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Abstract 

The Semantic Web language RDF was designed to unambigu-
ously define and use ontologies to encode data and knowledge 
on the Web.  Many people find it difficult, however, to write 
complex RDF statements and queries because doing so requires 
familiarity with the appropriate ontologies and the terms they 
define.  We describe a system that suggests appropriate RDF 
terms given semantically related English words and general 
domain and context information.  We use the Swoogle Seman-
tic Web search engine to provide RDF term and namespace 
statistics, the WordNet lexical ontology to find semantically 
related words, and a naïve Bayes classifier to suggest terms. A 
customized graph data structure of related namespaces is con-
structed from Swoogle's database to speed up the classifier 
model learning and prediction time. 

Motivation and Objectives   

The Semantic Web is realized as a huge graph of data and 
knowledge. The graph’s building blocks consist of literal 
values and RDF terms representing classes, properties and 
individuals. Syntactically, an RDF term is expressed as a 
URI like http://xmlns.com/foaf/0.1/Person, which has two 
parts: a namespace (http://xmlns.com/foaf/0.1/) identifying 
the ontology defining the term and a local name (Person) 
selecting a term in the ontology. The use of namespaces 
avoids introducing ambiguity and allows two terms in dif-
ferent ontologies to share a local name. 
 For example, the class Party may be defined in an on-
tology about politics as well as in another describing daily 
lives. Qualifying Party with a namespace removes the am-
biguity.  Authoring or querying knowledge Semantic Web 
is difficult because it requires people to select an ontology 
from man for the concepts they want to use. The term Par-
ty, for example, is defined in 352 Semantic Web ontologies 
known to Swoogle. Moreover, other ontologies define pos-
sibly related concepts, with local names Celebration and 
Organization. It would be convenient if a user could use 
natural language words as her vocabulary and an knowled-
geable system would suggest appropriate Semantic Web 
terms based both on the observed experience data of how 
people used different namespaces together and on the us-
er’s prior namespaces or domain information. Such a sys-
tem could support metadata systems like Flickr’s machine 
tags (Schmitz 2006), which also require qualified names-
paces whose selection is hard for end users who know 
nothing or little about ontologies.   
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Problem Analysis 

Given an RDF local name, how do we know which names-
paces are suitable to qualify it? A simple solution is to ask 
a Semantic Web search engine, like Swoogle (Ding et al. 
2004) to return the most highly ranked public namespaces 
that define the term. However, this is based on an exact 
string match. In many cases, we might desire terms whose 
local names are semantically related. For example, if a user 
gives the verb associate and no popular namespace defines 
a matching term, but the word relate is defined in a very 
popular namespace, then generally we can substitute relate 
for associate.  
 Thus, for a given input word we find a set of synonyms 
or semantically related words from WordNet (Miller 
1998).  For each one, we use Swoogle to find ontologies 
that define a term with a corresponding local name.  The 
selection process involves a threshold based on Swoogle’s 
ontoRank (Ding 2005a) metric to limit the choices to popu-
lar ontologies. The result is a set of candidate pairs where 
each pair specifies an RDF namespace representing the 
ontology and a local name representing a term defined in 
that ontology. 
 Given a set of candidate pairs (namespace, word), se-
lecting the best one depends on domain information pro-
vided by users. In fact, the namespaces themselves convey 
lots of domain information. If users have some prior used 
namespaces, these may be used to determine which are the 
most appropriate based on correlation among namespaces 
observed on the Semantic Web. Lacking a history of na-
mespace use, users may directly tell the system their gen-
eral domain with a set of words and phrases, such as geo-
graphy or ecoinformatics, etc. The system can then choose 
the most representative namespace in that domain as an 
implicit prior namespace for users. In sum, we can focus 
on one key problem – finding the namespace with the 
highest conditional probability in the presence of the given 
namespaces. 

Predicting Appropriate Namespaces 

Computing exact conditional probabilities is very expen-
sive when the number of nodes is large. Fortunately, we 
need only know the rank ordering of namespaces with re-
spect to their conditional probability, enabling us to find 
maximum posteriori (MAP) hypotheses. A naïve Bayes 
(NB) classifier approach can be used for this purpose. Al-
though this makes a conditional independence assumption 
that is not true in most cases, it performs very well in text 
classifications and other problems. Since our training data-
set is large in terms of observations and nodes, the use of 



NB is a practical approach because of its computational 
simplicity. Once we obtain an ordering of candidate na-
mespaces with respect to their conditional probability in 
the presence of the input namespaces, we can select the 
first one that matches the namespace of any candidate pair. 
 We have 2.5 million entries in our dataset, which comes 
from all RDF documents indexed by Swoogle (Ding et al. 
2004), a crawler-based Semantic Web search engine that 
discovers and indexes documents containing RDF data.  
Running since 2004, Swoogle has indexed nearly 2.5M 
such documents, about 10K of which are ontologies that 
define terms.  As new Semantic Web documents are dis-
covered, Swoogle analyzes them to extract their data, com-
pute metadata and derive statistical properties.  The data is 
stored in a relational database and an information retrieval 
system (currently Lucene). In addition, a copy of the 
source document is stored and added to an archive of all 
versions of every document discovered. 
 Each entry contains several namespaces, which are 
represented by their Swoogle IDs. We apply the ten-fold 
method to the dataset. For each time, the dataset is split 
into a training set and a test set. The training set is used to 
train a model that will output the ten most probable names-
paces when given a group of input namespaces. We test the 
model Test by selecting an entry from the test set, random-
ly removing one of its several namespaces, and using the 
remaining namespaces as the input namespaces to the 
model. The target namespace is just the namespace we  
removed. We evaluate the model by observing if the target 
is among the top ten suggestions and how high on the list it 
appears.  Judging if the target is among the top ten pro-
vides a simple test of the soundness of the model in com-
puting MAP hypotheses. 
 Our dataset has more than 20K distinct namespaces, 
which would require 20K categories for classification, 
making NB computationally expensive. Instead of brute 
force counting, we use another approach exploiting names-
pace locality. We observe that the namespace co-
occurrence graph is very sparse – a few namespaces such 
as FOAF (Ding 2005b) are very widely used, but most are 
used with a small set of domain-related namespaces. Con-
sequently, it makes no sense to iterate over all possible 
classifications to find the most probable ones. 

Namespace contexts 

A graph of namespaces and their connections enables us to 
take advantage of a node’s locality information. Given a 
namespace, we can quickly find all its neighbors and the 
degrees of the connectivity to its neighbors. For the graph 
data structure, based on the fact that most of namespaces 
have a limited number of neighbors, we use a modified 
adjacency-list representation in that the neighbor list is not 
a linked list but a hash map in order to speedup the opera-
tion of finding the degree of connectivity (the number of 
connected edges, which is stored with node objects in the 
neighbor hash map). The training program reads entries 
from the training dataset in sequential order. For those na-
mespaces included in one entry, we add the edges of the 

complete graph of them, a clique, to the graph data struc-
ture. We can compute the basic prior and conditional prob-
abilities P(vj) and P(ai | vj) with our graph data structure by 
using degree of connectivity between nodes. We don’t pre-
compute these probabilities in the training process, but 
compute them as required when doing prediction. 
 Given a group of input namespaces A1, A2…An, how 
do we get the most probable classifications Vjs, in our 
case, the namespaces?  The MAP formula 
 
 
 
implies that possible Vjs must have connections to every  
Ai which again means the possible Vjs must be neighbors 
of every Ai. This fact enables us to choose the least con-
nected node (having fewest neighbors) in A1, A2…An, 
and its neighbors must include all possible Vjs. The benefit 
is that this reduces the possible classifications from 20,000 
to the number of neighbors of the least connected names-
pace. This is significant reduction because most Semantic 
Web namespaces have a limited number of neighbors. 

Results and Conclusion 

Our initial evaluation shows that the approach is effective 
at predicting appropriate RDF terms given a word that is 
semantically related to the term’s local name. The proba-
bility that the correct namespace is the top prediction is 
0.556, in the top three suggestions 0.675, and in the top ten 
0.919.  The approach is also efficient and practical for the 
current and expected scale of the Semantic Web. It takes 
only about 30 seconds to read 2.5M entries from the train-
ing dataset and build the graph model in a Celeron 3.0 GHz 
computer with one GB memory.  Opportunities for future 
work include conducting more careful evaluations, study-
ing the trade off between precision and recall and enhanc-
ing the context mechanism. 
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