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ABSTRACT

Title of Thesis: Trust-based Data Management in Mobile Ad Hoc Networks

Sheetal Gupta, Master of Science, 2008

Thesis directed by: Dr. Anupam Joshi, Professor
Department of Computer Science and
Electrical Engineering

The problem of data management has been studied widely in the field of mobile ad-

hoc networks and pervasive computing. An issue is that finding the required data depends

on chance encounter with the source of data. Most existing research take the semantics of

data into account while caching data onto mobile devices from the wired sources. In this

work, we propose that the mobile devices decide what to cache based on the queries they

encounter. The scheme involves a distributed technique for estimating the global query

distribution in the network. The devices proactively increase the availability of popular

data in the network. They use their estimate of query frequencies to push popular data and

to guide their caching decisions. We also address the issue of data tampering in MANETs.

The answers obtained from peer devices may not be reliable. This propagation of incorrect

data may be either intentional or out of ignorance. We propose a Bayesian approach to

infer the correct answer. The suggested answers and the reputation values of the sources

themselves are used to determine the most likely answer. We implement these techniques

in the network simulator, Glomosim and show that our scheme improves data availability,

response latency and data accuracy.
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Chapter 1

INTRODUCTION

In mobile ad hoc networks and pervasive computing environments, there are multiple

independent sources of data. Mobile devices can be both producers and consumers of data.

Thus the data is often distributed in these data intensive environments.The mobile devices

have constrained storage capacity, computing power and energy resources. They must

forage for the information they seek in their neighborhood using the constrained resources

available to them. Obtaining the data they seek depends on serendipitous meeting with

the source of data. A lot of work has been done to improve data availability in mobile

and pervasive environments. The constrained resources impose a limit on the number of

messages that the device can exchange to get the required information. The latency of

obtaining the information is also a concern.

We focus on being able to get the needed data on demand as well as maximizing the

utility of available cache space. We propose a scheme for estimating the query distribution

in the network. This helps in predicting which data is most popular and likely to be queried

for in future. We push frequently queried data into the network, thus spreading the data

that is most wanted in the network. This scheme enhances the availability of reliable data

in MANETs by collaborative data exchanges with other devices and by ascertaining the

reliability of the aggregated information using a validation process. We aim to use the
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scarce cache space available with the mobile devices efficiently, by using it to cache the

most popular data.

The data provided by peer mobile devices may not be reliable. This could be due to

the presence of malicious devices in the network or simply due to their ignorance. Such

peer-provided data cannot benefit from the security mechanisms available in a client-server

environment. We devise a new technique to infer the most accurate data from the different

versions of the same data provided by peers. Our approach is based on Bayes theorem. We

associate a reputation value with each neighbor, which denotes the likelihood of a device

to provide correct data. The reputation value is an indicator of both the trustworthiness and

capability of the device. We choose the data which is most likely to be correct using the

versions of the provided data along with the reputations of their sources. This technique

aims to reduce the risk of propagating incorrect data in the network. Our focus is not on how

the reputation values evolve. Rather it builds on top of a reputation evolving mechanism

like in (Patwardhan et al. 2006) and (Perich et al. 2004).

We illustrate the applicability of our technique in two real-life scenarios. Vehicles

fitted with wireless computing devices cache relevant data from sensors stationed by the

freeways that broadcast local conditions. The vehicular devices establish network connec-

tions with the neighboring vehicular devices that are passing by and form a vehicular ad

hoc network. Common well-known information useful to such devices, are emergency re-

lated (e.g., police, medical, and fire department), traffic and road condition related, weather

related, and maintenance related (e.g., gas station, towing service etc.). The local update

about a closed lane is received by a device and must be propagated to other devices in a

timely fashion. This must be done using the limited bandwidth and cache space available

to the devices. The devices traveling in the opposite direction must cache this update with a

high probability, so that it is received by other devices with low latency. Malicious devices

may tamper with the data, providing false alarms or dropping genuine alarms.
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Similar functionality is achieved by the commercial service, “Dash Express, a two-

way, Internet-connected GPS navigation system” (Dash 2008) for automobiles. It works

by sending each Dash driver’s location and speed to the Dash servers. This real-time traffic

information is propagated to other local Dash drivers through Internet connectivity. The

device can now decide on which route to take, to minimize time required to reach the

destination based on actual traffic speeds. However it does not harness the powers of es-

tablishing mobile ad hoc links with its neighboring devices.

Soldiers on the battlefront carrying mobile hand-held devices with wireless capabili-

ties is another scenario where it is useful to cache information based on the likelihood of

getting queried for it. This includes information about supplies, enemy strength, strate-

gic planning etc. In such tactical environments a central trusted authority is lacking and

connectivity is volatile. The predictive caching technique improves data availability and

answering delay for the devices. The approach to arrive at the correct data using Bayes

theorem ensures credibility of data.



Chapter 2

RELATED WORK

2.1 Query Distribution Estimation

The problem of query result size estimation has been studied in traditional database

systems. In (Wu, Agrawal, & Abbadi 2002) the range query result size is estimated based

on data distribution and is fine tuned using the user query pattern. However this work does

not deal with estimating the frequency of the queries themselves.

The problem of data management has been extensively researched in mobile and per-

vasive computing environments. Cherniak et al. (Cherniack, Franklin, & Zdonik 2001)

introduced the concept of data recharging based on user profiles. Mobile devices deal with

disconnection from networked data sources by caching or “recharging” of data. The user

profile consists of domain and utility function. The domain specifies the data objects of in-

terest to the user. The integer utility function specifies the relative value of the data objects

within a profile domain. The utility function is used to cope with limited storage, band-

width and recharge time by prioritizing the data items to be cached. The paper describes

the desirable properties of the language used to specify this highly expressive user profile

and mention the limitations of the existing languages for this purpose. It mentions that the

language must have reasoning capabilities over the metadata properties. The Cherniak ap-

proach relies on connectivity with servers on wired networks for data recharging. However

4
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we take the approach of also having peer mobile devices as our sources of data. We use a

trust-based data validation scheme to ascertain the reliability of data acquired from peers.

Perich et al. (Perich et al. 2002) took this concept one step further by proposing that

both the domains of data that a user needs and its utility will change depending on the

context the user is currently in. They believe that modeling a user profile in terms of ”be-

liefs,” ”desires,” and ”intentions” of the user, is a comprehensive way of modeling and for

anticipating the future data requirements of the user. The ”intentions” of a user, modulated

by the ”beliefs” as well as contextual information, including location, time, battery power,

and storage space, allow the information manager of each device to determine what data to

obtain and its relative worth. Profiles are encoded using ontologies - DAML, a semantically

rich language. Every device maintains a subset of the global information repository that it

can provide to itself and possibly to others.

Both these approaches require a semantic description of the user needs. This requires

the user to anticipate all future data requirements. They also focus on caching the data that

is useful to the device, whereas in this paper, we propose that after satisfying the device’s

own requirements, we aim to increase data availability for the peer devices. This is done

by estimating the global data requirement and then caching data accordingly.

Yin and Cao (Yin & Cao 2006) propose a cooperative caching scheme for mobile ad

hoc networks with finite cache using an efficient cache replacement policy. Popular data is

cached, or the path to the data is cached or a hybrid approach is taken. They use informa-

tion from the underlying routing protocol to minimize delays due to long communication

paths. However their system model assumes the existence of a few data server nodes. The

data consumer nodes know the identity of these nodes and know the mapping between the

data they need and the data source. The nodes request data from those nodes and during

transit the data is cached by the intermediate nodes. Either the data itself is cached or the

path, which is the final requester node identifier along with the data identifier is cached. In
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contrast, our system model consists of devices that communicate with their one-hop neigh-

bors for acquiring data. Yin et al. estimate the popularity of data using a formula proposed

in (Shim, Scheuermann, & Vingralek 1999). They show that even if this estimate is not

very accurate, their cache replacement policy is effective. They verify this by introducing

noise in their estimate and observing that the answering delay is not significantly affected

by the error noise. We think that this is because their cache replacement policy is also a

function of the size of data. That factor alone is sufficient to make their cache replacement

policy effective. They do not focus on accurately estimating query distribution in the net-

work. They do not have the concept of pushing popular data in the network to increase its

availability. Also all nodes in the network are trusted and no validation is performed on the

data acquired from peers.

Xu and Wolfson (Xu & Wolfson 2004) examine database management for spatio-

temporal resource information in mobile peer-to-peer networks. The database is distributed

among the moving objects and they serve as routers of queries and answers. To address lim-

ited communication time, nodes prioritize the resource ”reports” available to them. They

adopt a hierarchical weighting priority structure that is set by the user unlike our approach

where priorities are determined by the system. The paper also explores the concept of

virtual currency to create incentive for peer-to-peer cooperation. The feasibility and per-

formance of the proposal is not backed by actual simulations. Budiarto et al. (Budiarto,

Nishio, & Tsukamoto 2002) compare replication strategies for mobile databases. Consis-

tency is the primary issue addressed by the paper. In our scenario the data is not updated

once it has been generated by the source. Thus the data cached my mobile devices contin-

ues to remains valid long after it was obtained from the source sensor devices. Maintaining

consistency in mobile databases is not the focus of this paper.

Acharya et al. (Acharya et al. 1995) proposed the concept of ”broadcast disks”. It

is applicable in a client-server environment, where the downstream communication dom-
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inates upstream communication. Instead of the server transferring data on request from

client viz. ”pull” model, the server ”pushes” data out to the clients. The broadcast channel

becomes a disk that clients can read from. The server broadcasts different items with dif-

fering frequency emphasizing the popular items. The broadcast program and the caching

policy are considered together. Clients replace the page having the lowest ratio of access

probability to broadcast frequency, rather than just replacing the least accessed page. We

are considering a peer-to-peer network with no classification of devices into server roles.

Each node acts as a server for the data it has and pushes only the data it thinks is popular.

Contrary to their approach, the less popular data is not pushed at all. The data being pushed

and the caching decisions made by the clients are based on the same factor viz. the global

query distribution. All the data that a node needs fits into its cache. In addition to its own

data requirements, it caches data likely to be asked for by it peers. The cache replacement

policy affects the caching decisions for this additional cached data.

2.2 Reputation Management

Jonker et al. (Jonker & Treur 1999) propose a formal framework for trust evolution.

They propose a mathematical model for trust management in multi-agent systems. The

trust function is based on intial trust, experiences and trust dynamics. Perich et al. (Perich

et al. 2004) propose a distributed, mathematical model for trust and belief management in

mobile ad hoc networks. The model categorizes devices as reliable and unreliable. Sev-

eral trust learning functions are described based on experience and recommendations from

peers. The devices perform information source discovery and combine the suggested an-

swer accuracy degree and reputation of sources to decide on the final answer. The devices

accept the answer whose accuracy level is above a threshold value and is the highest among

the received answers. Simple ways of combining accuracies of different versions of an an-
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swer are used like taking the maximum, minimum and average accuracy. Whereas we

use a Bayes theorem based approach to find the correct answer. Our focus is not on how

trust relations evolve, rather our approach works on top of a trust evolving mechanism.

Moreover the model proposed by Perich et al. often concluded on the incorrect answer in

highly dishonest environments. Our approach works reliably even in completely dishonest

environments.

An approach is described by Patwardhan et al. (Patwardhan et al. 2006) in which a

few nodes are trusted a priori and data is validated either using agreement among peers or

direct communication with a trusted node. Collaborative propagation of reliable data helps

in improving the timeliness of data. Bad nodes are detected when the data they provide is

invalidated by the validation algorithm. Consensus is achieved when the number of copies

agreeing is greater than a threshold value. The reputations of the devices are not considered

when determining the consensus answer. We use this approach as a base line to compare

the performance of our validation algorithm.



Chapter 3

QUERY ESTIMATION AND PREDICTIVE CACHING

3.1 Basic Model

In prior work (Patwardhan et al. 2006), Patwardhan et al. proposed a reputation man-

agement scheme that is used to validate the data acquired from peer mobile devices using

majority agreement in the received data. They focus on mobile ad hoc networks where a

small fraction of the nodes in the network are initially trusted, and the goal is to determine

the reputation of the other nodes. In a vehicular ad hoc network, these trusted nodes can be

the anchored sensor nodes that periodically broadcast current local conditions. In a battle

space scenario, they can be the mobile devices carried by the higher ranked officers. Our

query estimation and predictive caching technique is built on top of this reputation manage-

ment scheme. This scheme (Patwardhan et al. 2006) enhances the availability of reliable

data in the MANET by collaborative data exchanges with other devices and by ascertaining

the reliability of the aggregated information using a validation process. Thus the MANET

consists of static trusted devices and mobile devices whose reputation must be determined

based on data exchanges. The mobile devices receive the local conditions information from

the trusted devices and also serve to propagate them further. A data packet received by a

mobile device from a trusted anchored device is immediately trusted. A data packet re-

ceived from a peer mobile device is cached, and a validation session is created for it. The

9
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data is validated when the same data is received from a trusted source later which happens

at the serendipitous occurrence of the mobile device passing close to the actual source of

the data. A packet is also validated if a threshold value of minimum agreement in the data

received from its peer mobile devices is reached. If the session has been active for some

time without validation being achieved, the session is timed-out and corresponding data

removed from the device cache. This scheme provides timely and reliable data to the con-

sumer devices in a MANET and forms the starting point for our tests in query estimation

and predictive caching algorithm.

3.2 Query Distribution Estimation

We use a distributed algorithm for estimating the global query distribution in the net-

work. Each device periodically broadcasts its list of queries to all other devices in range.

This is done irrespective of whether the query has been answered. The broadcast message

also contains the information of whether the answer is already known to the querying node.

The receiving devices will send the answer to those questions if they know the answer and

the querying node indicated that it does not know the answer. In addition to answering,

the receiving devices will process the query list message to extract counts of each type of

query that its neighbor has. Initially a device only knows about its own queries. But as

it encounters more devices and exchanges query lists with them, it knows more about the

distribution of queries in its neighborhood. Gradually this knowledge of query distribution

converges to that of the global query distribution in the network. This knowledge helps the

nodes in predicting which queries it is likely to encounter in future.

Let ci denote the count of queries of type i seen by a device so far. Let Tq denote the

total count of all types of queries seen so far. Then the query frequency fi of query type i
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is calculated using the formula:

fi = ci/Tq

Note that the formula is entirely based on local cached counts of a node. It does not assume

any global knowledge.

Given the simple formula used, the computation overhead imposed by this algorithm

is not significant in terms of energy consumed as compared to the energy loss due to trans-

mission of messages. We follow an abstract query model, where each query is represented

by a unique query identifier number. Thus processing the query list message to extract

counts of each query type, consists of looking at the query identifier number and incre-

menting the corresponding query count. Answers are matched to queries by matching the

answer identifier number to the query identifier number. The energy consumption is thus

dominated by transmission energy costs required by the query estimation algorithm and

pushing of data in the network.

3.3 Predictive Caching

The knowledge about global query distribution in the network is utilized by the mobile

devices to push data into the network. Cached data on a device qualifies for pushing if it

is the answer to a query having a query frequency greater than the user defined threshold

frequency. This is done by broadcasting the data packets that have been validated, either

by receiving the data directly from the source node or by attaining a majority agreement in

the data obtained from peers and has subsequently been cached by the mobile node. Only

the data packets that satisfy the condition of having a requirement in the network above the

threshold query frequency are broadcast by the mobile nodes. This pushing of popular data

in the network facilitates the dissemination of required data and increases the availability

of data in the network.
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We experimented with different cache replacement policies for caching of the pushed

data. Firstly the data that corresponds to the queries that the node has is cached. The other

data they encounter is due to the seeding of current data in the network by anchor sensor

devices and as a result of pushing of popular data by the mobile nodes. This data is either

cached or discarded based on the cache replacement policy. We studied the performance

of the algorithm with FIFO and priority-based cache replacement policy. With FIFO the

mobile nodes cache the latest data that has been pushed towards them. With priority-based

cache replacement scheme, the priority of data is determined by the corresponding query

frequency calculated for that data by the node. Thus the data that is predicted to be queried

for the most, is cached with a higher priority and the data that is least queried is removed

from the cache when more popular data is pushed towards it.

We compare the performance of these caching schemes with the performance using a

simple cache for the nodes wherein they only cache the data corresponding to the queries

that they have. Thus there is no predictive caching of the data in the hope that they will be

asked for it in future. We also studied the comparison of the performance of these caching

schemes with the performance of the system when nodes have an infinite sized cache.

We also experimented with the system by modifying it so that there is no pushing of

data in the network based on the query estimation. This is to determine the effect of pushing

on the network performance. In this scenario the nodes still perform query estimation and

use priority-based caching to cache the data that they encounter. However they do not

use the query frequency estimate to broadcast popular data in the network, thus being less

effective in increasing the availability of data.

The baseline for performance comparison is the case where the nodes have a simple

cache and do not push data. This represents a typical mobile ad hoc network environment

where answers are obtained only on serendipitous encounters with the data source. The

results are presented in the simulation section.
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3.4 Query Containment

Query containment is the problem of checking whether for every database, the result

of one query is a subset of the result of another query (Libkin & Zhang 2008). It is use-

ful for query optimization and materialized view selection in relational database systems

and XPath queries over XML documents. Conjunctive query correspond to the select-

from-where queries from SQL that only use and as a Boolean connective. The problem of

conjunctive query containment is known to be NP-complete, but is polynomial time solv-

able for some special class of queries. The XPath query containment problem is easier in

some sense than the classical relational conjunctive query containment (Schwentick 2008).

In our scenario if a device is asked a query that is contained in another query that it

knows the answer to, the device can also answer the contained query. We do not focus on

how query containment will be determined, but rather explore and try to quantify the effect

that query containment will have on our algorithm performance.



Chapter 4

BAYESIAN APPROACH TO DATA VALIDATION

The data provided by peer mobile devices in a MANET may not be reliable. For

example, we might receive differing versions of the same data from different peer devices.

This could be either intentional or out of ignorance of the peers. It is thus necessary to

validate data before accepting it as true and pushing it to other devices. We wish to infer

the most accurate data from the different versions provided by our peers.

A simple approach would be to accept the answer from the highest reputation node

and reject the other answers that were received from lower reputation nodes. However,

this has the disadvantage of excessive reliance on the reputation values. For example if

we received answer 0 from a node with reputation 0.9 and the answer 1 from three other

neighbors with reputations only slightly less, 0.83, 0.85 and 0.87. In this case, it is intuitive

to believe the answer provided by three highly reputed nodes rather than that provided by a

single highly reputed node. That node may have been assigned a high reputation based on

past experiences with it. But it may have now turned malicious or out of ignorance might

be providing the incorrect answer.

Another approach is to find the answer based on majority agreement. An answer

is accepted after the number of nodes that agree on an answer, become greater than a

threshold value. For the example described above, this algorithm with a threshold value

14
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of 3 would choose the answer to be equal to 1 which intuitively seems the most reliable

answer. However in a low trust environment, multiple low trust nodes can collude and each

can provide the same wrong answer. This can cause the node to incorrectly assume the

provided answer as the correct answer. This approach completely ignores the reputation

values, leading to compromising on data reliability in low trust scenarios.

We propose an approach that takes into account the reputations as well as consensus

to decide the most accurate answer. Simulation results show that the Bayesian approach for

data validation presented here performs very well in terms of accuracy of answers in low

trust scenarios. However this approach requires us to make certain assumptions.

1. A node’s reputation value indicates its correctness probability value. This is a reason-

able assumption, since the reputation evolution mechanism assigns reputation values

based on how correct the node has been in the past. A higher value indicates a node

having a positive history. Such a node is more likely to provide the correct answer in

future.

2. All the received answers are equiprobable to be the right answer. In real life scenar-

ios, typically the initial probabilities are not known and this is a reasonable assump-

tion to make.

3. The nodes do not collude with each other, viz. they answer independently. Having

a collusion with multiple participants is difficult to achieve in practise and is thus a

rare occurrence. Also, the nodes validate data before propagating it further. Hence

they will not propagate incorrect data obtained from malicious peers, which can be

mistaken as collusion. Collusion is handled by our validation algorithm if the partic-

ipating nodes have negative histories and thus low reputations.

4. A node can choose the answer from a finite set of possible answers. This assumption
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may not be true for some class of queries. For example, in case of queries that have

a real number as the answer, a device can choose the answer from the real number

line, which has infinite points. Thus the answer can have an infinite range size.

Our approach is based on the Bayes theorem and builds on top of a reputation evolving

mechanism. The mechanism associates a reputation value with each encountered mobile

device. The reputation value is an indicator of the trustworthiness and the capability of the

device. We choose the data which is most likely to be correct using the versions of the

provided data along with the reputations of their sources.

Let the reputation value of node ni be denoted by ri. Let the actual answer be AA

and Ai be the answer returned by node ni. Then we assume the source node reputation

indicates the probability that the received answer Ai is equal to the actual answer, which

has value equal to the constant c.

Pr[Ai = c|AA = c] = ri

The probability with which node i gives the incorrect answer is equal to 1 − ri. There are

two cases in calculating the probability that node i gives the particular incorrect answer Ai.

If the answer can take only binary values viz. either 0 or 1, then the probability that a

node lies is given by 1− ri. Thus the probability that node i gives answer Ai, where Ai is

not the correct answer is equal to 1− ri.

Pr[Ai 6= c|AA = c] = (1− ri)

The second case makes a closed world assumption for input, so that the node can

choose the answer from a set of k distinct answers. The answer range is given by
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{c1, c2, c3, . . . , ck}. Then,

Pr[Ai 6= cx|AA = cx] = (1− ri)/(k − 1)

However for most queries in practise, it is not possible to get a reasonable estimate for

k. Moreover, a node can give the incorrect answer in unlimited number of ways. For a

query like “What is the current temperature?”, possible answers can lie anywhere on the

real number line. Thus the answer range size, k → ∞. So the probability with which a

node gives a particular incorrect answer tends to zero.

Pr[Ai 6= c|AA = c] → 0

We explored the first two cases of binary and finite answer range size and present the

results in the simulation section. We assume that the possible answer space is discrete.

They also belong to the same domain space since they are answers to the same question.

Let A1, A2, A3 be the answers returned by nodes n1, n2 and n3. The reputations of the

nodes are denoted by r1, r2 and r3 respectively.

Using Bayes theorem, probability that the actual answer is equal to A1 given the re-

ceived answers from our neighbors is,

Pr[AA = A1|(A1, A2, A3)] =
Pr[(A1, A2, A3)|AA = A1] ∗ Pr[AA = A1]

Pr[(A1, A2, A3)]

Then the ratio of the probabilities of the actual answer to be equal to A2 to it being equal



18

to A1, given the replies from our neighbors is,

Pr[AA = A2|(A1, A2, A3)]

Pr[AA = A1|(A1, A2, A3)]
=

Pr[(A1, A2, A3)|AA = A2]

Pr[(A1, A2, A3)|AA = A1]
∗ Pr[AA = A2]

Pr[AA = A1]
∗ Pr[(A1, A2, A3)]

Pr[(A1, A2, A3)]

=
Pr[(A1, A2, A3)|AA = A2]

Pr[(A1, A2, A3)|AA = A1]

(assuming equal initial probabilities)

We define relative likelihood that the actual answer is equal to A1 as,

R[AA = A1|(A1, A2, A3)] = Pr[(A1, A2, A3)|AA = A1]

Thus we can find which of the received answers is most likely to be the true answer by com-

puting the relative probabilities R[AA = A1|(A1, A2, A3)], R[AA = A2|(A1, A2, A3)] and

R[AA = A3|(A1, A2, A3)] and choosing the answer with the maximum relative correctness

probability value. Generalizing for AA = Ai,

R[AA = Ai|(A1, A2, A3)] = Pr[(A1, A2, A3)|AA = Ai]

Assumption: Replies from the neighbors are conditionally independent i.e. they do not

collude while replying. Then from above we have,

R[AA = Ai|(A1, A2, A3)] = Pr[A1|AA = Ai] ∗ Pr[A2|AA = Ai] ∗ Pr[A3|AA = Ai]

Case 1: AA = A1 and A1 6= A2 6= A3. Of the returned answers only A1 equals the actual
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answer.

R[AA = A1|(A1, A2, A3)]

= Pr[A1 = AA|AA = A1] ∗ Pr[A2 6= AA|AA = A1] ∗ Pr[A3 6= AA|AA = A1]

= r1 ∗ (1− r2) ∗ (1− r3)

Using the approach where the probability with which a node gives the incorrect answer as

(1− ri)/(k − 1), we get

R[AA = A1|(A1, A2, A3)]

= Pr[A1 = AA|AA = A1] ∗ Pr[A2 6= AA|AA = A1] ∗ Pr[A3 6= AA|AA = A1]

= r1 ∗ (1− r2)

(k − 1)
∗ (1− r3)

(k − 1)

Case 2: AA = A1 and A1 = A2 6= A3.Of the returned answers both A1 and A2 agree on

the actual answer.

R[AA = A1|(A1, A2, A3)]

= Pr[A1 = AA|AA = A1] ∗ Pr[A2 = AA|AA = A1] ∗ Pr[A3 6= AA|AA = A1]

= r1 ∗ r2 ∗ (1− r3)
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Using the second approach,

R[AA = A1|(A1, A2, A3)]

= Pr[A1 = AA|AA = A1] ∗ Pr[A2 = AA|AA = A1] ∗ Pr[A3 6= AA|AA = A1]

= r1 ∗ r2 ∗ (1− r3)

(k − 1)

Case 3: AA = A4 and A1 6= A2 6= A3 6= A4 This represents the case where none of the

answers returned by the current neighbors is the actual answer.

R[AA = A4|(A1, A2, A3)]

= Pr[A1 6= AA|AA = A4] ∗ Pr[A2 6= AA|AA = A4] ∗ Pr[A3 6= AA|AA = A4]

= (1− r1) ∗ (1− r2) ∗ (1− r3)

Using the second approach,

R[AA = A4|(A1, A2, A3)]

= Pr[A1 6= AA|AA = A4] ∗ Pr[A2 6= AA|AA = A4] ∗ Pr[A3 6= AA|AA = A4]

=
(1− r1)

(k − 1)
∗ (1− r2)

(k − 1)
∗ (1− r3)

(k − 1)

We compare the probabilities thus computed and choose the answer having the maximum

probability value. If the probability that none of the returned answers is the actual answer

is the greatest, then we wait till we get the actual answer from our future neighbors.
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4.1 Illustrative Examples

Example 1: The answers returned by our neighbors are A1 = 1, A2 = 0 andA3 = 0.

And their reputations are r1 = 0.25, r2 = 0.75 and r3 = 0.75. Then we have,

R[AA = 0|(1, 0, 0)] = (1− r1) ∗ r2 ∗ r3 = 0.75 ∗ 0.75 ∗ 0.75 = 0.421875

R[AA = 1|(1, 0, 0)] = r1 ∗ (1− r2) ∗ (1− r3) = 0.25 ∗ 0.25 ∗ 0.25 = 0.015625

R[AA = x|(1, 0, 0)] = (1− r1) ∗ (1− r2) ∗ (1− r3) = 0.75 ∗ 0.25 ∗ 0.25 = 0.046875

Here x is a value other than 0 and 1. Thus AA = 0 with a higher probability. Intuitively the

answer that is agreed upon by greater number of trusted nodes is chosen above the answer

given by fewer distrustful nodes.

We reach the same conclusion in the second case with (k − 1) = 2.

Example 2: Values returned by neighbors are A1 = 0, A2 = 1 andA3 = 1. And their

reputations are r1 = 0.751, r2 = 0.75 and r3 = 0.75, then

R[AA = 0|(0, 1, 1)] = r1 ∗ (1− r2) ∗ (1− r3) = 0.751 ∗ 0.25 ∗ 0.25 = 0.0469375

R[AA = 1|(0, 1, 1)] = (1− r1) ∗ r2 ∗ r3 = 0.249 ∗ 0.75 ∗ 0.75 = 0.1400625

R[AA = x|(0, 1, 1)] = (1− r1) ∗ (1− r2) ∗ (1− r3) = 0.249 ∗ 0.25 ∗ 0.25 = 0.0155625

Here AA = 1 with a higher probability. Intuitively, when the reputations of the neighbors

are comparable, then the answer is chosen by majority agreement among the neighbors.

Here too we reach the same conclusion using the finite answer range size case.

Example 3: Values are A1 = 1, A2 = 0, A3 = 0 andA4 = 0. And their reputations are
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r1 = 0.75, r2 = 0.25, r3 = 0.25 and r4 = 0.25, then

R[AA = 0|(1, 0, 0, 0)] = (1− r1) ∗ r2 ∗ r3 ∗ r4

= 0.25 ∗ 0.25 ∗ 0.25 ∗ 0.25 = 0.00390625

R[AA = 1|(1, 0, 0, 0)] = r1 ∗ (1− r2) ∗ (1− r3) ∗ (1− r4)

= 0.75 ∗ 0.75 ∗ 0.75 ∗ .75 = 0.31640625

R[AA = x|(1, 0, 0, 0)] = (1− r1) ∗ (1− r2) ∗ (1− r3) ∗ (1− r4)

= 0.25 ∗ 0.75 ∗ 0.75 ∗ .75 = 0.10546875

Thus when we have one highly trusted neighbor and several low reputation neighbors, the

answer given by the highly trusted node is chosen i.e. AA = 1.

Note that getting an answer from a distrustful node, that contradicts the answer given

by a highly trusted node, actually makes it easier to converge on the correct answer given

by the highly trusted node. To illustrate, if in the above example another node with a low

reputation of r5 = 0.25 gave the answer A5 = 1 matching that from the highly reputed

node 1. Then, the probabilities would be,

R[AA = 0|(1, 0, 0, 0, 1)] = (1− r1) ∗ r2 ∗ r3 ∗ r4 ∗ (1− r5)

= 0.25 ∗ 0.25 ∗ 0.25 ∗ 0.25 ∗ 0.75 = 0.0029296875

R[AA = 1|(1, 0, 0, 0, 1)] = r1 ∗ (1− r2) ∗ (1− r3) ∗ (1− r4) ∗ r5

= 0.75 ∗ 0.75 ∗ 0.75 ∗ 0.75 ∗ 0.25 = 0.0791015625

R[AA = x|(1, 0, 0, 0, 1)] = (1− r1) ∗ (1− r2) ∗ (1− r3) ∗ (1− r4) ∗ (1− r5)

= 0.25 ∗ 0.75 ∗ 0.75 ∗ 0.75 ∗ 0.75 = 0.0791015625

This makes the probability of AA = 1 become equal to the probability that the actual
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answer is not received yet. Thus getting the correct answer from a low reputation node can

delay converging on the correct answer. But will eventually lead to increasing its reputation,

after the answer is proved correct. Thus a contradicting answer from a low reputation node

helps in converging on the correct answer sooner.

On the other hand, with (k − 1) = 2, we still converge on the correct answer in this

case.

R[AA = 0|(1, 0, 0, 0, 1)] =
(1− r1)

2
∗ r2 ∗ r3 ∗ r4 ∗ (1− r5)

2

= (0.25/2) ∗ 0.25 ∗ 0.25 ∗ 0.25 ∗ (0.75/2) = 0.0007324

R[AA = 1|(1, 0, 0, 0, 1)] = r1 ∗ (1− r2)

2
∗ (1− r3)

2
∗ (1− r4)

2
∗ r5

= 0.75 ∗ (0.75/2) ∗ (0.75/2) ∗ (0.75/2) ∗ 0.25 = 0.00988

R[AA = x|(1, 0, 0, 0, 1)] =
(1− r1)

2
∗ (1− r2)

2
∗ (1− r3)

2
∗ (1− r4)

2
∗ (1− r5)

2

= (0.25/2) ∗ (0.75/2) ∗ (0.75/2) ∗ (0.75/2) ∗ (0.75/2) = 0.002471

Thus the answer chosen is AA = 1. Here in contrast to the previous case where (k−1) = 1,

the probability that we do not know the answer yet, is less than that for AA = 1. Intuitively

an agreeing answer even from a low reputation node, contributes in choosing that answer.

Example 4: Values are A1 = 1, A2 = 0 and A3 = 0. And their reputations are

r1 = 0.4, r2 = 0.5, r3 = 0.3, then

R[AA = 1|(1, 0, 0)] = r1 ∗ (1− r2) ∗ (1− r3) = 0.4 ∗ 0.5 ∗ 0.7 = 0.14

R[AA = 0|(1, 0, 0)] = (1− r1) ∗ r2 ∗ r3 = 0.6 ∗ 0.5 ∗ 0.3 = 0.09

R[AA = x|(1, 0, 0)] = (1− r1) ∗ (1− r2) ∗ (1− r3) = 0.6 ∗ 0.5 ∗ 0.7 = 0.21

Here the probability of the actual answer having a value other than those returned by its



24

neighbors so far is highest. So we conclude that we have not got the actual answer yet and

wait for it. Intuitively it means that we are in a low trust neighborhood and must wait till

we get an answer from a more trusted neighbor.

With (k− 1) = 2, we converge on the correct answer as AA = 0 since it was provided

by two nodes of reputations 0.5 and 0.3. So the requirement that we get an answer from a

good node with r > 0.5 is not essential anymore.

Example 5: Values are A1 = 1 and A2 = 0. And the reputations are r1 = 0.5 and

r2 = 0.5 respectively, then

R[AA = 1|(1, 0)] = r1 ∗ (1− r2) = 0.5 ∗ 0.5 = 0.25

R[AA = 0|(1, 0)] = (1− r1) ∗ r2 = 0.5 ∗ 0.5 = 0.25

R[AA = x|(1, 0)] = (1− r1) ∗ (1− r2) = 0.5 ∗ 0.5 = 0.25

All nodes initially have a reputation of 0.5 viz. undecided and evolve as they encounter

positive and negative experiences. When all current neighbors have 0.5 reputation, it means

we are in a neutral neighborhood. The probabilities calculated are the same for all returned

answer values. We conclude that we have not got the actual answer yet and wait for it.

Intuitively we do not accept an answer from a neighbor whose reputation is in the initial

stage.

We reach the same conclusion even in the second case.

Example 6: To illustrate how the validation algorithm behaves in general, we note

that the difference in the reputations of the good device and the other devices needed for

the good guy to win is a function of how high the reputations of the other devices in con-

sideration are. If we are in a high trust neighborhood, viz. all answers are from devices

having reputations > 0.5, then the higher the other devices’ reputation, the greater must be

difference in reputations between the correct guy and the other guys.
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For example with r1 = 0.7, r2 = 0.6 and r3 = 0.6, and A1 = 1, A2 = 0 and A3 = 0,

node 1 wins.

However for reputations r2 = 0.7 , r3 = 0.7 and values A1 = 1, A2 = 0 and A3 = 0,

r1 must be as high as 0.845 for node 1 to win. Thus the difference in reputations required

increases in a high trust neighborhood.

By using (k − 1) = 2, with r2 = 0.6 and r3 = 0.6, and A1 = 1, A2 = 0 and A3 = 0,

r1 is required to be even higher, viz. r1 = 0.82, for the answer A1 = 1 to win. Intuitively

having a k factor increases the importance of majority agreement.

Example 7: In a low trust neighborhood, even a single answer from a good guy, viz.

with reputation > 0.5 is sufficient for the good guy to win. For the border case of r1 = 0.51,

r2 = 0.49 and r3 = 0.49, and A1 = 1, A2 = 0 and A3 = 0, we have,

R[AA = 1|(1, 0, 0)] = r1 ∗ (1− r2) ∗ (1− r3) = 0.51 ∗ 0.51 ∗ 0.51 = 0.132651

R[AA = 0|(1, 0, 0)] = (1− r1) ∗ r2 ∗ r3 = 0.49 ∗ 0.49 ∗ 0.49 = 0.117649

R[AA = x|(1, 0, 0)] = (1− r1) ∗ (1− r2) ∗ (1− r3) = 0.49 ∗ 0.51 ∗ 0.51 = 0.127449

Thus even in this border case of reputations, the good guy wins i.e. AA = 1, without having

a huge difference in reputations above the bad guys.

Using (k − 1) = 2, the answer AA = 0 wins because it was returned by two nodes

having reputations only slightly less than the third node. Thus the emphasis on getting an

answer from a node having r > 0.5 in order to believe it, is not true anymore. This can be

good strategy to tolerate error in reputations. On the other hand the same answer from two

low reputation nodes, wins over an answer from a high reputation node. This might lead to

compromising on the credibility of data.

Thus we will accept an answer as the actual answer once its calculated probability

becomes greater than probabilities of all other answers obtained. It must also be greater
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than the probability that we have not found the answer yet. We will wait to obtain the

answer to a question from at least three neighbors before running the above calculation.

We run the validation scheme to arrive at the correct answer for the questions that a node

has. We also need to run the validation algorithm for other answers received, that do not

correspond to any of the questions that the node has. This is because we are going to push

this other data in the network if it is estimated to be popular in the network. We do not want

to push data until we have validated it.

The answer validation scheme presented above relies on an reputation evolving

scheme to provide the input reputation values. The reputation evolving scheme must give

a fairly accurate estimate of peer reputations. As we saw in example 7, the proposed vali-

dation algorithm with (k− 1) = 1, is sensitive to accuracy of reputation values around 0.5.

Thus a correct distinction between devices as good (r > 05.) or bad (r < 0.5) is sufficient

to yield the correct answer. In a high reputation environment, if the reputation values are

incorrect and the peers provide different versions of answers, it might take longer to con-

verge on the correct answer. It might even lead to concluding on the incorrect answer if a

sufficient number of incorrectly, highly reputed nodes agree on the wrong answer.



Chapter 5

SIMULATIONS

5.1 Query Distribution Estimation

We implemented the query estimation and predictive caching algorithm using the Glo-

mosim (Zeng, Bagrodia, & Gerla 1998) simulator. The information in this section was

generated using the simulation parameters mentioned in Table 5.1.

The experiment was run with 50, 100, 150 and 200 mobile nodes and 38 ”pre-trusted”

anchor nodes, for a duration of 30 minutes. A mobility pattern of vehicular movement was

chosen, with speeds ranging from 15 m/s to 25 m/s and pause times of 0 to 30 s. Most

existing work use random waypoint motion in their simulations. We chose to use vehicular

movement since it is more representative of real-life scenarios. We modeled the actual road

network around the Dupont Circle area in Washington DC as described in (Patwardhan et

Table 5.1. Simulation Parameters
Spatial Dimensions 700 m x 900 m
Simulation period 30 min
Mobiles devices 50,100,150,200

Stationary devices 38
Transmission range 99.472 m
Routing Protocol AODV
Mobility pattern Vehicular trace

27
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al. 2006). Each anchor node has a list of 5 answers that it will seed into the network.

Every 2 minutes one of the 5 answers at each node is chosen and broadcast to all mobile

nodes within range. Each mobile node has a set of 5 queries that it wishes to get answered

and broadcasts to all nodes in range after every 1 minute. The mobile nodes are assigned

queries and anchor nodes are assigned answers in a random uniform distribution pattern.

The exchange of query list is used in building an estimate of the global query distribution.

The mobile nodes that receive the query will send the answer to the querying node if they

have it. The mobile nodes will also send out cached, validated data packets they have once

every minute, in accordance with the minimum query threshold frequency that is set up at

the beginning of the simulation. The mobile devices have a cache size of 10, so that they

can cache 5 answers in addition to the answers that they need. There are 50 unique queries

and answers in the network. The experiment was run 5 different times using a different

vehicular trace path for each node in the simulation every time.
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FIG. 5.1. Query distribution plot of the actual and estimated distributions after 5 minutes
of simulation run time
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Figure 5.1 shows a plot of the average estimated query distribution by the mobile

nodes after a simulation run time of 5 minutes and the actual query distribution. We see

that the estimated distribution has almost converged with the actual distribution.
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FIG. 5.2. Kullback-Leibler divergence between the average estimated and actual query
distributions

More formally we measure the Kullback-Leibler divergence (kld 2008) or relative

entropy between the actual and estimated query distributions. We see in figure 5.2 that

the divergence reaches a low value of 0.023 for a network size of 50 nodes after only 5

minutes of simulation run time from a value of infinity at time t=0. We also observe that

the convergence of the query estimation algorithm is faster in case of a denser network. So

the convergence is sooner for a network size of 200 nodes than that for a network size of

50 nodes.

Figure 5.3 shows the results for a simulation run with a network size of 50 nodes and

with a priority based caching scheme, where priority is determined by the query estimation

algorithm. The average number of queries answered is shown along with the variations.
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FIG. 5.3. Variation in number of queries answered as the threshold frequency is increased
from 0-5%

A threshold frequency of 0% implies that all cached data is pushed in the network. Thus

the query estimation is not being used to push the required data. It is only being used

for cache replacement decisions. We observe that at threshold frequencies 0%,1%,2%,3%

and 4% the total number of queries answered remains about the same. At a low threshold

frequency of say 1%, the nodes do not distinguish between data that has a query frequency

of 1% and data with a query frequency of 4% while pushing it. The receiving nodes filter

out the data by only caching the 4% frequency data and discarding the 1% frequency data.

Thus the effect of pushing is canceled by filtering by cache. Hence the number of queries

answered remains the about the same at threshold frequencies of 0%,1%,2%,3% and 4%.

The number of queries answered seems to increase slightly with increase in the threshold

frequency to 5%.

The average time to answer a query clearly increases as the percentage threshold fre-
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FIG. 5.4. Variation in average query answering delay as the threshold frequency is
increased from 0-5%

quency increases as seen in figure 5.4. This is because since at high threshold frequencies

nodes only push the most accessed data, proper dissemination of data does not take place.

Thus the available node cache space is not utilized completely in case of high threshold

frequency. On the other hand, at low threshold frequencies, the nodes do a better job of

disseminating required data in the network resulting in increased availability. Thus answer-

ing delay is least in case of a threshold frequency of 0% and worst in case of a threshold

frequency of 5%.

Figure 5.5 shows that the number of segments or answers transmitted per node de-

creases significantly with increase in threshold frequency. This is because as the threshold

frequency increases, fewer cached data satisfy the condition of having a frequency above

the threshold frequency and hence do not qualify for being pushed in the network. This

decreases the overall traffic in the network at higher threshold frequencies. With decrease

in number of transmissions per node, the energy consumption per node is also minimized.
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FIG. 5.5. Variation in average total segments sent per node as the threshold frequency is
increased from 0-5%

From the graphs we see that a threshold frequency of 5% works best, in terms of

number of queries answered and energy consumption per node if the answering delay is not

a concern. Selecting a threshold frequency midway like 3% seems to be a good compromise

if answering delay is also an important factor.

Figure 5.6 characterizes the behavior of the query estimation and caching algorithm

for different caching schemes for a threshold frequency of 3% and a network size of 50

nodes. In the no cache case nodes only have space to store answers to their own questions.

As expected the total number of queries answered is the largest in the case of infinite cache

and least in the base case. The base case consists of no cache and no pushing of data. In

the infinite cache case, nodes have unlimited cache space to store all the answers that were

pushed to it. This increases the data availability in the network. Conversely in the base

and no cache case, nodes do not cache any data that is pushed to it in the network. This

results in decreased total number of answered queries. The number of answered queries in-
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FIG. 5.6. Average total number of queries answered for different caching schemes for a
threshold frequency of 3%

creases slightly for the priority-based caching scheme as compared to that for FIFO caching

scheme. This can by attributed to the fact that at 3% threshold frequency, most of the data

that is pushed in the network is highly popular data and thus even FIFO caching results in

higher availability of required data and thus good performance. In the case of no pushing

of answers in the network by the mobile nodes based on query estimation, the only means

of data dissemination are the data broadcast by the source anchor nodes. The nodes use a

priority-based caching scheme based on its query estimation. Here the only way of getting

a query answered is by a chance encounter with the source anchor node having the answer.

It is observed that this case performs as good as the FIFO cache and priority-based caching

schemes in terms of total number of queries answered. However it performs badly in terms

of query answering delay as seen in figure 5.8.

Figure 5.7 shows that the priority-based cache replacement scheme results in greater

number of queries getting answered than using a FIFO cache for a threshold frequency of

1%. This is because although a lot of the data qualifies for pushing with a low threshold

frequency of 1%, the priority-based caching scheme is better able to cache only the most
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FIG. 5.7. Average total number of queries answered for priority and FIFO caching
schemes for a threshold frequency of 1%

popular data than the FIFO caching scheme which discards old data, even if it was estimated

to be more popular than the new data. We also observed that the answering delay was 11s

less in case of priority caching scheme than for FIFO cache. However the number of

segments/answers sent per node was greater in case of priority caching scheme than FIFO

caching scheme by 18 segments since most of the highly popular data in its cache qualified

for pushing and so greater number of answers were pushed in the network.

As seen in figure 5.8 the average time to answer a query is the worst in the case of

no pushing of answers in the network because of its dependence on chance encounter with

the source or peer nodes that know the answer, to have its query answered. Note that while

calculating answering latency, we have not posed any penalty for unanswered queries. So

for the schemes where more questions were answered, it seems that the answering latency

was more. This is because more the number of answers obtained, greater the chance that

many answers were obtained during the later parts of the simulation. This boosts the aver-

age answering latency. Hence it turns out to be greater for cases where more answers were
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FIG. 5.8. Average query answering delay for different caching schemes for a threshold
frequency of 3%

obtained.

The no cache case performs poorly in terms of answering latency as expected since

there is no cache in the mobile nodes for storage of the pushed data in the network. The base

case, appears to perform better than the no cache case. However this is due to the reason

explained above, as more answers were obtained in no cache case, the latency appears

greater in that case. The performances of the FIFO and priority cache schemes are about the

same due to the same reason that the data dissemination is almost the same for a threshold

frequency of 3%. As the maximum number of answers were obtained in the infinite cache

case, the latency appears to be the greatest.

Figure 5.9 shows that the number of segments/answers transmitted per node is least

in the base case, no pushing of answers and in the case where nodes do not have any extra

cache space. The number of segments sent per node is slightly more in priority cache case

than FIFO cache case, since the priority cache will lead to more in-cache data to qualify for

pushing in the network. The number of segments sent is the highest in infinite cache case,

since it can cache more data that qualifies for pushing in the network. This graph indicates
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FIG. 5.9. Average total number of segments sent per node for different caching schemes
for a threshold frequency of 3%

the traffic overhead caused due the query estimation algorithm and pushing of data in the

network.

5.2 Query Containment

We experimented with having some of the queries contained in other queries. Query

containment affected the working of the algorithm in three ways. The nodes can now an-

swer queries that are contained in other queries that they have the answer to. The nodes

will further filter the answer to return only the data requested for by the contained query.

While collecting statistics about the query distribution, the queries will now also increment

frequency of the query containing the encountered query. This is to increase popularity of

the containing query, so that devices cache the corresponding data with a higher probabil-

ity. Thirdly, this will lead nodes to now also push answers to queries that contain popular

queries, even if the containing query itself is not that popular, thus increasing the availabil-

ity of popular data.

Figure 5.10 shows that the estimated query frequency is much greater than the actual
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FIG. 5.10. Query distribution plot of the actual and estimated distributions after 30
minutes with 50% query containment in the network

frequency for some queries. This happens because these queries contain other queries, so

their estimated popularity increases beyond the value that would have been obtained if we

had considered the queries independently. For example in this simulation run, the query 49

is important because it contains two other queries, 0 and 22. So are the queries 13, 15, 22

and 43. These queries have a higher estimated frequency than their actual frequencies.

Figure 5.11 shows that the total number of queries answered remains almost the same

as the percentage query containment is increased from 0% to 50%. However this is accom-

panied with a decrease in the answering latency as seen in figure 5.12.

The answering latency decreased from 818 seconds to 709 seconds as query con-

tainment was increased from 0% to 50%. The decrease in answering latency is expected

since now even the nodes having answers to the containing query can answer the contained

queries posed to them.

The total traffic in the network seems to increase as seen in figure 5.13. This increase is

because even the data corresponding to queries containing popular queries are now pushed
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FIG. 5.11. Average total number of queries answered for varying percentages of query
containment

in addition to pushing the popular data. Thus more data qualifies for pushing with query

containment.

5.3 Bayesian Approach to Data Validation

We ran simulation experiments to test the performance of our Bayes theorem based

validation algorithm. The percentage of bad nodes in the network was increased from 0%

to 100% in steps of 10%. Reputation values are assigned to the nodes initially and do not

change during the simulation. The good nodes are assigned reputation values > 0.5 and

bad nodes are assigned values < 0.5. The bad nodes also run the validation algorithm to

obtain the correct answer. However they push incorrect answers into the network. The

good nodes too perform the validation step, but only push validated answers into the net-

work. The graphs show the results for 3% popularity threshold level. The effect on the
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FIG. 5.12. Average answering latency for varying percentages of query containment

number of correct answers obtained in the network, the answering latency and total traffic

in the network was observed as the fraction of bad nodes is increased in the network. The

performance of this validation algorithm is compared to that of the validation algorithm de-

scribed in (Patwardhan et al. 2006). This algorithm serves as the base case for performance

comparison. The good nodes having reputation say 0.7 also gives the incorrect answer with

a 0.3 probability. Similarly bad nodes also return the correct answer with a small proba-

bility. This setup might give a better representation of a real-world scenario where good

nodes cannot be expected to be correct at all times.

Figure 5.14 shows the average total number of correct and incorrect answers obtained

in this setup. It shows that our validation algorithm performed consistently better in terms

of total number of correct answers obtained. The number of correct answers obtained

dropped significantly as the percentage of bad nodes was increased beyond 60%. This is

because in a low trust neighborhood, most of the received answers come from distrustful
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FIG. 5.13. Traffic generated per node for varying percentages of query containment.

sources. Thus the validation algorithm calculated that probability of the answer not being

known as the highest. Hence most queries remained unanswered though they received

multiple copies/versions of answers from the bad nodes.

It concluded on the wrong answer more often in high reputation environments, than

the base case algorithm. This is because when a high reputation node gives the incorrect

answer, the proposed algorithm will choose it as the correct answer, since it relies on cor-

rectness of reputation values. The base case algorithm does not consider the reputations at

all, but relies on reaching a threshold agreement. So it results in fewer incorrect answers in

high-trust scenarios. However, our algorithm performed better in low-trust environments.

The number of incorrect answers obtained was fewer than the base case in such environ-

ments and reached a value of 0 at 100% bad nodes.

The mean answering time shows an increasing trend, on increase in the number of

bad nodes as seen in figure 5.15. It increased from 817 seconds to 870 seconds from 0% to



41

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

180

A
ve

ra
ge

 to
ta

l  
nu

m
be

r 
of

 a
ns

w
er

s 
ob

ta
in

ed

Bad nodes %

Bayes−correct
Base case−correct
Bayes−incorrect
Base case−incorrect

FIG. 5.14. Number of correct and incorrect answers obtained as the percentage of
malicious nodes in the network is increased.

100% bad nodes. This is due to the same reason that it takes longer to encounter and get an

answer from a trusted node as the number of bad nodes in the network is increased. Hence

it takes longer to decide on the correct answer, thus increasing the answering latency.

Figure 5.16 shows that the total traffic in the network decreases for greater than 70%

bad nodes. This follows from our observation for the number of validated answers in the

network which also decreases after 70% bad nodes. As the devices have fewer validated

answers in its cache, the amount of data that lies above the popularity threshold and thus

pushed in the network also decreases.

We changed the nodes behavior so that the good nodes (r > 0.5) always return the

correct answer and the bad nodes (r < 0.5) always give the incorrect answer. As figure 5.17

shows the number of correct answers obtained using our validation algorithm remained

almost constant at around 174 answers till the percentage of bad nodes was increased from

0% to as much as 60%. The number of correct answers decreased after 70% and more
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FIG. 5.15. Average answering latency for our validation algorithm as the percentage of
bad nodes is increased

malicious nodes were introduced in the network. Yet the total number of correct answers

obtained remained consistently greater than that obtained using the base case algorithm.

The number of answers incorrectly assumed to be true was 0 in case of our validation

algorithm even as the percentage of bad nodes in the network was increased to 100%,

which indicates very good performance of the algorithm in terms of accuracy. At 100%

bad nodes, the only way to get an answer is by direct encounter with the source of data

and not through the cache of any peer devices. On the other hand, in the base case, where

only consensus is used to determine the correct answer and the reputations of the providing

sources are not considered at all, the number of incorrect answers was non-zero starting at

20% bad nodes. This increased as the fraction of bad nodes was increased. The number of

incorrect answers became greater than the number of correct answers at 80% bad nodes in

the network.

We implemented the second approach where the probability with which a node gives
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FIG. 5.16. Traffic generated per node for the Bayes theorem based validation algorithm

the incorrect answer is equal to (1−ri)/(k−1). Figure 5.18 shows the number of incorrect

and correct answers obtained when there were 50% bad nodes in the network, for different

values for (k− 1). We varied (k− 1) from 1 which is the same as in previously mentioned

experiments, to 10. We also tried to estimate k by counting the number of unique answers

we obtain for a given query. We observe from the figure that the number of correct answers

is the maximum at (k−1) = 2, and the number of incorrect answers is also the least in this

case. Otherwise the performance for all other values of (k− 1), is worse than the base case

where we divide by 1, with more incorrect answers and fewer correct answers.

Figure 5.19 shows the number of correct and incorrect answers obtained using both

the approaches as the number of bad nodes in the network are increased. We observe from

figure that the performance is almost the same up to around 50% bad nodes. Greater num-

ber of correct answers are obtained using (k − 1) = 2 in highly distrustful environments.

This is because in low trust environment, the bad nodes return the correct answers with
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FIG. 5.17. Number of correct and incorrect answers obtained using the new setup.

a small probability. With (k − 1) = 2, the algorithm is able to conclude on the correct

answer returned by bad nodes if sufficient number of nodes agree on the correct answer.

With k − 1 = 1, the algorithm rejects the right answer if it comes from a low reputation

node. However, the number of wrong answers also increases for (k − 1) = 2 as compared

to (k− 1) = 1. This is due to the same reason that if enough number of nodes agree on the

wrong answer, the algorithm takes it to be the correct answer.
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FIG. 5.18. Average number of correct and incorrect answers obtained for 50% bad nodes
in the network for different values for the heuristic (k-1) factor
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Chapter 6

CONCLUSION AND FUTURE WORK

Data management in mobile ad hoc networks is an important issue, with each mobile

device carrying only a fraction of the data. Instead of relying on chance encounter to get

the answers to its queries, we proposed that the mobile devices dynamically estimate the

global query distribution. They use this estimate of global query distribution to predict and

cache the most popular data in the hope of being able to provide it to other devices when

asked by them. This increases the data availability in the network and decreases latency of

obtaining required data.

From our preliminary simulation results we observed that the threshold frequency

should be set low enough for data dissemination to take place and high enough to limit the

traffic and thus energy consumption in the network. Using this query estimation technique,

we are able to better utilize the available cache space to increase the data availability in the

network.

We proposed a data validation scheme based on Bayes theorem. The nodes consider

the data and the data source reputation to determine the most correct answer. We looked at

how the algorithm works for different cases of data values and reputations. We observed

the performance for the two cases of binary and finite answer range size. Simulation re-

sults showed that the algorithm using k − 1 = 1 performs very well in terms of relia-

46
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bility and accuracy of data in low trust environments (> 50% bad nodes). In high trust

environments(< 50% bad nodes), majority voting works best in terms of accuracy of data.

For future work we are investigating how to avoid the computation involved in vali-

dating other answers received by a device i.e. the answers that do not correspond to any

of the queries that the device has. We can do that by assigning an accuracy level to each

answer received without going through the validation algorithm. The accuracy aX can be

calculated by using a trust-weighting function to pro-weight a suggested accuracy degree

of an answer saX provided by a device X with the trust in that device rX . We plan to use

the formula given by Perich et al. (Perich et al. 2004),

aX(i) = saX(i) ∗ rX

An answer received directly from an anchored source is cached with a confidence

level of 1. For answers received from peer devices, the above formula is used to determine

the confidence in the answer. When pushing answers in the network, devices also push

their confidence values with the answers. The validation algorithm is used to determine the

correct answer corresponding to questions that a node has. After validating an answer, it is

cached with a confidence level of 1.

This would lead to saving of computation for answers that we receive but are not

actually interested in. This scheme of associating a confidence level with each answer

pushed in the network will help in making the right decisions about reputation evolution

of devices based on the answers suggested by them. The reputation evolution mechanism

will not only consider the answer value but also its suggested accuracy while updating

reputation values.

Another interesting future work area would be in reputation evolution. Assuming that

nodes know the correct answer beforehand, they can use the answers provided by peer
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devices to correct their estimates of peer reputations. They may use the Bayes theorem

approach or some other technique to find the correct reputations.
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