
What Does it Mean for a URI to Resolve?

Joel Sachs, Tim Finin

Department of Computer Science and Electrical Engineering
University of Maryland Baltimore County
1000 Hilltop Circle Baltimore, MD 21090

jsachs@umbc.edu, finin@umbc.edu

Abstract
Amongst the best practices that constitute Linked Data, one
of the foremost is to use only HTTP-URIs as identifiers for
RDF resources. This is so that the URI will resolve in a
Linked Data browser to give information about the named
resource.

At the same time, Linked Data takes a resource-centric, as
opposed to page-centric, approach to resolution. We argue
that this approach can, in certain cases, obviate the need for
insisting on HTTP-URIs. As a use of our “expanded” notion
of Linked Data, we present as an example Life Science
Identifiers.

 Background
A Uniform Resource Identifier (URI) is a name with a
special property – it is also a set of instructions for
retrieving a representation of the thing being named [1].
The W3C RDF [2] and OWL [3] Recommendations are
built around URIs. One of the first principles of Linked
Data [4] is that all URIs should be HTTP URIs. The
primary motivation for this is to make URIs resolvable by
web browsers.
 Linked Data, however, is changing the very way we
think about resolution; Linked Data browsers typically take
a resource-centric, as opposed to page-centric, approach to
resolving URIs. For example, if you put
http://dbpedia.org/resource/Coffea into a standard web
browser, it will simply display the page
http://dbpedia.org/page/Coffea. But if you put the same
URI into a Linked Data browser, the browser will not
simply list all triples stored at
http://dbpedia.org/data/Coffea. Rather, it will list all triples
it is aware of (i.e. that are in its cache) that are about the
resource http://dbpedia.org/resource/Coffea. In other
words, the URI resolves not to the address, but to all
known information about the resource.
 Now what if the server dbpedia.org goes down?
Obviously, http://dbpedia.org/resource/Coffea will no
longer resolve in a standard web browser. But, assuming
that other servers have made assertions about
dbpedia:Cofeea, the URI can still "resolve" in a Linked
Data browser, in the sense that the browser can still know
things about the resource. But this suggests that a URI

doesn't need to resolve in the traditional sense in order to
be a part of the Linked Data ecology.

LSIDs and Linked Data
Life Science Identifiers (LSIDs) represent an attempt to
supply GUIDs (Globally Unique Identifiers) to life science
resources, including genes, proteins, species, species
occurrence records, and journal articles. Eventually, URNs
were chosen as the mechanism for representing LSIDs [5],
and so an LSID looks like this
urn:lsid:ncbi.nlm.nih.gov.lsid.i3c.org:omim:601077 .
 The question of how to bring LSIDs into the linked data
cloud has received much discussion in the biodiversity
informatics community. The current thinking [6; 7] seems
to be to support both traditional LSIDs, as well as HTTP
URIs for life science resources. The latter is achieved by
embedding LSIDs within HTTP URIs, e.g.
http://bioguid.info/urn:lsid:ipni.org:names:20012728-1:1.1
 (Note that this URI is a non-information resource, about
which the following is true:
http://bioguid.info/urn:lsid:ipni.org:names:20012728-1:1.1
owl:sameAs
urn:lsid:ipni.org:names:20012728-1:1.1)

 Is this necessary? LSIDs are URIs, which means that we
we can make assertions about them using the Resource
Description Framework (RDF). Therefore, although they
will not resolve in standard web browsers, they can
resolve in a Linked Data browser, provided the browser is
aware of the assertions that have been made about it. And,
of course, there are many services (Google, Swoogle,
Sindice, etc.) that can bring those assertions to the attention
of the browser.
 So LSIDs can perhaps join the Linked Data cloud as is,
without having to be transformed into http URIs via http
lsid resolvers. Not only this, but the minter of the LSID
need not implement a resolution protocol, since standard
HTTP architecture (search engines, linked data browsers)
can take care of the resolution.
 The LSID creation process would look like this:

• Create names that look like:
lsid:YourOrganization:xyz

• Say things about them on web/semantic web
pages.

• Ping search engines to make sure that everyone
knows about those web pages.

In other words, embrace the fact that HTTP search engines
provide a sort of uniform resolution mechanism for all
URIs.

This approach to incorporating LSIDs into the Linked Data
cloud has these advantages:
1. It eases the burden of maintenance. Currently, to
introduce an LSIDs, you must either i) provide a
mechanism for resolution (traditional); ii) implement
linked data - style content negotiation (modern); or iii)
depend on the largesse of others to do i or ii for you.

2. It eases the burden of curation. If your server disappears
tomorrow, so will all your LSIDs. But if we allow a URI to
fucntion as a name, even when it fails as an address, then
this is not the case.

Objections and Disadvantages
We have encountered a number of objections to the above.
We present these below, together with our responses:
i. Branding and ownership
Data suppliers have to manage their reputation. If they
publish something that is wrong they want to be able to
correct it. If other people use their data then they want to
know about it so they can justify funding, etc. These use
cases require some form of normative version of the data.

We are proposing to permit the decoupling of names and
webpages. So lsid:organizationX:abc would get described
at http://organizationX.org/genes/abc . That latter URI can
still be considered the normative description of the former.

ii. Authority
If I publish an LSID, what I have to say about it should
take precedence over what others have to say.

We sympathize with this objection. In an ideal semantic
web, applications never consume triples without recording
their provenance, and only trust triples according to
explicit trust policies. In practice, however, people often
take what they can get, so it is important that they get the
most trusted source of information about a particular
resource, when they query for that resource.
 But is the most trusted source for an LSID always the
creator of the LSID? Not necessarily. For example, the
discoverer of a gene may assert ownership rights over that
gene that do not really exist. But even if we accept the
notion of authoritative descriptions of resources, our
proposed scheme will, in most cases, result in resolution to
the authority. Consider a team that discovers a new
species. They mint an LSID for, and publish an RDF
description of the species. Their description will likely be
the most cited description for that species, and so semantic
web search engines will rank it higher than other

descriptions. (Agreement between webpage domain and
LSID authority can be part of the ranking algorithm.)

The current situation results in a resource automatically
resolving to a particular description, i.e. the one that gets
303 redirected to (or, if using the hash method, the one that
prepends the hash). In this sense, the publisher has
absolute authority. If we allow non-HTTP URIS, we are
removing some, but not all authority from the publisher.

iii. Why bother with LSIDs at all?
If resolution really doesn't matter (or is considered a bad
thing) then why use LSIDs? Why not just use, e.g.,
urn:uuid:1721b080-db3f-11de-87f3-0002a5d5c51b?

Objections (i) and (ii) above provide the answer to
objection (iii). An LSID embeds the organization name,
and so allows the organization to be "attached" to the thing
being named. It also allows each organization to use its
own naming scheme.

iv. Dereferencing provides a means of discovery with no
interaction.
The Linked Data browsers you describe would be
dependant on full coverage from indices such as Swoogle.
What about resources in the Web that have been indexed,
and that are not already in the cache?

This is a good point, to which we have 3 responses:
1. Creating a web page and pinging search engines is
simpler than other LSID creation mechanisms currently on
the table. So it is reasonable to expect this protocol to be
followed by those who want their information found. Even
if it isn’t, web pages describing LSIDs will eventually be
found by Google, which will then find the link to the
LSID. In the cases of rdf search engines which do not
crawl the non-rdf web, there will, indeed, be a problem.

2. The line between browser and search engine (at least on
the semantic web) is somewhat blurry, and is getting
blurrier. Given the importance of being able to browse
resources in the context of data already in your cache, we
envision Linked Data browsers that will interact with
search engine APIs to pre-load a user’s cache with data
relevant to the user’s browsing.

3. We are not looking to replace the current paradigm, but
simply to support, within the linked data ecology, URIs
that are currently not supported.

Conclusions
Some communities continue to use non-http URIs as
identifiers. Due to the resource-centric approach to
resolution taken by Linked Data browsers, these non-http
URIs can be incorporated into Linked Data. In particular,
Linked Data applications should be able to understand and
reason about LSIDs, as they currently exist.

References
1. http://www.w3.org/DesignIssues/NameMyth.html
2. http://www.w3.org/TR/REC-rdf-syntax/
3. http://www.w3.org/TR/owl-features/
4. http://www.w3.org/DesignIssues/LinkedData.html
5. http://xml.coverpages.org/lsid.html
6. http://www2.gbif.org/Persistent-Identifiers.pdf
7. http://www.tdwg.org/stdtrack/article/view/150

