

Technical Report TR-CS-11-02

A Semantic Approach to Automate

Service Management in the Cloud

Karuna P Joshi, Tim Finin, Yelena Yesha
Department of Computer Science and Electrical Engineering

University of Maryland Baltimore County

Baltimore, MD 21250, USA

1 June 2011

COLLEGE OF ENGINEERING

UMBC

A Semantic Approach to Automate Service

Management in the Cloud

Karuna P Joshi, Tim Finin and Yelena Yesha

Computer Science and Electrical Engineering Department

University of Maryland, Baltimore County

Baltimore, MD, USA

{kjoshi1, finin, yeyesha} @umbc.edu

Abstract— Virtualized service models are now emerging and re-

defining the way information technology is delivered. Managing

these services efficiently over the cloud is an open challenge. In

this paper, we describe an integrated methodology for the lifecy-

cle of IT services delivered on the cloud. We have divided the IT

service lifecycle into five phases of requirements, discovery, nego-

tiation, composition, and consumption. We detail each phase and

list the high level ontologies that we have developed for them. We

also describe a prototype system that we have developed using

Semantic Web technologies to represent and reason about ser-

vices and service requirements. This methodology complements

previous work on ontologies for service descriptions in that it is

focused on supporting negotiation for the particulars of a service

and going beyond simple matchmaking.

Keywords- Services; Methodology; lifecycle; Semantic Web;

Ontologies.

I. INTRODUCTION

The development and maintenance of Information Technology
(IT) was in the past regarded as an integral part of any organi-
zation. It has now been outsourced by most companies to ex-
ternal consulting/staffing companies or service providers. This
outsourcing model initially led to off-shoring of tasks to pro-
viders due to their specialized expertise and/or labor arbitrage.
It is now being replaced by a new delivery model where busi-
nesses purchase IT components like software, hardware or
network bandwidth as services from providers, who can be
based anywhere in the world. The service is acquired on an as
needed basis and can be termed as service on demand. Typical-
ly the service is delivered to the organization via the Internet or
mobile devices.

In such scenarios, multiple providers often collaborate to
create a single service for an organization. In some cases, busi-
nesses utilize multiple service providers to mitigate risks that
may be associated with a single provider. In other cases, a
business may use a single provider who in turn utilizes the ser-
vices of other providers. In either case, the delivery of IT ser-
vice is moving away from a single provider mode, and is in-
creasingly based on the composition of multiple other services
and assets (technological, human, or process) that may be sup-
plied by one or more service providers distributed across the
network – in the cloud. Moreover, a single service could be a
part of many composite services as needed. The service, in

effect, is virtualized on the cloud. This virtualized model of
service delivery potentially allows for easier service customiza-
tion, better resource utilization and greater responsiveness on
part of the service providers. It is becoming the preferred
method to deliver services ranging from helpdesk and back-
office functions to Infrastructure as a Service (IaaS). The vir-
tualized model of service delivery also extends to IT Enabled
Services (ITeS), which typically include a large human ele-
ment.

A key barrier preventing organizations from successfully
managing services on the cloud is the lack of an integrated
methodology for service creation and deployment that would
provide a holistic view of the service lifecycle on a cloud. In
this paper we present a methodology to address the lifecycle
issue for virtualized services delivered from the cloud. We use
semantically rich descriptions of the requirements, constraints,
and capabilities that are needed by each phase of the lifecycle.
This methodology is complementary to previous work on on-
tologies, like OWL-S, for service descriptions in that it is fo-
cused on automating processes needed to procure services on
the cloud. We concentrate on enabling multiple iterations of
service negotiation with constraints being relaxed with every
iteration till a service match is obtained. In section III, we pre-
sent the high level ontologies that we have created for the vari-
ous phases in this paper, and show where existing ontologies
can be leveraged. These can be reasoned over to automate the
phases guided by high level policy constraints provided by
consumers, service customers, or service providers. The pro-
posed methodology will enable practitioners to plan, create and
deploy virtualized services successfully. We have used Seman-
tic Web technologies like OWL, RDF, and SPARQL to devel-
op the prototype for our lifecycle prototype system described in
detail in section IV of this paper.

II. RELATED WORK

At present there is no integrated methodology for the entire
service lifecycle covering service planning, development and
deployment in virtualized environments. Most approaches are
limited to exploring a single aspect of the lifecycle like service
discovery, service composition or service quality. In addition,
most of the work is limited to the software component of the
service and does not cover the service processes or human
agents which are a critical component of IT Services.

Authors would like to acknowledge MURI grant 00003857 from Air Force
Office of Scientific Research for this research.

Papazoglou and Heuvel [1] have proposed a methodology
for developing and deploying web services using service ori-
ented architectures. Their approach, however, is limited to the
creation and deployment of web services and does not account
for virtualized environment where services are composed on
demand. Providers may need to combine their services with
other resources or providers‟ services to meet consumer needs.
Other methodologies, like that proposed by Bianchini et al. [2],
do not provide this flexibility and are limited to cases where a
single service provider provides one service. Zeng et al. [3]
address the quality based selection of composite services via a
global planning approach but do not cover the human factors in
quality metrics used for selecting the components. Maximilien
and Singh [4] propose an ontology to capture quality of a web
service so that quality attributes can be used while selecting a
service. While their ontology can serve as a key building block
in our system, it is limited by the fact that it considers single
web services, rather than service compositions.

Black et al. [5] have proposed an integrated model for IT
service management. Their model is limited to managing the
service from the service provider‟s perspective. Paurobally et
al. [14] have described a framework for negotiation of web
services using the iterated Contract Net Protocol (CNP). How-
ever their implementation is limited to pre-existing web ser-
vices and doesn‟t extend to virtualized services that are com-
posed on demand. Our negotiation protocol detailed in next
section accounts for the fact that the service will be composed
only after the contract/SLA listing the constraints is finalized.
GoodRelations [24] is an ontology developed for E-commerce
to describe products. While this ontology is useful for describ-
ing service components that already exist on the cloud, it is
difficult to describe composite virtualized services being pro-
vided by multiple vendors using this ontology.

The Information Technology Infrastructure Library (ITIL)
is a set of concepts and policies for managing IT infrastructure,
development and operations that has wide acceptance in the
industry. The latest version of ITIL lists policies for managing
IT services [7] that cover aspects of service strategy, service
design, service transition, service operation and continual ser-
vice improvement. However, it is limited to interpreting “IT
services” as products and applications that are offered by in-
house IT department or IT consulting companies to an organi-
zation. This framework in its present form does not extend to
the service cloud or a virtualized environment that consists of
one or more composite services generated on demand.

In a virtualized service-oriented environment, consumers
and providers need to be able to exchange information, queries,
and requests with some assurance that they share a common
meaning. This is critical not only for the data but also for the
policies followed by service consumers or providers. One pos-
sible approach to this issue is to employ Semantic Web tech-
niques for modeling and reasoning about services related in-
formation. We have used this approach for our services lifecy-
cle and prototype development.

The Semantic Web is an enhancement of the World Wide
Web that deals primarily with data instead of documents. It
enables data to be annotated with machine understandable me-
ta-data, allowing the automation of their retrieval and their us-

age in correct contexts. Semantic Web technologies include
languages such as Resource Description Framework (RDF)
[11] and Web Ontology Language (OWL) [9] for defining on-
tologies and describing meta-data using these ontologies as
well as tools for reasoning over these descriptions. Semantic
Web knowledge can also be encoded in rule format using sev-
eral approaches, including N3-logic [16] and SWRL [17]. The
Ontology Web Language for Services (OWL-S) [18] was de-
veloped to provide a vocabulary for describing the properties
and capabilities of Web Services in unambiguous, computer-
interpretable form. OWL-S allows service providers or brokers
to define their services based on agreed upon ontologies de-
scribing the functions they provide. These can be used to pro-
vide common semantics of service information and policies
enabling all agents who understand basic Semantic Web tech-
nologies to communicate and use each other‟s data and services
effectively.

III. PROPOSED ONTOLOGY

We divide the IT service lifecycle on a cloud into five phases
as depicted in Figure 1. In sequential order of execution they
are requirements, discovery, negotiation, composition, and con-
sumption. We have described these phases in detail along with
the associated metrics in [25]. In the following sections we
present the pictorial representations of high-level ontologies
that we have created for each phase. We have developed the
ontology for the entire lifecycle in OWL 2 DL profile and it
can be accessed at [27].

Figure 1: The IT service lifecycle on a virtualized cloud compris-

es five phases: requirements, discovery, negotiation, composition

and consumption

A. Service Requirements Phase

In this phase the consumer details the technical and functional
specifications that a service needs to fulfill. While defining the
service requirements, the consumer specifies not just the func-
tionality, but also non-functional attributes such as characteris-
tics of the providing agent, constraints and preferences on data
quality and required security policies for the service. Service
compliance details like required certifications, standards to be
adhered to etc. are also identified. Depending on the service
cost and availability, a consumer may prefer to procure service

with lower quality data. This benefits the service provider as
well since low quality data requires low maintenance. The
technical specifications lay down the hardware, software, ap-
plication standards and language support policies to which a
service should adhere. Once the consumers have identified and
classified their service needs, they issue a Request for Service
(RFS). This request could be made by directly contacting a few
service providers for their quotes. Alternatively, consumers can
use a service discovery engine or service broker on the cloud to
procure the service.

Figure 2: Ontology of service requirements phase contains the

RFS class which includes an instance of the Specification class

Figure 2 illustrates the high level ontology for this phase.
The two top classes are the Specification class and the “Re-
quest For Service” class. The Specification class consists of six
main classes that define the functional specifications, technical
specifications, Human agent specifications, security policies,
service compliance policies and data quality policies. The tech-
nical specs contain information about the Hardware, Operating
System and other compatible services/applications that the de-
sired service should conform to. Human Agent specifications
also list the technical and domain expertise that the service
providing agent should have. Part of our ongoing work is to use
existing ontologies that have been developed for classes like
standard hardware, operating systems and computer applica-
tions.

// allows services of low data quality to be accepted if the service is
free of cost.
@forAll :SERVICE_QUALITY, :COST.
:data_quality_policy a air:Policy;

 rdfs:label "Data Quality policy";
 air:rule :data-quality-rule.

:data-quality-rule a air:Belief-rule;
 rdfs:label "data quality rule";
 air:pattern {
 :SERVICE_QUALITY quality_level :LOW.
 :COST service_cost :0.
 };

air:assert {:SERVICE_QUALITY air:compliant-
with :data_quality_policy.};
air:alt { air:assert {:SERVICE_QUALITY air:NOTcompliant-
with :data_quality_policy.}}.

Figure 3: Describing Service specifications and constraints using

AIR Policy Language

Semantic Web policy languages can be used to describe
service specifications and constraints in machine-processable
format. For instance, a consumer may opt for a service with
poor data quality to take advantage of low cost of the service.
This policy can be described by using the AIR [22] policy lan-
guage as shown in Figure 3.

B. Service Discovery Phase

Service providers are discovered by comparing the specifica-
tions listed in the RFS. The discovery is constrained by func-
tional and technical attributes defined, and also by the budget-
ary, security, compliance, data quality and agent policies of the
consumer. While searching the cloud, service search engines or
service brokers can be employed. This engine runs a query
against the services registered with a central registry or govern-
ing body and matches the domain, data type, compliance needs,
functional and technical specifications and returns the result
with the service providers matching the maximum number of
requirements listed at the top.

One critical part of this phase is service certification, in
which the consumers will contact a central registry, like UDDI
[6], to get references for providers that they narrow down to.

Figure 4: Ontology for service discovery phase uses the RFS class

to search for providers and generate a Provider list

Figure 4 illustrates the high level ontology for the service
discovery phase, which uses the RFS class from the require-
ments phase to search for service providers and generate a list
of providers with which to begin negotiations. The class Ser-
vice certification validates the provider‟s credentials.

If the consumers find the exact service within their budgets,
they can begin consuming the service immediately upon pay-
ment. However, often the consumers will get a list of providers
who will need to compose a service to meet the consumer‟s
specifications. The consumer will then have to begun negotia-
tions with the service providers which is the next phase of the
lifecycle. Each search result will return the primary provider
who will be negotiating with the consumer.

C. Service Negotiation phase

The service negotiation phase covers the discussion and

agreement that the service provider and consumer have

regarding the service delivered and its acceptance criteria. The

service delivered is determined by the specifications laid down

in the RFS. Service acceptance is usually guided by the

Service Level Agreements (SLA) [10] that the service provider

and consumer agree upon. SLAs define the service data,

delivery mode, agent details, quality metrics and cost of the

service. While negotiating the service levels with potential

service providers, consumers can explicitly specify service

quality constraints (data quality, cost, security, response time,

etc.) that they require.

At times, the service provider will need to combine a set of

services or compose a service from various components

delivered by distinct service providers in order to meet the

consumer‟s requirements. The negotiation phase also includes

the discussions that the main service provider has with the

other component providers. When the services are provided by

multiple providers (composite service), the primary provider

interfacing with the consumer is responsible for composition

of the service. The primary provider will also have to

negotiate the Quality of Service (QoS) with the secondary

service providers to ensure that SLA metrics are met.

The negotiation steps are listed below and shown in the ne-

gotiation sequence diagram in Figure 5.

Figure 5: Sequence diagram showing the steps of the service Ne-

gotiation

1. The consumer sends a RFS to the provider specifying the

functional and non-functional requirements.

2. The provider responds to the RFS in one of three ways

2a) Informs the consumer that it cannot provide the service,

terminating negotiation.

2b) Indicates that a service matching all the requirements

and constraints exists and sends the quote with SLAs.

2c) Indicates that there is a partial match of requirements and

sends the quote with SLA file listing matching constraints.

3. The consumer receives and considers the quote

4. The consumer responds to the quote in one of three ways

4a) If the quote is a partial match, the consumer relaxes the

service constraints and/or functionality and resends the RFS

to the provider. The provider repeats the actions in step 2.

4b) If the response is a full match and the consumer is satis-

fied with the offer then negotiation is regarded complete.

The consumer signs this offer and returns it as an SLA.

4c) The consumer can decline the service, terminating the

negotiation.

5. The provider responds to the RFS in one of two ways

5a) The provider can no longer provide the service, and re-

jects the agreement, terminating negotiation.

5b) The provider agrees with the constraints, and the same

RDF file consisting of the SLA now exists with both parties.

Figure 6: Ontology for service negotiation uses the RFS class for

the contract negotiation and creation of SLA and QoS

We have constructed a high level ontology for this phase

and it is illustrated in Figure 6. This phase uses the RFS class

from the requirements phase and the provider‟s list class from

the discovery phase to negotiate the contracts between con-

sumer and primary provider and between the various compo-

nent providers themselves. The key deliverable of this phase is

the service contract between the service consumer and service

provider. The SLA is a key part of this service contract and

will be used in the subsequent phases to compose and monitor

the service. Another deliverable of this phase are the service

sub contracts between the service provider and component (or

dependent services) providers. The QoS are the essential part

of the service sub-contracts and are used in the consumption

phase to monitor service performance.

D. Service Composition phase

In this phase one or more services provided by one or more

providers are combined and delivered as a single service. Ser-

vice orchestration determines the sequence of the service

components.

Figure 7 illustrates the high level ontology for this phase. The

main class of this phase is the Service class that combines the

various components into a single service. We include the

OWL-S Composite Process class ontology. The Service class

takes inputs from the Specification, Service Contracts and

Service Level Agreement classes defined in the earlier phases

to help determine the orchestration of the various components.

Figure 7: Ontology for composition phase builds on the OWL-S

composite process class.

Once the service is composed, the lifecycle enters the final

phase of service consumption which is detailed in the next

section.

E. Service Consumption/Monitoring phase

The service is delivered to the consumer based on the delivery

mode (synchronous/asynchronous, real-time, batch mode etc.)

agreed upon in the negotiation phase. After the service is de-

livered to the consumer, payment is made for the same. The

consumer then begins consuming the service. In a cloud envi-

ronment, the service usually resides on remote machines man-

aged by the service providers. Hence the onus for administrat-

ing, managing and monitoring the service lies with the provid-

er. In this phase, consumer will require tools that enable ser-

vice quality monitoring and service termination if needed.

This will involve alerts to humans or automatic termination

based on policies defined using the quality related ontologies.

The Service Monitor measures the service quality and com-

pares it with the quality levels defined in the SLA. This phase

spans both the consumer and cloud areas as performance mon-

itoring is a joint responsibility. If the consumer is not satisfied

with the service quality, s/he should have the option to termi-

nate the service and stop service payment.

Figure 8 illustrates the ontology for this phase. The

composite service is composed of human agents providing the

service, the service software and dependent service

components. All the three elements, agents, software and

dependent services, must be monitored to manage the overall

service quality. For the service software providers have to

track its performance, reliability, assurance and presentation as

they will influence customer‟s satisfaction rating (CSATs).

Since the dependent services/components will be at the

backend and will not interface directly with the consumers, the

service provider only needs to monitor their performance. We

have proposed a framework to manage quality based on fuzzy-

logic for such composed services delivered on the cloud in

[26].

Figure 8: Ontology for consumption phase contains classes to

monitor the quality of software, human and dependent compo-

nents of the composite process

IV. PROTOTYPE

In this section we describe the prototype that we have con-

structed as a proof of concept for our proposed lifecycle. We

have selected a simple storage service for our prototype. We

have built the prototype by using SPARQL Protocol and RDF

Query Language (SPARQL) [12] end points to simulate ser-

vice providers and consumers spread across the cloud. We are

using Jena Semantic Web framework [21] and the Joseki

software [13], which is a HTTP engine that supports the

SPARQL Protocol and the SPARQL RDF Query language, to

develop our prototype.

A. SPARQL and SPARQL Endpoints

SPARQL is the query language for RDF that has been stand-

ardized by W3C [12]. SPARQL can be used to express queries

across diverse data sources, whether the data is stored natively

as RDF or viewed as RDF via middleware. It has capabilities

for querying required and optional graph patterns and their

conjunctions and/or disjunctions. SPARQL also supports val-

ue testing and altering of results. The results of SPARQL que-

ries can be results sets or RDF graphs. A SPARQL abstract

query is defined in [12] as a tuple (E, DS, R) where E is a

SPARQL algebra expression, DS is an RDF Dataset and R is a

query form.

A SPARQL endpoint is a conformant SPARQL protocol

service as defined in the SPARQL Protocol for RDF (SPROT)

specification [19][20]. It enables users (human or other) to

query a knowledge base via the SPARQL language. Results

are typically returned in one or more machine-processable

formats. Therefore, a SPARQL endpoint is mostly conceived

as a machine-friendly interface towards a knowledge base.

Both the formulation of the queries and the human-readable

presentation of the results should typically be implemented by

the calling software, and not be done manually by human us-

ers. Service Descriptions [20] specify the capabilities of a

SPARQL endpoint. They provide a declarative description of

the data available from an endpoint, the definition of limita-

tions on access patterns and statistical information about the

available data that is used for query optimization.

B. Example: Storage Service

For our illustration, we consider a basic storage service where

consumers can store their files or applications on the cloud.

This service is currently very popular on the cloud and is of-

fered by multiple providers, each offering different storage

and pricing plans.

We will use the service lifecycle ontology that we de-

scribed in the previous section to acquire the service. To de-

scribe the technical specifications for the RFS in the require-

ments phase, we however need to create a domain specific

ontology defining the key properties of the service like storage

size, backup etc. For this illustration, we have created a basic

ontology to define the technical specifications of the storage

service and it is illustrated in figure 9. The service consists of

three attributes, viz. storage size which indicates the storage

space in Gigabytes that consumer wishes to procure; the Cost

per Unit and the Backup attribute which indicates whether the

files/applications stored using the service are backed up or not.

Storage services offered currently by companies like Amazon

etc. have many more attributes associated with the service,

like data I/O, redundant storage etc. For simplicity sake and to

illustrate the iterative negotiation process, we are limiting our

service to three attributes. We will be using our service lifecy-

cle ontology and the OWL-S ontology in conjunction with this

ontology for our prototype.

Figure 9: Ontology defining the technical specifications for a

simple Storage service

After defining our service, we created a SPARQL endpoint

using Joseki to simulate a service provider providing the stor-

age service. Since the Joseki server allows multiple service

definitions, we used it to simulate both multiple services pro-

vided by the provider as well as multiple instances of a same

service. The Joseki service database contains the service de-

scription along with the provider policies endpoint. Using the

N3 [16] notation, the storage service description is described

in figure 10.

@prefix owls: <http://www.ai.sri.com/daml/services/owl-s/1.2/Profile.owl>.

@prefix sv: <http://www.cs.umbc.edu/~kjoshi1/IT_Service_Ontology.owl>.
@prefix storage: <http://www.cs.umbc.edu/~kjoshi1/storage_ontology.owl>.

@prefix : <http://eb4.cs.umbc.edu/Storage/>.

A database of storage services and their providers

:StorageFree
 owls:serviceName "Storage 1" ;

 owls:textDescription “Basic Storage service – free of cost " ;

 sv:creator “provider1" ;

 storage:Cost “0" ;

 storage:Backup “No" ;

 storage:Storage_size “< 5GB" ;

.

:Storage10GB

 owls:serviceName "10 GB Storage" ;
 owls:textDescription "Storage up to 10 GB" ;

 sv:creator "provider1" ;

 storage:Cost "$0.14 per GB per month" ;
 storage:Backup "Yes" ;

 storage:Storage_size "< 10 GB" ;

 .

:Storage100GB

 owls:serviceName "100GB Storage" ;
 owls:textDescription "S3 Storage service for less than 49 TB" ;

 sv:creator "provider1" ;

 storage:Cost "$0.125 per GB per month" ;

 storage:Backup "Yes" ;

 storage:Storage_size "<100 GB" ;

Figure 10: Service description of the Storage service in N3 nota-

tion on a SPARQL endpoint

C. Service Discovery

We created multiple SPARQL endpoints to simulate both

service consumers and providers. We used federated SPARQL

queries, like those illustrated in Figure 11, to discover the

services residing on an end point . Researchers like Sbodio et.

al [23] have also proposed algorithms for service discovery

using SPARQL language.

PREFIX owls: <http://www.ai.sri.com/daml/services/owl-s/1.2/Profile.owl>

PREFIX sv: <http://www.cs.umbc.edu/~kjoshi1/IT_Service_Ontology.owl>

PREFIX stg: <http://www.cs.umbc.edu/~kjoshi1/storage_ontology.owl>
SELECT ?serviceName ?textDescription ?Cost ?creator ?Backup ?Stor-

age_size

 { SERVICE <http://eb4.cs.umbc.edu:2020/Storage>
 { SELECT ?serviceName ?textDescription ?creator ?Cost ?Backup ?Stor-

age_size

 WHERE
 {?serviceName owls:textDescription ?textDescription .

 ?serviceName stg:Cost ?Cost .

 ?serviceName stg:Backup ?Backup .
 ?serviceName sv:creator ?creator .

 ?serviceName stg:Storage_size ?Storage_size .

 }
 }

 }

Figure 11: Service Discovery by using SPARQL query to get ser-

vice description

D. Service Negotiation

In our example, the consumer will negotiate directly with a

cloud provider to acquire the service and determine the SLAs

No third-party or cloud brokers are involved in the negotia-

tion. The contract is defined through an SLA between the pro-

vider and the end-user.

In the requirements phase, the consumer identifies all the

constraints or assertions of a service that need to be met along

with its functional requirements. These constraints typically

can be classified as hard and soft constraints. Hard constraints

are non-negotiable and have to be met by service providers.

Soft constraints help to define the desired service attributes on

which the consumer is willing to negotiate. Often, the same

parameter will have both a hard and a soft constraint (e.g., a

desired software version vs. the minimum version needed, a

desired amount of memory vs. the minimum required, etc.). A

policy driven approach can both capture such constraints, and

also guide the negotiation between the consumers and the pro-

viders. For our example, the negotiation policies would be:

HARD REQUIREMENTS:

MINIMUM STORAGE NEEDED: 100 GB

COST: AT MOST $8/Month

BACKUP: YES

SOFT REQUIREMENTS:

STORAGE NEEDED: 200 GB

COST: $5/MONTH

BACKUP: YES

The consumer‟s requirements policy (in the RFS) specifies the

soft requirements. When the provider‟s service policy manager

reviews the requirements and finds that it can‟t meet them, it

will try and negotiate. The consumer‟s response to the coun-

terproposals meeting its hard requirements would be guided by

the policy which ranks the constraints. For instance, the policy

might ask it accept disk storage as close to the minimum need-

ed as possible to keep the cost low. Figure 12 illustrates a RDF

graph of the SLAs that will be finalized at the end of the nego-

tiation phase for the constraints listed above.

The SLA graphs along with the functional and tech-

nical specifications will determine the service components and

their orchestration in the service composition phase. The SLAs

will also contain the metrics that will be used to manage ser-

vice performance during the final service consump-

tion/monitoring phase. In our illustration, the service perfor-

mance will be regarded poor if either of the attributes - size,

cost and backup - falls below the specified levels.

Figure 12: RDF graph representing the SLAs agreed upon for

our example during the service negotiation phase

V. CONCLUSION AND ONGOING WORK

In this paper we have defined an integrated ontology for pro-
cesses needed to automate IT services lifecycle on the cloud.
To the best of our knowledge, this is the first such effort, and it
is critical as it provides a holistic view of steps involved in de-
ploying IT services. Our approach complements previous work
on ontologies for service descriptions in that it is focused on
automating the processes needed to procure services on the
cloud. The methodology can be referenced by organizations to
determine what key deliverables they can expect at any stage of
the process. We also hope that it will enable the academia and
the industry to be on the “same page” when they speak about
IT services on the cloud. We are currently refining the ontolo-
gy to capture key metrics of software quality, as well as their
relations. We are also identifying the SAWSDL [8] extensions
for each phase. We are also working on automating the nego-
tiation steps in service acquisition and refining our prototype to

demonstrate the various phases and plan on using actual Enter-
prise policies to demonstrate the validity of this framework.

REFERENCES

[1] M. Papazoglou and W. Van Den Heuvel, Service-oriented design and
development methodology, International Journal of Web Engineering
and Technology, Volume 2, Number 4, 2006, pp. 412 – 442

[2] D. Bianchini, V. De Antonellis, B. Pernici, P. Plebani, Ontology-based
methodology for e-service discovery, International Journal of
Information Systems, The Semantic Web and Web Services, Volume 31,
Issues 4-5, June-July 2006, pp 361-380

[3] L Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, Q. Sheng, Quality
driven web ser-vices composition, Proceedings of the 12th international
conference on World Wide Web, 2003, pp 411 - 421

[4] E. M. Maximilien, M.Singh, A Framework and Ontology for Dynamic
Web Services Se-lection, IEEE Internet Computing, vol. 8, no. 5, pp. 84-
93, Sep./Oct. 2004

[5] J. Black et al, An integration model for organizing IT service
Management, IBM Systems Journal, VOL 46, NO 3, 2007

[6] S Ran, A model for web services discovery with QoS, ACM SIGecom
Exchanges, Vol 4, Issue 1, 2003, pp 1-10, 2003

[7] J Van Bon et. al., Foundations of IT service management based on ITIL
V3 , Van Haten Publishing, 2008

[8] J. Kopecky, T. Vitvar, C. Bournez and J. Farrell, SAWSDL: Semantic
annotations for WSDL and XML schema, IEEE Internet Computing,
v11n6, pp. 60-67, 2007.

[9] D. McGuinness, F. Van Harmelen, et al., OWL web ontology language
overview, W3C recommendation, World Wide Web Consortium, 2004.

[10] „Whats in a Service Level Agreement?‟, SLA@SOI, http://sla-at-
soi.eu/?p=356, retrieved on July 30, 2009.

[11] O. Lassila, R. Swick and others, Resource Description Framework
(RDF) Model and Syntax Specification, World Wide Web Consortium,
1999.

[12] E. Prud'hommeaux and A. Seaborne, SPARQL Query Language for
RDF, W3C recommendation, http://www.w3.org/TR/rdf-sparql-query/,
retrieved on April 27, 2011

[13] Joseki - A SPARQL Server for Jena, http://www.joseki.org/, retrieved
on April 27, 2011.

[14] S. Paurobally, V. Tamma and M. Wooldrdige, A Framework for Web
Service Negotiation, ACM Transactions on Autonomous and Adaptive
Systems,Vol. 2, No. 4, Article 14, November 2007.

[15] R. Smith, The Contract Net Protocol: High-Level Communication and
Control in a Distributed Problem Solver, IEEE Transactions on
computers, Volume C-29, Issue 12, 1980, pp 1104-1113.

[16] T. Berners-Lee, D. Connolly, L. Kagal, Y. Scharf and J. Hendler,
N3Logic: A logical framework for the World Wide Web, Theory and
Practice of Logic Programming, v8n3, pp. 249-269, Cambridge Univ
Press, 2008.

[17] I. Horrocks, P. Patel-Schneider, H. Boley, S. Tabet, B. Grosof and M.
Dean, SWRL: A semantic web rule language combining OWL and
RuleML, W3C Member Submission, World Wide Web Consortium,
2004.

[18] D. Martin, et al., Bringing semantics to web services: The OWL-S
approach, Lecture Notes in Computer Science, volume 3387, pp. 26-42,
2005, Springer.

[19] SPARQL Endpoint, http://semanticweb.org/wiki/SPARQL_endpoint,
retrieved on May 10, 2011.

[20] G. Williams, SPARQL Service Description, http://www.w3.org/TR/-
sparql11-service-description/, retrieved on May 10, 2011.

[21] Jena– A Semantic Web Framework for Java, http://jena.sourceforge.net/,
retrieved on May 10, 2011.

[22] L. Kagal, C. Hanson, and D. Weitzner, “Using dependency tracking to
provide explanations for policy management”, IEEE International
Workshop on Policies for Distributed Systems and Networks, 2008.

[23] M. L. Sbodio, D. Martin, and C. Moulin, “Discovering Semantic Web
services using SPARQL and intelligent agents.” Journal of Web Semant.
8, 4 (November 2010), 310-328.

[24] M. Hepp, “GoodRelations: An Ontology for Describing Products and
Services Offers on the Web”, Proceedings of the 16th International
Conference on Knowledge Engineering and Knowledge Management
(EKAW2008), Italy, 2008, Springer LNCS, Vol 5268, pp. 332-347.

[25] K. Joshi, T. Finin, and Y. Yesha, "Integrated Lifecycle of IT Services in
a Cloud Environment", in Proceedings of The Third International
Conference on the Virtual Computing Initiative (ICVCI 2009), Research
Triangle Park, NC, October 2009

[26] K. Joshi, A. Joshi and Y. Yesha, “Managing the Quality of Virtualized
Services”, in proceedings of the SRII Global conference, San Jose,
March 2011.

[27] K. Joshi, OWL Ontology for Lifecycle of IT Services on the Cloud,
http://ebiquity.umbc.edu/ontologies/itso/1.0/itso.owl

