ways of supporting a model, each with their own pros
and cons. In the context of this paper, OWL [12] can represent roles as classes
and sub-classes in one approach and as attributes in an alternate approach. None
of this should be surprising to computer scientists.

In this paper we specifically study the relationship between OWL and RBAC.
OWL is a web ontology language and not specifically a language for authoriza-
tion policies. Nonetheless it is not surprising that a powerful language such as
OWL can support RBAC. Our motivation for using OWL is that it is a W3C
standard that has been widely used for defining domain vocabularies, and has
also been used previously to develop policy languages for the Web such as Rei
and KAoS. The motivation for picking RBAC is due to its real world success
and considerable academic study.5 Support for variations of RBAC in OWL can
thus have immediate practical application.

The paper is organized as follows. First we show two different ways to support
the NIST Standard RBAC model in OWL as discussed above. Then we show how
the OWL constructions can be extended to model attribute-based RBAC [13]

5 In future work we would like to extend this study to the relationship between OWL
and more elaborate models such as Usage Control, as well as extend OWL with
additional deontic policy elements such as in Rei but this is beyond the scope of this
paper.
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or more generally attribute-based access control. We conclude the paper with a
few suggestions for future work.

Next show how this construction can be extended to capture additional con-
straints. Specifically there are two kinds of constraints beyond static and dynamic
separation of duties from the NIST Standard RBAC model that are used in ex-
pressing MAC (mandatory access control) in RBAC [14]. These are as follows:

– Coupling constraints require that a user can be in role A if and only if
the user is also in role B. Coupling constraints can be static (applying to
user-role assignment) or dynamic (user-role activation).

– Exclusive assignment constraints require that a user must be assigned
to exactly one role in a specific conflict set of roles. Note that separation of
duty constraints require assignment to at most one role from a conflict set.
Exclusive assignment insists that one and no more than one role be assigned.

Both these constraints can be static (applying to user-role assignment) or
dynamic (user-role activation). In the absence of these constraints the NIST
RBAC Standard model is not able to support MAC. We show how OWL can
easily accommodate these constraints. More generally we sketch out how OWL
can express the constraints of RCL2000 [15].6

2 Semantic Web and OWL

The Semantic Web refers to both a vision and a set of technologies. The vision
was first articulated by Tim Berners-Lee as an extension to the existing web in
which knowledge and data could be published in a form easy for computers to
understand and reason with. Doing so would support more sophisticated software
systems that share knowledge, information and data on the Web just as people
do by publishing text and multimedia. Under the stewardship of the W3C, a
set of languages, protocols and technologies have been developed to partially
realize this vision, to enable exploration and experimentation and to support
the evolution of the concepts and technology.

The current set of W3C standards are based on RDF [16], a language that
provides a basic capability of specifying graphs with a simple interpretation as
a “semantic network” and serializing them in XML and several other popular
Web systems (e.g., JSON). Since it is a graph-based representation, RDF data
are often reduced to a set of triples where each represents an edge in the graph
(Person32 hasMother Person45) or altrnatively, a binary predication (e.g., has-
Mother(Person32,Person45). The Web Ontology Language OWL [17] is a family
of knowledge representation languages based on Description Logic (DL) [18] with
a representation in RDF. OWL supports the specification and use of ontologies
that consist of terms representing individuals, classes of individuals, properties,
and axioms that that assert constraints over them. The axioms can be realized as

6 Alternately we can state this as a conjecture if we run out of time to sketch this.
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simple assertions (e.g., Woman is a sub-class of Person, hasMother is a property
from Person to Woman, Woman and Man are disjoint) and also as simple rules.

The Semantic Web technologies have received significant experimentation
and deployment over the last ten years. Studies of public RDF documents on
the Web [19] have shown that there are at least 104 defined ontologies in use, 108

accessible RDF data documents that comprise perhaps 1010 triples. Additional
standards have been published or are nearing completion for an RDF query lan-
guage [20], a convention for embedding RDF content within HTML documents
[21], and specialized vocabularies.

The use of OWL to define policies has several very important advantages that
become critical in distributed environments involving coordination across mul-
tiple organizations. First, most policy languages define constraints over classes
of targets, objects, actions and other constraints (e.g., time or location). A sub-
stantial part of the development of a policy is often devoted to the precise speci-
fication of these classes, e.g., the definition of what counts as a full time student
or a public printer. This is especially important if the policy is shared between
multiple organizations that must adhere to or enforce the policy even though
they have their own native schemas or data models for the domain in question.
The second advantage is that OWL’s grounding in logic facilitates the trans-
late of policies expressed in OWL to other formalisms, either for analysis or for
execution.

3 ROWLBAC: RBAC in OWL

Our goal is to define OWL ontologies that can be used to represent the RBAC
security model and to show how they can be used to specify and implement access
control systems. In doing so, we are able to identify which portion of RBAC
can be modeled within Description Logic (DL), and which part requires other
logical reasoning. In this section, we define two different approaches to modeling
RBAC using OWL. For each approach, there is an ontology that defines the
basic RBAC concepts including subjects, objects, roles, role assignments, and
actions. Roles are central to RBAC and it is not surprising that much of the
complexity in an RBAC system revolves around how roles are represented and
managed. One aspect is the kind of RBAC system we want to model. Common
variations include the following [22]:

– Flat RBAC: users get permissions through roles, many-to-many user-role
assignment, many-to-many permission-role assignment, users can use per-
missions of multiple roles simultaneously.

– Hierarchical RBAC: Flat RBAC + must support role hierarchy
– Constrained RBAC: Hierarchical RBAC + must support static and dynamic

separation of duties (SOD)
– Symmetric RBAC: Constrained RBAC + must support permission-role re-

view

Our two approaches mainly differ in their representation of roles but they
support all combinations of the above features. Our ontologies also define some
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special types of actions, including those for RBAC control such as activating
a role, assigning a role, etc. and classes of actions to represent those that are
permitted and those that are prohibited. As part of access control or monitoring,
we need to recognize (or classify in DL) a specific action as being permitted,
prohibited or (perhaps) fulfilling an obligation.

In addition to the basic RBAC ontology, each approach also has an ontology
that models a specific domain ontology; defining the classes of roles, actions,
subjects and objects in the domain, their relations and attributes as well as
specifying which actions are permitted, prohibited or obligatory. For example,
if we are writing a policy to control use of devices in a wireless environment,
we will need to define appropriate roles (e.g., admin, powerUser, user, guest),
objects (e.g., printer, videoRecorder, display), and subjects.

To use the system, we will also need some data about instances (e.g., Mary,
Printer13) in the domain and some use cases to test the design where subjects
take on various roles and attempt to perform actions.

We use N3 syntax 7 for OWL in all our examples. Please refer to the Appendix
for an overview of N3.

3.1 Scenario

We use a single scenario to illustrate our ROWLBAC approaches so that we
can compare and contrast between them. We consider the case of US per-

sons and permissions associated with them. The role hierarchy consists of two
main classes: USPerson and ForeignPerson. USPerson is further divided
into Citizen, Resident, and Visitor and Residents can be either Permanent

Residents, Permanent Residency Applicants, or Temporary Residents.
Please refer to Figure 1 for details of this role hierarchy. A static separation of
duty constraint exists between Resident and Citizen, and Permanent Resi-

dent and Temporary Resident. Though a person may be both a Visitor and
a Temporary Resident, he is not allowed to activate both roles at once i.e. a
dynamic separation of duty constraint exists between Visitor and Resident.

The instances we use are Alice, and Bob. Alice’s possible roles are Citizen

and Permanent Resident, which should violate the static separation of duty
constraint as Permanent Resident is a subclass (meaning parent role) of Res-

ident and there is a SSOD constraint between Resident and Citizen. Bob’s
can be a Visitor, and a Temporary Resident. Alice activates her Citizen

role and now has the permission to Vote, Work, and perform Jury duty, which
are associated with Citizen role. She then deactivates her Citizen role and ac-
tivates the Permanent Resident role. She is still permitted to Work but can
no longer Vote or perform Jury duty. Bob activates his Visitor role and finds
that he is prohibited from Working. On activating his TemporaryResident

role, he causes a dynamic separation of duty violation. He now tries activating
the Citizen role but is not able to because it is not one of his possible roles.

7 http://www.w3.org/TeamSubmission/2008/SUBM-n3-20080114/
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L E G E N D P e r s o nU S P e r s o n F o r e i g n P e r s o nC i t i z e nP e r m i t t e d : V o t e ,W o r k , J u r y R e s i d e n t V i s i t o rP r o h i b i t e d :W o r kP e r m a n e n tR e s i d e n tP e r m i t t e d : W o r k T e m p o r a r yR e s i d e n tW o r k V i s aH o l d e rP e r m i t t e d : W o r k B u s i n e s sV i s a H o l d e rP e r m i t t e d : W o r k

C l a s s N a m eP e r m is s io nP r o h i b it io nS u b C la s sN a m eP e r m is s io nP r o h i b it io n
P e r m R e s i d e n c yA p p l i c a n tP e r m i t t e d : W o r k S t u d e n t V i s aH o l d e rP r o h i b i t e d : W o r k

Fig. 1. Our example scenario implements a role hierarchy for US Persons.

3.2 Common Elements

The main concepts of RBAC including actions, subjects, and objects are common
to both approaches of modeling RBAC with OWL.

Actions An Action is a class that has exactly one subject, which must be an
instance of the Subject class, and one object or resource, which must be an
instance of the Object class.

Action a rdfs:Class.

subject a rdfs:Property, owl:FunctionalProperty;

rdfs:domain Action;

rdfs:range Subject.

object a rdfs:Property, owl:FunctionalProperty;

rdfs:domain Action

rdfs:range Object.

This can be easily modified to make the object optional to describe actions
that to not have an object (e.g., login) and to have additional properties for time,
location, manner, instrument, etc. To control access, we introduce two important
Action subclasses for permitted and prohibited actions: PermittedAction and
ProhibitedAction. Every action is either permitted or prohibited and no action
can be both permitted and prohibited. We can express this in our ontology as:

PermittedAction

rdfs:subClassOf Action;
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owl:disjointWith ProhibitedAction.

ProhibitedAction

rdfs:subClassOf Action;

owl:disjointWith PermittedAction.

Action

owl:equivalentClass

[ a owl:Class;

owl:unionOf (PermittedAction ProhibitedAction) ].

Subjects The Subject class represents things that can serve as a subject of an
action. The RBAC ontology defines some key properties that a subject can have
(depending on the details of the representation) and leaves the specification of
additional properties and subclasses to the specific domain model.

Subject a rdfs:Class.

Objects The Object class represents things that can be the object of an RBAC
action and is basically defined as a class and can be given additional properties,
if required by the domain.

Object a rdfs:Class.

3.3 Approach 1: Roles as Classes

A natural way to represent RBAC roles in OWL is as classes to which individual
subjects can belong. We represent role hierarchies by OWL class hierarchies
in which the inheritance relation is the inverse of the role dominance relations,
meaning that the ordering is reversed: a role represented by a subclass dominates
a role represented by its superclass. This corresponds to the intuition that in role
hierarchies, members get more privilages as one moves up the hierarchy, while in
class hierarchies, classes get more attributes as you move down. Note that OWL
supports multiple inheritance.

Suppose we want to model the US Persons hierarchy; we will have three
base classes, Citizen, Resident, and Visitor, which are defined as subclasses
of a Role class. The other classes in the domain are defined as subclasses of
one of these classes. We have an active role, which is an ActiveRole, associated
with each role class in the ontology via the activeForm property. OWL classes
represents sets of individuals, so the Citizen class is the set of individuals who
have the Citizen role as one of their possible roles and the ActiveCitizen role
is the set of individuals who have activated their Citizen role. Since a subject
can activate a role only if it is one of her possible roles, each active role class is a
sub-class of its associated role class. In a flat RBAC system we can define a class
and active role class for each possible role without defining subclass relationships
between them. (In the following examples, rbac:X represents the namespace in
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which the term, X, is defined) Role and ActiveRole are defined in our ontology
as

rbac:Role a owl:Class.

rbac:ActiveRole a owl:Class.

In order to model roles using this approach, each role is defined as follows

<RoleName> rdfs:subclassOf rbac:Role.

<ActiveRoleName> a rbac:ActiveRole,

rdfs:subclassOf <RoleName>.

<RoleName> rbac:activeForm <ActiveRoleName>.

The US Person role class would be represented as

USPerson rdfs:subClassOf rbac:Role.

ActiveUSPerson a rbac:ActiveRole,

rdfs:subClassOf USPerson.

USPerson rbac:activeForm ActiveUSPerson.

If Alice is in the Citizen role and has activated it, and Bob is in Visitor and
TemporaryResident role, we would assert

Alice a Citizen, ActiveCitizen.

Bob a Visitor, TemporaryResident.

Hierarchical roles. Using OWL classes to represent RBAC roles makes adding
hierarchical roles easy. We can use rdfs:subclassOf to define sub roles such as

<RoleName> rdfs:subclassOf <SuperRoleName>.

If we want Citizen, Resident, and Visitor roles to be sub-roles of US Per-

son, and Permanent Resident and Temporary Resident to be sub-roles of
Resident, we need add the following assertions

Citizen rdfs:subclassOf USPerson.

Resident rdfs:subclassOf USPerson.

Visitor rdfs:subClassOf USPerson.

PermanentResident rdfs:subclassOf Resident.

TemporaryResident rdfs:subclassOf Resident.

Static separation of duty An RBAC static separation of duty constraint
specifies pairs of roles where any subject can only have one of the pair as a
possible role. We might, for example, specify that no one have access to both
the Citizen and Resident role. We can specify this constraint in our OWL
representation by asserting that the two classes that represent them are disjoint.
We use an existing OWL property, disjointWith, for this purpose

Citizen owl:disjointWith Resident.
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Dynamic separation of duty An RBAC dynamic separation of duty con-
straint holds between two roles when no subject can have both simultaneously
active. Again, we can use OWL’s disjointWith property to specify that this con-
straint holds but this time between the active roles associated with the classes.
If we want a dynamic separation of duty constraint to hold between the Visitor

and Temporary Resident roles, we need to assert

ActiveVisitor owl:disjointWith ActiveTemporaryResident

Associating Permissions with Roles In order to associate permissions, or
prohibitions with roles, we use OWL class expressions 8 to create classes of per-
mitted or prohibited actions. As only Citizens are allowed to vote, we create an
action, PermittedVoteAction, which is the subclass of rbac:PermittedAction

and whose subjects can only be individuals who have activated their Citizen

role.

PermittedVoteAction a rdfs:Class;

rdfs:subClassOf rbac:PermittedAction;

owl:equivalentClass [

a owl:Class;

owl:intersectionOf

( Vote

[ a owl:Restriction;

owl:allValuesFrom ex:ActiveCitizen;

owl:onProperty rbac:subject

]

)

] .

Enforcing RBAC In this approach, we exploit the ability of DL to easily model
classes and use OWL constructs to represent roles, subjects, actions, and to
associate permissions/prohibitions with roles. We use DL subsumption reasoning
to figure out whether users are permitted to perform actions associated with
roles. However, for enforcing static separation of duty and dynamic separation of
duty constraints, and for role activation and deactivation we use rules in N3Logic,
which is a rule language that allows rules to be expressed in a Web environment
using RDF [23]. Other rule languages that support OWL could also have been
used instead.

For enforcing dynamic separation of constraints we use the following rule

{ ?A a ActivateRole;

subject ?S;

object ?RNEW.

?RNEW activeForm ?ARNEW.

8 OWL Class Expressions: http://www.w3.org/TR/2004/REC-owl-guide-20040210/
#ComplexClasses
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?S a ?RCURRENT.

?RCURRENT activeForm ?ARCURRENT.

?ARNEW owl:disjointWith ?ARCURRENT.

} => { ?A a ProhibitedRoleActivation; subject ?S;

object ?RNEW; role ?RCURRENT;

justification "Violates DSOD constraint".}.

The role activation rule is

{ ?ACTION a ActivateRole;

subject ?SUBJ;

object ?ROLE.

?SUBJ a ?ROLE.

?ROLE activeForm ?AROLE.

?AROLE a ActiveRole.

} => { ?ACTION a PermittedRoleActivation;

subject ?SUBJ; object ?ROLE.

?SUBJ a ?AROLE }.

3.4 Approach 2: Roles as Values

An alternate way to model roles is as instances of the generic Role class using
two properties role and activeRole to link a subject to her possible and active
roles, respectively. This representation is on the surface simpler than the previous
one, but it requires special rules to implement hierarchical roles. We define the
role and activeRole properties as follows

rbac:Role a owl:Class.

rbac:role a owl:ObjectProperty;

rdfs:domain rbac:Subject;

rdfs:range rbac;Role.

rbac:activeRole rdfs:subPropertyOf rbac:role.

Note that the activeRole property is a sub-property of role, since a subject’s
activated roles must be a subset of her possible roles. Since it is a sub-property,
it inherits the domain and range of the role property. For our running example,
we define flat roles as instances of Role.

USPerson a rbac:Role.

Citizen a rbac:Role.

Resident a rbac:Role.

If Alice is in the Citizen role and has activated it, and Bob is in Visitor

and TemporaryResident role, we would assert

Alice rbac:role Citizen;

rbac:activeRole Citizen.

Bob rbac:role Visitor, TemporaryResident.
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Hierarchical roles Adding the capability to define role hierarchies is more
difficult in this representation and requires adding rules to the ontology, either
in SWRL [24] or N3 [23], depending on the kind of reasoner used. We start by
defining a property, subRole, which holds between two roles to state that one is
the sub-role of the other. We define subRole as

rbac:subRole a owl:TransitiveProperty;

rdfs:domain rbac:Role;

rdfs:range rbac:Role.

We can then use subRole to specify sub role relationships between roles and
create the role hierarchy. For example, portion of the scenario domain can be
defined as

Citizen rbac:subRole USPerson.

Resident rbac:subRole USPerson.

Visitor rbac:subRole USPerson.

PermanentResident rbac:subRole Resident.

TemporaryResident rbac:subRole Resident.

In order to model the roles using this approach, each role is defined as follows

<RoleName> a rbac:Role.

<RoleName> rbac:subRole <SuperRoleName>.

Static and dynamic separation of duty The representation of static and
dynamic separation of duty constraints is also more complicated here than in the
earlier ’roles as classes’ approach. It requires the introduction of properties to
link the constrained roles. We define two properties: ssod to represent static sep-
aration of duty constraints and dsod for dynamic separation of duty constraints
properties. These properties hold between role instances and are defined to be
symmetric and transitive.

rbac:ssod a owl:symmetricProperty, owl:TransitiveProperty;

rdfs:domain rbac:Role;

rdfs:range rbac:Role.

rbac:dsod a owl:symmetricProperty, owl:TransitiveProperty;

rdfs:domain rbac:Role;

rdfs:range rbac:Role.

For example, to specify a static separation of duty constraint between roles
Resident and Citizen and a dynamic separation of duty constraint between
Visitor and TemporaryResident, we would assert the following.

Resident rbac:ssod Citizen.

Visitor rbac:dsod TemporaryResident.
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Property Roles as Classes Roles as Values

Defining Roles

<RoleName> rdfs:subclassOf rbac:Role.

<ActiveRoleName> a rbac:ActiveRole.

<ActiveRoleName> rdfs:subclassOf <Role-

Name>. <RoleName> rbac:activeForm

<ActiveRoleName>

<RoleName> a rbac:Role.

Role Hierarchy <RoleName> rdfs:subclassOf <SuperRole-

Name>

<RoleName> rbac:subRole <SuperRole-

Name>

Permission Association OWL class expression <RoleName> rbac:permitted <Action>

Static Separation of

Duty Constraint

<Role1> owl:disjointFrom <Role2> <Role1> rbac:ssod <Role2>

Dynamic Separation of

Duty Constraint

<ActiveRole1> owl:disjointFrom <Active-

Role2>

<Role1> rbac:dsod <Role2>

Queries role activation permitted, separation of duty,

access monitoring

role activation permitted, separation of duty,

access monitoring

Enforcing RBAC Mostly using DL reasoning Mostly using rules

Table 1. There are two approaches to modeling RBAC in OWL – one in which roles
are represented as subclasses of a general Role class and another in which roles are
names instances of the general Role class.

Associating Permissions with Roles As roles in the domain are instances
of Role class, they can be directly associated with action that are permitted
or prohibited for individuals in that role. We introduce two properties namely
permitted and prohibited for this purpose.

rbac:permitted a rdfs:Property;

rdfs:domain Role;

rdfs:range Action.

rbac:prohibited a rdfs:Property;

rdfs:domain Role;

rdfs:range Action.

Consider the permitted actions, Vote, Work, and Jury Duty, associated with
the Citizen role

Citizen rbac:permitted Vote, Work, JuryDuty.

Prohibitions can be described similarly

Visitor rbac:prohibited Work.

Enforcing RBAC Though this approach leads to a more concise RBAC speci-
fication, we are unable to utilize DL reasoning for most of the reasoning including
role hierarchy reasoning, role activation, separation of duty constraints, and per-
mission/prohibition association. We need to introduce rules to do each of this.
As before, we have developed rules in N3Logic. Some rule examples follow.
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The following rules enfore the hierarchy for both the role and activeRole

properties.

# role inheritance.

{ ?S role ?R.

?R subRole ?R2

} => {?S role ?R2.}.

# activerole inheritance.

{ ?S activeRole ?R.

?R subRole ?R2

} => {?S activeRole ?R2.}.

For enforcing static separation of constraints we use the following rules

{ ?S role ?ROLE1, ?ROLE2.

?ROLE1 ssod ?ROLE2.

} => { [] a SSODConflict; subject ?S;

ssod-role ?ROLE1; ssod-role ?ROLE2}.

In order to check if an individual is permitted to perform an action, we check
if the permission is associated with any of her active roles

{ ?A a ?RACTION; subject ?S.

?RACTION a Action.

?ROLE permitted ?RACTION.

?S activeRole ?ROLE.

} => { ?A a PermittedAction;

role ?ROLE;

action ?RACTION; subject ?S }.

3.5 Comparing the two approaches

An advantage of defining roles as classes is that queries about a particular access
request (Can John use printer p43?) and queries about a general class of access
requests (Can every student use lab printers?) can be answered efficiently using
a standard DL reasoner through subsumption reasoning. We say that description
A subsumes description B when A logically entails B. Thus, professor using a
printer subsumes assistant professor using a color printer which might in turn
subsume John using printer p43. Given a description, either of a instance or
a class, a DL reasoner can efficiently find all of the other descriptions that it
subsumes and that are subsumed by it.

If we treat roles as values the specification is simpler and more concise but can
not exploit a DL reasoner’s ability to determine the subsumption relationships
between a query and all of the classes in our policy. We can, of course, still take a
description of an instance action (e.g., John using printer p43) and classify it as
either permitted or prohibited. What we can not do, is determine if a description
representing a generalized action is necessarily permitted or prohibited.
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Both these approaches, however, have a fundamental problem with managing
state changes due to the essentially monotonic nature of RDF/OWL [25]. This
implies non-monotonic state changes such as role deactivations, and modifying
role-permission assignments must be handled outside the reasoners. Once the
changes have been applied, the reasoners can be used for queries within the
context of the current state. Table 1 provides an overview of the differences
between the two approaches.

4 Discussion: Beyond RBAC

Our motivation is not just to model RBAC concepts in OWL, but to develop
a foundation on which we can build newer ideas for information assurance, in-
cluding attribute based access control and usage control. This section identifies
some issues that go beyond RBAC, some of the challenges for modeling them in
OWL, and possible approaches to accommodating them.

4.1 Attribute based access control

Representing access constraints based on general attributes of an action, includ-
ing constraints on its subject and object, follows naturally from our approach.
This provides direct support to a more general model of attribute-based access
control [26] which can be used even when the principals are unknown, assuming
that their attributes can be reliably determined.

For example, suppose we want to specify a policy constraint faculty can use
any printer located in a classroom. To do this we would first extend the domain
model to include a Place class to represent physical spaces with subclasses for
various subtypes (e.g., Office, Classroom, Lab) and a location property that links
an Object to a Place. Our constraint can then be easily expressed as a new class
of permitted action using a restriction or by a rule in N3 or SWRL. Here is how
it might be expressed as a rule in N3.

{ ?A a rbac:Action;

rbac:subject ?S;

rbac:object ?O.

?S a Faculty.

?O a Printer; location ?L.

?L a Classroom

} => { ?A a rbac:PermittedAction }.

The same constraint can easily be encoded in description logic without re-
sort to the rule sublanguage and correctly handled by a standard description
logic reasoner. We show the N3 rule form for clarity. More complicated cases
might involve roles and constraints on both the action’s subject and object. For
example, we could specify that A university member can use any device that is
located in her office.
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{ ?A a rbac:Action;

rbac:subject ?S;

rbac:object ?O.

?S a UniversityPerson; office ?L,

?O a Device; location ?L.

} => { ?A a rbac:PermittedAction }.

While this looks simple when expressed in a rule format, the constraint that
the value of the object’s location and subject’s office represents (in description
logic terms) a role value map, the inclusion which in a description logic system is
known to make computing subsumption undecidable [27], in general. However,
with suitable restrictions (e.g., to a Boolean combination of basic roles), the use
of role value maps does not effect decidability or worst-case reasoning complexity
[28].

Note that a description logic reasoner’s ability to compute subsumption can
be used to provide general answers to a question like “What devices can Marie
use” by generating descriptions from the subsuming policy classes.

As a member of the faculty, Marie can use any printer located in a
classroom. As a university member, she can use any devices located in
her office.

4.2 Security analysis

An administrative policy specifies and constrains who can make what kinds
of changes to a policy. Exploring the consequences of an administrative policy
involves reasoning about possible changes in a fundamental way. Given an ad-
ministrative policy and an initial object policy, one might want to know whether
it is possible for the access control policy to evolve in such a way that some indi-
vidual comes to have simultaneous access to targets X and Y or whether every
subject in some role will always have access to a given target [29]. In general, to
answer such queries requires us to consider all the possible changes to a policy,
both adding and subtracting roles and privileges, that might take place.

While some queries about the consequences of an administrative policy can
be handled by current OWL reasoners, others can not. We will only give an
example of a kind of constraint that can be modeled in OWL and an example of
one that can not. Our examples will use the RT role-based policy language [30]
designed to support highly decentralized attribute-based access control. RT has
a simple model that allows one to delegate authority for characterizing principals
to other entities who are better able to do so. For example, to grant access to
a lab printer to students, the IT department might delegate to the lab director
the authority to identify associated students.

The RT has four types of statements shown in table 2. Type 1 statements
introduce individual principals to roles. For example, Alice.friend ← Bob iden-
tifies Bob as a friend of Alice. Type 2 statements provide a form of delegation
via the implication that principals in one role are necessarily in another. For
example, the statement Alice.friend ← Bob.friend specifies that if a principal is
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type syntax description

1 A.r ← D simple member
2 A.r ← B.r1 simple inclusion
3 A.r ← B.r1.r2 linking inclusion
4 A.r ← B.r1 ∧ C.r2 intersection inclusion

Fig. 2. The RT policy language has four simple types of policy rules.

type OWL encoding

1 D a A-r
2 B-r rdfs:subClassOf A-r
3 problematic

4 [owl:intersectionOf (B-r1 C-r2)] rdfs:subClassOf A-r.

Fig. 3. RT rules of types 1, 2 and 4 can be easily encoded in OWL. Type 3 rules are
problematic and require role composition.

a friend of Bob, then they are also a friend of Alice. Type 3 statements allow
one to delegate to all members of a role. For example, the statement Alice.friend
← Bob.friend.friend says that any friend of Bob’s friends is also a friend of Al-
ice. Type 4 statements introduce intersection – a principal must be in two roles
in order to be included. For example, Alice.friend ← Bob.friend ∧ Carl.friend
states that only principals who are both Bob’s friends and Carl’s friends are in
the set of Alice’s friends. Disjunction is provided through multiple statements
defining the same role.

We can easily represent the RT roles as OWL classes and principals as in-
stances. Since N3’s syntax won’t allow us to ’dot’ in a class name, we use A-r
instead of A.r to denote A’s r role. Figure 3 shows how the different RT state-
ments are encoded, assuming A-r, B-r and C-r are defined as owl:Class.

RT’s type 3 roles do not have a clean representation in OWL. Modeling these
requires descriptions that involve “role chains” also knows as “role composition”
in the description logic literature. Unrestricted role composition can introduce
undecidability and this feature is not included in the current OWL standard,
although a restricted form is included in a proposed OWL 1.1 standard. We can,
of course, model such role chain constraints as rules, but current OWL reasoners
will not guarantee complete reasoning in all cases. We believe, however, that the
use of role composition in RT can be handled by a DL reasoner. A more serious
problem arises, however, when one considers reasoning about the consequences
of policy changes. Given OWL’s foundation in classical first order logic, it works
well when modeling positive changes (i.e., additions of sentences) but not when
modeling negative ones (i.e., retraction of sentences).

A given policy state evolves into another as principals issue and revoke policy
statements. We want to analyze whether security properties under the assump-
tion that some of roles are under our control or otherwise trusted, but others are
not. This can be modeled [29] as two types of roles used to determine the reach-
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shrink restricted shrink allowed

growth restricted necessary and sufficient problematic

growth allowed necessary drop statements

Fig. 4. RT roles are defined as class descriptions in OWL. Defining shrink restricted
roles in OWL is problematic, since it is based on a monotonic logic. Growth restricted
roles are definable as completely defined classes and growth enabled roles as the usual
(in DL) partial descriptions.

able policy states – growth-restricted and shrink-restricted. Growth-restricted
roles will not have new statements defining them added and shrink-restricted
roles will not have statements defining them removed. These restrictions are not
actually enforced, but are assumptions underlying the analysis. Their presence
enables the analysis to provide us with reassurances of constraints like, “So long
as the people I trust don’t change the policy without first running the analysis,
only company employees will be able to access the secret database.”

How can we model these additional constraints, growth and shrink restric-
tion, using OWL concepts? Representing a shrink restricted description is trivial,
since OWL is based on a monotonic logic. All OWL descriptions are shrink re-
stricted. On the other hand, roles that are neither shrink restricted nor growth
restricted can be handled by simply dropping all RT statements defining them.
Unfortunately, representing growth restricted roles that are not also shrink re-
stricted is somewhat problematic. This is because, given a specification, partial
or complete, of a class, it is not possible in OWL’s framework to retract parts
of the specification. If we assume that a role is shrink restricted, it is possible to
model it as either growth enabled or growth restricted. A growth enabled role
is easy since that is the default case for OWL descriptions. OWL assumes an
“open world” semantics in which it is always possible to add more knowledge, so
by default, descriptions are assumed to be partial. If we want to model a role as
being “growth restricted”, we can do so by making its OWL description be both
necessary and sufficient. (This corresponds to the Clarke completion.) Figure 4
summarizes the four cases.

Following our previous approach, we can model this RT policy, since none
of them involve type 3 rules. We represent that role A.r is growth-restricted by
adding a OWL ’covering axiom’ that asserts that the known subclasses of A.r
completely covers it, i.e., the class A.r is equivalent to the union of its subclasses.
For example, if A.r← B.r and A.r← C.r and A.r is growth resistant, the covering
axiom is just

A-r owl:equivalentClass [owl:unionOf (B-r C-r)].

Consider the access control policy of a company that has a marketing strategy
and an operations plan that it must protect from competitors, while accessible
to those employees with a need to know. A policy in RT is shown in Figure 5.
Examples of properties to check include the following.
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HQ.marketing ← HR.managers
HQ.marketing ← HQ.staff
HQ.marketing ← HR.sales

HQ.marketing ← HQ.marketingDelg ∧ HR.employee
HQ.ops ← HR.managers

HQ.ops ← HR.manufacturing
HQ.marketingDelg ← HR.managers.access

HR.employee ← HR.managers
HR.employee ← HR.sales
HR.employee ← HR.manufacturing

HR.employee ← HR.researchDev
HQ.staff ← HR.managers

HQ.staff ← HQ.specialPanel ∧ HR.researchDev
HR.manager ← Alice

HR.researchDev ← Bob

Growth and shrink restricted roles: HQ.marketing, HQ.ops HR.employee, HQ.marketingDelg,

HQ.staff

Fig. 5. Example RT access policy with growth and shrink restricted roles.

– Restriction. Are the marketing strategy and operations plan only avail-
able to employees? The property holds if (HR.employee ⊇ HQ.marketing ∧
HR.employee ⊇ HQ.ops). TRUE

– Access. Does everyone who has access to the operations plan also have
access to the marketing plan? The is true if (HQ.marketing⊇ HQ.ops) TRUE

– Availability. Will Alice always have access to the marketing plan? This is
true if (Alice ∈ HQ.marketing). FALSE.

– Safety. Will anyone other than Alice and Bob ever be able to access the
marketing plan? This will be true if it follows that (x ¬ ∈ HQ.marketing)
for a Skolem individual x. FALSE

Can we prove these properties in OWL? The first two can be proven true by
Pellet since they involve classes that are shrink restricted. The second two can
not be proven since they involve roles that are not shrink restricted. As discussed
in the next section, alternative techniques are needed to fully evaluate some of
these properties. This is not surprising, as the complexity of security analysis in
RT has been shown to be PSPACE-hard and coNP-complete when type three
statements are excluded [29].

4.3 Model checking

Model checking [31] is a formal method of verifying specifications that has
been shown able to handle many computationally complex analyses. It is an
automated verification technique that constructs a finite model of a system and
exhaustively explores the state space of this model. The model is composed of
a set of states and a transition relation. To check whether a desired property is
invariant within the system, model checking examines states that are reachable
from the initial state via the transition relation. When a property fails to hold,
a counterexample will be produced in the form of an error trace that shows how
the failure can arise. This can be used as a basis for correcting the model (or
the property specification).
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HQ-marketing owl:equivalentClass [owl:unionOf

(HR-managers HQ-staff HR-sales

[owl:intersectionOf (HQ-marketingDelg HR-employee)])].

HQ-ops owl:equivalentClass

[owl:unionOf (HR-manufacturing HR-managers)].

HQ-marketingDelg owl:equivalentClass HR-manufacturers-access.

HR-employee owl:equivalentClass [owl:unionOf

(HR-manufacturing HR-managers

HR-sales HR-researchDev)].

HQ-staff rdfs:subClassOf HQ-marketing;

owl:equivalentClass [owl:unionOf

(HR-managers [owl:intersectionOf (HQ-specialPanel HR-researchDev)])].

HR-managers rdfs:subClassOf

HQ-ops, HR-employee, HQ-marketing, HQ-staff.

HR-researchDev rdfs:subClassOf HR-employee.

HR-manufacturers-access owl:equivalentClass HQ-marketingDelg.

HR-manufacturing rdfs:subClassOf HQ-ops, HR-employee.

[owl:intersectionOf (HQ-specialPanel HR-researchDev)]

rdfs:subClassOf HQ-staff.

HR-sales rdfs:subClassOf HR-employee, HQ-marketing.

[owl:intersectionOf (HQ-marketingDelg HR-employee)]

rdfs:subClassOf HQ-marketing.

Alice a HR-managers.

Bob a HR-researchDev.

Fig. 6. Example RT access policy in OWL with growth and shrink restricted roles.

In prior work [32], we developed a model checking based approach to an-
alyze the trust management policy language, RT. We’ve successfully verified
several types of security properties, including those shown above. Of course, as
noted above, many security properties are in general intractable. However, model
checking-based tools can provide a great deal of information contributing to the
level of assurance one has in ones policies. By representing the state space in
a more compatible form (e.g., OBDDs) and by incorporating appropriate op-
timization techniques, such as data abstraction and compositional reasoning,
model checking can be employed to effectively handle many intractable cases.

5 Related work

5.1 Policy languages

Researchers have spent a few decades focusing on policies including discretionary
policies, mandatory policies such as Bell and LaPadula policies and more re-
cently trust and privacy policies. Role Based Access Control (RBAC) establishes
relations between users–roles and permissions–roles [33]. However it is difficult
to apply the RBAC model when roles can not be assigned in advance and it



22

is typically not possible to change access rights of a particular entity without
modifying the roles. Using policy languages like Rei and KAoS [11] allow ac-
cess rights (and the other deontic constructs) to be associated with different
credentials and properties of entities, and not roles alone. More sophisticated
RBAC models allows delegation between roles [34], by delegating the entire set
of permissions associated with a set of roles of the delegator to the delegatee.

Security Policy Language [35], can express several types of complex autho-
rization policies with simple elements implemented by a security event monitor.
Delegation Logic [36] has the advantages of tractability, wide practical deploy-
ment, and relative algorithmic simplicity, yet has good expressive power. Ponder
is an object oriented language for specifying security and management policies
[8] where policies are rules defining behavioral choices. It allows definition of pos-
itive and negative authorization policies, and information filtering, and a simple
delegation model.

Other work on policies include XML-based policies for access control as well
as policies for trust negotiation [37]. Furthermore, confidentiality, privacy and
trust policies for semantic web are also being investigated in [38]. XACML
is a general-purpose authorization policy model and XML-based specification
language specified by OASIS [39]. XACML essentially enforced attribute based
access control. While it has the benefits of ABAC over RBAC, it suffers from the
same limitations that RBAC-based access with XML has - it does not consider
the semantics of the policies.

The policy languages described above have some common limitations that
make them difficult to extend for open, distributed, dynamic environments. They
do not (i) engage sharable semantic domain models; (ii) support reasoning about
the obligations or capabilities of other principals; (iii) include the ability to rea-
son over utilities; (iv) have delegation models required by dynamic environments;
(v) support justification, advising and negotiation required for greater autonomy.

5.2 RBAC and OWL

There have been some recent efforts to look at OWL as a represenation language
for RBAC policies. Di et al [40] suggest modeling Roles, Users, Permissions, and
Session as classes, with properties to relate users to roles and roles to permis-
sion(s). There are also functional mappings between sessions and roles (i.e. the
active role for the session) user to session. However, while the authors do not
make this explicit, they need to step outside of OWL and add rules to specify
separation of duty and prerequisite constraints. This means that the efficient DL
reasoners will not be able to deal with policies specified using their approach.
It is also unclear if this approach can handle queries that deal with classes not
instances, e.g. “Is there a faculty member authorized to change grades?”).

Heilili et al [41] define users and roles as classes. However, in order to handle
negative authorizations (which is an extension of RBAC) each role has two corre-
spoding classes, each permission or prohibition on a resource has corresponding
classes for roles and users. In other words, for each permission, we have a class
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of roles that have that permission, and then a class of users who have that
permission. Similarly for each prohibition.

6 Conclusion

In an attempt to harmonize formal access control models and declarative policy
languages, we studied the relationship between the RBAC security model and
OWL and represented the RBAC model in OWL. We believe that this will help
in developing security frameworks with well understood and verifiable security
properties for open, dynamic environments, which require coordination across
multiple organizations and integration of different data formats. In this paper, we
described two possible approaches to RBAC in OWL, representing roles as classes
and sub-classes in one approach and as attributes in an alternate approach. We
hope to use these OWL models as a starting point for building new ideas about
information assurance and propose to model and reason over general attribute
based access control such as the UCON model in a similar manner.
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