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Abstract. Service matching is one of the crucial elements in the success
of large, open agent systems. While finding “perfect” matches is always
desirable, it is not always possible. The capabilities of an agent may
change over time; some agents may be unwilling to, or unable to
communicate their capabilities at the right level of details. The solution
we propose is to have the broker agent dynamically refine the agent's
capability model and to conduct performance rating. The agent
capability model will be updated using the information from the
consumer agent feedback, capability querying, etc. The update process
is based on a concept of “dynamic weight sum system”, as well as
based on the local distribution of the agent services. We assume that the
agents in the system share a common domain ontology that will be
represented in DAML+OIL, and the agent capabilities will be described
using DAML-S.

1 Introduction

Finding the right agent(s) for the right task is critical in achieving agent cooperation
in large, open agent systems. A popular approach to this problem is to use a broker
agent (or in general, the middle agents) to connect the service provider agents and the
service consumer agents, via service matching. Typically a broker agent recommends
service providers based on the capabilities/services advertised by the service provider
agents themselves. The matching scheme has evolved from the early age, simple
KQML performative based matching [17], to syntax and semantic based matching
[27]; from returning yes/no exact matches to returning matches with probabilities
[32]. However, there are still issues that need to be addressed. The ability to learn is
one of the key properties of the agents, therefore, the capabilities of an agent, both in
terms of what it can do and how well it can do it, will likely to change over time.
Moreover, the advertised capability information may not be always accurate - some
agents may be unwilling or unable to advertise their capability information at
sufficient level of details, some might unknowingly advertise inaccurate information,
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while others might even purposefully provide misleading information of their
capabilities. Even when the capability information is “accurate”, the agent selected
may not be able to provide quality service(s).

We have similar problems in the real world: we don't know whether the colorful,
fancy, and even convincing commercials are true or not. There is no perfect solution
to this real world problem - people have to learn their lessons. People can learn from
their own experience - if you bought a bottle of milk from a super market, but the
milk was sour, you will be less likely to buy milk from that store again. People can
also learn from their friends' experience. While this kind of learning is very helpful,
it's usually insufficient, because an individual usually has a limited social circle and
therefore, the experience is limited, both in terms of the variety of experience and the
number of occurrences. That is why there are the consumer reports. Consumer reports
are created using the information from the manufacture's specification, the consumer's
feedback, and their test results on the products. It provides guidance for consumers to
choose the right products. We believe that this consumer reports approach should
work in the agent world, too.

A particular agent can certainly try to learn which agents can provide good services
for it. However, its contact with other agents is usually limited, not to mention that it
usually has its own specialized work to perform. Therefore, to have each agent to
perform the learning would create a huge burden both for the agent itself and for the
agent developer(s). The broker agent, however, typically interacts with many (if not
all) of the agents in the system, and therefore is the ideal candidate for collecting and
summarizing the agents' experience and composing the “consumer reports” for the
other agents. This new task is consistent with its ultimate goal, that is, to provide the
best recommendations to the service consumer agents. By following a brokering
protocol, the broker agent will not only collect the information advertised by the
service provider agents, but will also learn from the experience the consumer agents
have about their service providers. It can also interrogate (query) a service provider
agent to get more detailed information on the services it can provide. Moreover, the
broker agent can dynamically capture the local probabilistic distribution of the agent
services and use this information to assess the probability of a service match.

For the same reason that an agent's capability (description) may change over time
(e.g., through learning), the significance of a piece of feedback data may also change
over time. For example, recent feedback data might be considered “more important”
than the earlier feedback data. To address this problem, we model the system as a
dynamic, weighted sum system. When new data come in, new weights are generated
for them and the weights for the data obtained earlier will be recomputed based on a
pre-specified pattern or trend, so that the total weights still sum to 1. There is a
family of weight sequence functions that is of special interest - the sequence functions
that have the “incremental property”. When a new weight sequence is generated due
to the increase in the number of data samples, the new “total result” can be computed
based on the previous total result and the new data (and of course, the new weights),
without re-computing the whole thing.

Finally, our approach goes beyond the simple notion of a “reputation server” in
that it discovers and refines a complex, symbolic model of a service provider's
capability and performance.
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The rest of this article is organized into three sections. In Section 2, we briefly
introduce the related work in the area, as well as the technologies that will be used in
this work, such as DAMLAOIL and DAML-S. In Section 3 we discuss the refinement
of an agent's capability model as well as the performance rating on the agents. We
conclude the paper with the discussions on some related issues in Section 4.

2 Related Work and a Background

The area of agent service matching has been intensively researched in the past years
because of its significance to the success of an agent system. In the early time, Agent
Based Software Interoperation (ABSI) architecture [17]), a special kind of agent in
the system, called the facilitator, is responsible for content-based message routing
(basically based on the KQML performative in a message). This is essentially a
KQML performative-based service matching, that is, the capability of an agent is
described by what KQML performatives it can handle. More recent brokers usually
support semantic based service matching, like the broker agent in the InfoSleuth
Agent Architecture [27]. The SIMS information mediator [1] does more than simple
service matching, it provides access and integration of multiple sources of
information. When no direct mapping can be found, it can extend the search through
concept generalization and specialization.

An interesting work on service matching is the LARKS (Language for
Advertisement and Request for Knowledge Sharing) [32]. LARKS is an agent
capability description language developed at CMU. It describes an agent's service by
specifying the context, the data types, the input and output variables, and the input
and output constraints. It also has a slot for the definition of the concepts used in the
description. The matchmaking scheme in LARKS is fairly flexible. There are five
filters, each of which addresses the matching process from a different perspective.
“Context matching” determines if two descriptions are in the same or similar context;
“profile comparison”, “similarity matching”, and “signature matching” are used to
check if two descriptions syntactically match; while the “semantic matching” checks
if the input/output constraints of a pair of descriptions are logically matched. Based
on the need of a specific application domain, these filters can be combined to achieve
different types/levels of matching.

The work in [33] compares concepts in differentiated ontologies. Differentiated
ontologies are (different) ontologies evolved from a common base ontology. The
concepts to be compared are represented in description logic. The paper describes
roughly a dozen different measures that can be used to compute the compatibility of
two concept descriptions. These measures fall into 3 main categories: the filter
measures, the matching-based measures, and the probabilistic measures. The filter
measures are basically based on how “close” the two concepts are in the concept
hierarchy, and are inexpensive. The matching-based measures build and evaluate one-
to-one correspondences between elements of concept definitions represented as
graphs. The probabilistic functions require domain-specific knowledge of the joint
distribution of primitives.

Most of the research/work on reputation management is in the context of electronic
marketplaces. In [37], the author described two reputation mechanisms. Sporas is a
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simple reputation mechanism that provides a global reputation value for each user.
After each rating, the reputation value is updated based on a formula. The second
mechanism described in the paper is more interesting. It models the pair-wise ratings
(between two users) using a directed graph, in which the nodes represent the users and
the weighted edges represent the most recent reputation rating given by one user to
the other. With this graph, a more “personalized” reputation value of B (in the eye of
A) can be computed from the ratings on the paths from A to B, based on certain
criteria (e.g., the length of a path must be less than a given number N). The idea is
that “social beings tend to trust a friend of a friend more than a total stranger”. The
collaborative sanctioning model used in [25] is based on a concept called “encounter”.
“An encounter is an event between 2 agents (a;, a;) such that the query agent (a;) asks
the response agent (a;) for aj's rating of an object”. “The reputation of a; in a;'s mind is
defined here as the probability that in the next encounter, aj's rating about a new
object will be the same as a;'s rating”.

In comparison to the existing researches, our proposed approach allows the broker
agent to refine the capability model of an individual agent, and to provide
performance rating. Moreover, the performance ratings of an agent are considered an
integral part of an agent's capability model. This is consistent with the DAML-S
service ontology, in which a qualityRating attribute is defined in the service profile.
The broker agent also approximates the probabilistic distribution of the agent services
by capturing the local distribution. In this work, the ontology and the service
description will be represented with DAML+OIL and DAML-S, respectively.

DAMLAOIL is the result of the joint effort by the US DARPA Agent Markup
Language project and the EU Information Society Technologies Program (IST). It is a
semantic markup language for Web resources. It builds on earlier W3C standards
such as RDF and RDF Schema, and extends these languages with richer modeling
primitives. DAMLA+OIL provides modeling primitives commonly found in frame-
based languages [7]. Therefore, we think it is suitable for use in ontology definition,
manipulation, and reasoning. With DAML+OIL, one can define classes and
properties, specify property restrictions, etc.

DAML-S is a web service ontology built on top of DAML~+OIL. It is still an
ongoing work at the DAML program. It supplies Web service providers with a core
set of markup language constructs for describing the properties and capabilities of
their services in unambiguous, computer-interpretable form [8]. It describes a service
in terms of “service profile”, “service model”, and “service grounding”. The service
profile tells what the service does; the service model tells “how the service works”;
the service grounding specifies how the service can be accessed. DAML-S could
facilitate the automation of Web service tasks including automated Web service
discovery, execution, interoperation, composition and execution monitoring.

3 Capability Model Refinement and Performance Rating

As mentioned earlier, finding the right agent(s) for a given task is critical in achieving
agent cooperation in large, open agent systems. Typically a broker agent recommends
service providers based on the capabilities or services advertised by the service
providers themselves. But there are issues yet need to be addressed. For example,
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given the adaptive nature of the agents, the capabilities of an agent are likely to
change over time; the advertised capability may not be always accurate, and that an
agent with the right capability description may not provide quality services. In this
work, we propose to extend the capability of the broker agent, i.e., to assign broker
agent with new responsibilities of refining the capability description of individual
agents, and conducting performance rating, based on the feedback and other collected
information.

To simplify the problem, but without lose of generality, we make the following
assumptions:

e  All the agents (including the broker agent) in the system share a common
domain ontology. Agents with different ontologies could work together through
ontology translation and/or semantic resolution (For example, [29]).

e We assume a cooperative environment, in which all of the agents are
cooperative.

e  We consider security and privacy issues orthogonal to what we discuss here.

3.1  Basic Model of a Multi-agent System (MAS)

In our model of agent system, there are three types of agents: service provider agent,
service consumer agent, and broker agent.

Service provider agent, or service provider, in short, is an agent that has certain
capabilities of providing certain services, such as some piece of information or
computing power. See also service consumer-.

Service consumer agent, or service consumer, in short, is an agent that consumes
the service(s) provided by other (service provider) agents. An agent can be a
consumer of one service, and a provider of another service at the same time.

A broker agent, or broker, in short, is a middle agent that can recommend service
providers (to the service consumers) based on the information it has. Generally
service providers advertise their services to the broker agent, and service consumers
can ask the broker agent what service providers can provide the services they need. In
this work, broker agent has two more tasks to do: to refine the capability model of
individual service providers, and to conduct performance rating based on the
information it collects. However, an agent is not required to go through a broker agent
to find a service provider.

Advertise refers to the process that an agent voluntarily tells other agents, e.g., the
broker agent, about its capability information. It is similar to the “advertise”
performative in KQML.

Recommend refers to the process that an agent (typically a broker agent) tells
another agent what agents can perform certain tasks, usually in response to such a
request.

Matching or Matchmaking refers to the process that the broker agent tries to match
a recommendation request against its knowledge about the capabilities of the agents
to find some agent(s) that can provide the service requested.

The term recommendation request and the term matching request are sometimes
used interchangeably to refer to a request for recommendation of agents that can
provide certain services.
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3.2  The (Advisory) Brokering Protocol

To enable the broker with its new capabilities, the other agents as well as the broker
agent itself need to follow an advisory brokering protocol, so that the individual
agents can provide, and the broker agent can collect, useful information for refining
the capability description and for conducting performance rating. The protocol is
advisory because an agent without the knowledge about the protocol should at least be
able to work with other agents in the system. However, it may not be able to take the
full advantage of the broker's capability, as well as to contribute to the success of the
broker agent. Note that the protocol described here is conceptual, in the sense that it
may be implemented in various ways, e.g., as KQML performatives, or at service
ontology level.
The protocol has the following (communicative) acts:

1. <advertise> If an agent wants other agents to know about its capabilities or
services it can provide, it can send an <advertise> message (with its capability
description) to the broker agent.

2. <request-for-recommendation> If an agent needs some services and wants to
know who (what agents) can provide such services, it can send a <request-for-
recommendation> message (with the service description) to the broker. The
broker agent can respond with <recommend> if it can find some suitable
service providers, or <sorry>, if it can't make an appropriate recommendation.

3. <recommend> The communicative act that the broker agent will use to
recommend service providers (if any) in response to a <request-for-
recommendation>

4. <follow-on-recommend> The broker agent (if it chooses to) may notify an
agent about the availability of a new (better) service provider for a service that
was previously requested.

5. <feedback> An agent can voluntarily, or in response to a request, send
<feedback> to the broker agent about some previously recommended service
providers.

6. <request-for-feedback> The broker agent can ask an agent how well a
previously recommended agent works. The agents asked are encouraged to give
a timely response.

7. <capability-query> An individual agent is expected to be able to answer queries
such as “Can you do...?”, “what are your capabilities”, etc. The response to
such a query can be a <advertise>, <confirm> or <disconfirm>.

8. <confirm> and <disconfirm> An individual agent can confirm or disconfirm
about a capability query.

If an individual agent does not comply with the brokering protocol, it does not
affect the others. As long as an agent observes the first three items, i.e., <advertise>,
<request-for-recommendation>, and <recommend>, it can work with the broker,
although it might not be able to take the full advantage of the broker's learning
capability.
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33 An Illustration

The refinement of an agent's capability model and the agent performance rating are
based on the information the broker collected from the agents. The information may
come from various channels, such as:

- The information voluntarily advertised by a service provider agent

- The feedback from a service consumer agent about some service providers

- The result of a capability query

- The local distribution of the agent services (will be explained later)

- Feedback/ratings (if any) provided by the human users

- The domain knowledge (e.g., the domain ontology)

- If the broker also performs task brokerin then the requests and the results are
useful, too (there are some privacy/security issues, which are outside the scope
of this work).

Now we use an example to illustrate the process. Consider selling televisions as a
service with three sub-service classes: selling traditional TV, selling HD-ready TV,
and selling HDTV. Suppose that agent A advertised that one of the services it can
provide is selling TV. Then agent B requests the broker to recommend some agent
that sells HDTV and agent C asks for a traditional TV seller. But unfortunately,
nobody has advertised for HDTV or traditional TV so far. Suppose the best the broker
can do is to recommend agent A to both B and C. Moment later, agent B came back
said “No, I'm disappointed with A” (Feedback on HDTV, not TV). But C came back
and said, “The service provided by A is great!”. Given all that information, the broker
figured that although agent A advertised for selling (all kinds of, by default) TVs, it
looks like its strength is in selling traditional TV service, and its selling HDTV
service may not be that good. To take advantage of the brokering protocol, the broker
agent can ask A if it really sells HDTVs. If A confirms, it won't help much to raise its
reputation, but if A disconfirms, the broker agent can then just disqualify it for any
future HDTV requests. Why agent A wants to reply, then? There could be two
reasons: one is to be cooperative, the other is to avoid bad reputations - claiming that
you can do something you can't do would adversely affect your reputation. The broker
agent can prove, disprove, or refine its belief about an agent through more feedback
from other agents, and make use of this knowledge in the future matching processes.

From this example, we can see that the refinement is based on the advertised
capability description, guided by the domain knowledge (e.g., selling HDTV is a sub-
class of selling TV service), using the information collected from various channels. At
the same time as the capability description is refined, the broker agent will also assign
ratings on the various aspects (or properties) of the service provided by certain agents.
Therefore, capability description refinement and performance rating are really two
results of the same process, or alternatively, one may view the performance rating as
part of the capability description model.

! Task brokering refers to the process that the broker receives a query, finds an
appropriate agent, and forwards the query to that agent. When finished, the result is
sent to the broker, and the broker forwards the result to the requested agent.
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Now we use a similar example to illustrate how the information on local service
distribution can help in achieving better matching results. It's certainly the best if we
know the exact probabilistic distribution of the various agent services, but that is not
something always available. By local service distribution, we mean the distribution of
the services seen so far. Suppose that through the course of matchmaking service, the
broker discovers the following: 85% of the advertisements/requests are about
traditional TV, 8% are about HD-ready TV, and the rest (7%) are about HDTV.
Suppose that the only advertisements on selling TVs are the one from agent B, which
advertised “selling traditional TVs”, and the one from agent C, which advertised
“selling HDTVs”. If agent A requests a recommendation on “selling TV” service,
then with the knowledge of the local service distribution, the broker would be able to
recommend the traditional TV seller (agent B) over the HDTV seller (agent C),
assuming all the other factors equal. Five years later, the distribution of the three sub
service classes might change to 30%, 20%, and 50% respectively. The broker agent
will then be able to dynamically capture the changes in the probabilistic distribution
of services, and makes appropriate recommendations accordingly.

On the other hand, while most of the TV sellers (those who advertise that they sell
TVs) sell traditional TVs, not that many TV sellers sell HDTVs. So based on the
probabilistic distribution, the broker agent would be more confident to recommend a
TV seller if the request is about traditional TV, while it would be less confident (to
recommend a TV seller) if the request is about HDTV. When computing the
probabilistic distribution, we consider both how many sub classes a service class has,
and the frequency of a service being referenced (requested/advertised).

In large, heterogeneous agent systems, while exact service matches are always
desirable, it's not always possible to find exact matches. The approach introduced here
should help achieve more accurate partial matching.

3.4  Agent Capability Refinement Model

Now, let's take a closer look at the agent capability refinement model. A service has a
set of direct super (parent) services (empty if top-level service) and a set of direct sub
(child) services (empty if leaf level service). Among other information in an agent's
capability description, there is a set of ratable features or properties (when no ratable
features are specified, then there is one default ratable feature, which is the capability
description itself). An importance vector can optionally be defined to specify the
(relative) importance of each ratable feature.

The refinement is performed along three lines: service specialization, service
generalization, and service performance rating. Specialization and/or generalization
will be performed in situations when no (exact) match could be found for a requested
service, or some (exact) matches could be found but the ratings on these services are
not good. If some parent service p of the requested service can be found, and the
rating 7 of p is good, we may assume that the agent could perform the requested
service with similar ratings as 7 - basically we specialize the service that the agent can
perform. Or on the other hand, if an agent can be found that can perform most (if not
all) of the direct sub services of the requested service, we could estimate how well the
agent can perform the requested service based on ratings on the sub services. The
assumption or estimation (or belief, in one word) that the agent can perform the
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requested service with a certain rating can be further refined based on future feedback
or capability queries. Specialization and generalization, together with performance
rating, give the broker agent deeper insight in what an agent can do, and how well it
can do it.

Performance rating is orthogonal to specialization and generalization. In order to
discuss how the performance rating will be conducted and updated, we first need to
introduce our abstraction of the problem and the concept of weight function.

The Dynamic Weighted Sum System. Our abstraction of the problem is to compute
the weighted-sum of a set of dynamically obtained data samples. “Weighted” because
the capability of an agent may change over time (e.g., through learning) and therefore,
data samples obtained at different times usually carry different significance. The
number of data samples may increase as new samples are obtained. The weights for
these data samples are modeled as a weight sequence, whose length increases as new
data samples are obtained. The data samples can be of any type (scalar, vector,
matrix, or whatever) as long as it meets certain requirements as discussed below. The
goal here is to dynamically and systematically assign a weight for each new data
sample, adjust the weight for the existing data samples (implicitly or explicitly), and
then compute the new weighted-sum, preferably in an incremental way.

A weight sequence is a sequence W, {w;, Wy, W3, Wy ... Wy} of n (n>0) real
numbers w; such that 0 <= w; < 1 for all 1<i<n and that > ., ,-{w;} = 1 (the sum of
Wi to W)

In this context, a weight function is a function f'that, given a natural number n, can
generate a weight sequence {f(n, 1), f(n, 2) ... fin, n)} of length n. Note that a weight
sequence or a weight function is independent of any data sets, although it could be
associated with a data set. A weight function is said to be incremental if, when a new
data sample is obtained and a new weight sequence is generated for the increased data
set, the new weighted sum can be computed incrementally based on the current
weighted sum.

Why is this property of incrementality so important? First, you don't have to keep
all the data samples around. Second, in contexts like broker learning, information
about individual agents is obtained dynamically, and that information should be taken
into account as soon as possible. If everything is recalculated from all the data
obtained since the very start, the cost may be prohibitively high.

In order to study the dynamic properties of some weight functions, we need to
define the concept of a dynamic weighted sum system.

Definition 1:
A 4-tuple (f, X, +, *) is said to be a DWS (Dynamic Weighted Sum) System if:

» fis a weight function with range d < R and d = [0, 1]. (R is the set of real
numbers)

» Xisaset of sample data (whose size may increase over time)

»  +1is the addition operator

» is the multiplication operator

Such that, with x, y,z€ X, and a, b, ¢ € d, the following hold:
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+ and * on d are just the same as what/how they are defined on R.
Closure: x +y e X

Associative law: (x +y)+z=x+(y+z)=x+y+z

Distributive law: a * (x +y)=a*x+a*y,(a+b)*x=a*x+b *x.
Commutative law: a * x =x * a

YVVVYY

Theorem 1:
Suppose f'is the weight function of a DWS system (f, X, +, *). If for any given n
(n>0) and i (1<i<=n),

fin+1, 1)/f(n, 1) = c(n)

holds, where c(n) is a function of n, Am, j) is the j" element in the (generated) weight
sequence of length m, then f'is incremental in the framework of the DWS system.

Proof:
Suppose the current size of X is n. Let {w;, w,, w3, ..., w,} be the weight sequence
generated by f(n, i), and {W';, W', W', ..., W', W1} be the new weight sequence

generated by f(n+1, i) when the new data sample x,.; is acquired. Let S, be the
weighted sum, we have:

Sp = D eimt, no 1X* Wi

With the latest acquired data sample x,.;, let S,;; be the new weighted sum, we
have:

Spi1 = Z<i:l,n+l>{xi*w‘i}
= Z<i:1, X W F X * Wi
= Yairl e AX W)+ X *Wai
=c(n) * Z<i:l,n>{xi*wi*} + Xn1 ¥ Wi
= C(l’l) * Sn + XnH*W'nH

Therefore, the result S,.; can be computed from S,, so fis incremental.

End of proof.

Corollary 1:
Suppose f{n, i) is the weight function of a DWS system (f, X, +, *). For any given
n=N, and any 1<i<=N, if AN+1, 1)/f{N, i) = ¢ holds, where c is a constant, then f'is
incremental.

Proof:
It follows directly from theorem 1.

So, how to create/find a weight function that is incremental? As a first step, let's
find out how we can find weight functions that can generate weight sequences of any
given length. One solution is to construct weight functions from other mathematical
sequence functions, e.g., the natural sequence function (a function that generates the
natural sequence {1, 2, 3...}). Let b(n, 1) be a positive sequence function for sequence
{b(n,1), b(n,2) ... b(n,n)} of length n, where 1 <= i <=n, and b(n, i)>= 0. Let T(n) =
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Y <i=1.n>1b(n, 1)} be the sum of the sequence b(n, 1). Now we construct a new sequence
function f(n, 1) of length n as follow:

fn, 1) =b(n, 1)/T(n), 1 <=1i<=n, and x/0 = 0 for any number x.

It's not difficult to show that 0 <= fin, 1) <= 1, and that Y - {f(n, 1)} = 1.
Therefore, f(n, 1) is a weight function. In this context, b is called the base function; T
is called the sum function of b; and f'is the constructed weight function with base
function b.

Theorem 2:

For a positive sequence function b(x, 1), if b(n+1, 1) = b(n, i) holds for any given n
(n>0) and any i (1<=i<=n), then the constructed weight function f(x, i) with base
function b is incremental in any DWS system (f; X, +, *).

Proof:

fint+1, 1)/f(n, 1) = (b(n+1, 1)/T(n+1)) / (b(n, 1)/T(n))
= (b(nt+1, 1)/ (b(n, 1)) * (T(n) /T(n+1))
= T(n) /T(n+1)

The last step above is because b(n+1, i) = b(n, i). From theorem 1 we know that the
weight function f{(n, i) is incremental.

End of proof.
An Example Weight Function. Evidently, theorem 2 can lead to the discovery of
some weight functions that are incremental in the framework of a DWS system. As an

example, let's look at the weight function constructed from the geometric sequence
function. The geometric sequence function (of length n) can be written as follow:

b(n, i) = !, where 1 <=i<=n, and r is called the “ratio term”.

——n=10, r=0.5
——n=2,r=1.2

n=6, r=1.2
—>—n=10, r=2
—*%—n=10,r=1.2

1 2 3 4 5 6 7 8 9 10

Fig. 1. Geometric Sequence Based Sequence Functions
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When [r| # 1, the sum function is:
T(n) = (1- r")/(1-r)
Therefore, the weight function with base function b is:
An, i) =b(n, i)/T(n) =" /((1- /(1)) = (' - )(" - 1)

Since b(nt+1, i) = b(n, i) = !, it follows from theorem 2 that this geometric
sequence based weight function is incremental. Figure 1 shows a family of weight
functions with different length “n” and ratio “r”. Here are some more observations:

1) For two geometric sequences with ratio rl and r2. If rl = 142, their
corresponding weight functions are symmetric along x = n/2, that is, f;;(n, i) =
fo(n, n-i+1).

2) The sum function T(n) converges to 1/(1-r) when 0 <= r < 1. Therefore, the
minimum possible value for f(n, 1) is 1-r, and is therefore independent of n.

3) When 0 <= r < 1, the weights decrease monotonically. When r is small, the
weights of the first few examples decrease sharply and then turn almost flat.
Moreover, the first few weights totaled almost to 1.0. But when r is closer to
1.0, the curve becomes quite flat.

4) Given (1), the conclusions in (2) and (3) are also applicable to the case of r > 1,
but need to be mirrored along n/2.

Rating Computation. Finally, we can discuss the computing of the performance
ratings. A ratable feature of a service is the smallest unit for rating. The rating of a
service is therefore a vector of ratings for its ratable features.

Suppose the current rating on some service (of some agent) x is R(n), which is the
combined effect from the previous n ratings. We just received a rating p on x and we
want to compute the new rating R(n+1) as the combined result of the n+1 ratings
received so far. If the weight function f is incremental, we can compute R(n+1) as
follow:

R(n+1) = ¢(n)*R(n) + p*f(n+1, n+1),

where c(n) is some function of n, and is decided by f. On the other hand, if f'is not
incremental, we need to re-compute the whole thing:

R(n+1) =2 cic n-{pi*f(nt L)} + p¥flntl, ntl),

where p; is the i™ rating received. If the overall rating on a service is needed, it can be
computed from the feature ratings, optionally weighted by an importance vector (for
features), that is,

r=R'*1,

where R' is the transposed rating vector, and I is the importance vector.

Rating Propagation. But things won't stop there. When the rating(s) on a service is
updated, the changes propagate up as well as down the service hierarchy. The degree
of effect on the services up and/or down the hierarchy is governed by the local service
distribution, which is captured dynamically. If the service whose rating is to be
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updated through propagation (the target service) has common ratable features with the
propagation origin service, then the set of common features will be updated.
Otherwise, the target service itself is considered to be the only feature. Here we only
discuss the case of tree-shaped hierarchy. In more general hierarchies like the DAG
hierarchy, propagation can performed in a similar fashion.

Upward propagation refers to the process that when the rating on a service x is
updated, the rating on its parent service p will also be updated. This update propagates
upward along the service hierarchy, to the most general service a specific agent has to
offer. Suppose x accounts for o percent of p. Let R, and R'; be the ratings of p before
and after the update, respectively; let R'x be the rating of x after the update. We have
the upward propagation rule:

R, =R, + a* R )/(1+ o)

Therefore, the more percentage x is of p, the more p will be affected.

Downward propagation refers to the process that when the rating on a service x is
updated, the ratings on its child services will be updated accordingly. The update
propagates along the service hierarchy all the way down to the most specific service
the agent has to offer. Suppose c is one of the child services of x and accounts for B
percent of x. Let R, and R'. be the ratings of c before and after the update,
respectively. Then we have the downward propagation rule:

Rie=(Rc+B*RY/(1+P)

Therefore, the more percentage c is of x, the more ¢ will be affected.

In general (for both downward and upward propagation), the further a propagation
target is from the origin, the less it will be affected by the propagation. How much a
propagation target will be affected depends on the local distribution of the services.

4 Discussions

This paper presents a framework for an adaptive service broker that learns and refines
a model of a service provider's performance. The system design and implementation
are on the way. However, significant additional issues still remain. One issue that will
need to be addressed is the situation when the child services of a service do not
strictly disjoint with one another. This might be addressed using the local service
distribution information. Next is the fairness issue. Although we believe that in
general the broker agent can improve the quality of service matching through
learning, the ratings on specific services may not always be “accurate”. Over or under
estimate the capability of any agent is unfair to that agent, and is unfair to the other
agents as well. The problem might be lessened if the “bad” agents were given some
chances - but that might compromise the quality of the matching service. We will also
explore other formal methods for rating update and propagation. We believe that the
security issue and the privacy issue are orthogonal to what we've discussed here.

One of the ideas behind this work is the law of locality. The more frequently a
subset of the agents' capability is referenced (e.g., asked for recommendation), the
more likely this sub-set will be referenced again later. The good news is, the more
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frequently the subset is referenced, the more likely the detailed information on this
subset will be obtained through learning. Therefore, the approach captures the
temporal locality. Moreover, the (spatial) distribution of the agent services is
dynamically captured and used in computing agent service ratings.

Although we choose the DAML framework, we think the approach proposed here
should work with other languages/frameworks, too. For example, LARKS can be
extended with a set of (domain-dependent) rating slots and a new type of filer(s) that
can be used to handle the new slots. Then what we discussed here should apply.
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