
Policy based Cloud Services on a VCL platform

Karuna P Joshi, Yelena Yesha, Tim Finin, Anupam Joshi

Computer Science and Electrical Engineering Department

University of Maryland, Baltimore County

Baltimore, USA

{kjoshi1, yeyesha, finin, joshi}@umbc.edu

Abstract— Managing and delivering virtualized cloud based

services is an open challenge. Current research is focused on

specific parts like service discovery; composition etc. and there

is no holistic view of what would constitute a lifecycle of

virtualized services delivered on a cloud environment. We have

developed a policy-based integrated framework for automating

acquisition and consumption of Cloud services. This

framework divides the cloud service lifecycle into five phases of

requirements, discovery, negotiation, composition, and

consumption. We have also developed a tool to automatically

discover, negotiate and consume services from the cloud for a

specific use case described by NIST around storage services. It

is built upon the service lifecycle ontology that we have

developed. We have built the tool using Semantic Web

technologies like SPARQL, RDF and OWL to represent and

reason about services and service requirements. This paper

describes our methodology and the tool we have developed as

well as its implementation on VCL platform.

I. Introduction

With the advent of cloud computing, the delivery of
Information Technology (IT) services has undergone a
paradigm shift. Organizations are increasingly procuring IT
components like software, hardware or network bandwidth
as services from providers based anywhere in the world.
These services are hosted on the cloud and are delivered to
the organization via the Internet or mobile devices. The
service is acquired and consumed on an as needed basis. In
such an environment, multiple providers often collaborate to
create a single service for an organization. Cloud services are
increasingly based on the composition of multiple
component services and assets (technological, human, or
process) that may be supplied by one or more providers
distributed across the network – in the cloud. Moreover, a
single service component can be a part of many composite
services as needed. The service, in effect, is virtualized on
the cloud. This is becoming the preferred method to deliver
services ranging from helpdesk and back-office functions to
Infrastructure as a Service (IaaS). The virtualized model of
service delivery also extends to IT Enabled Services (ITeS),
which typically include a large human element.

A key barrier preventing organizations from successfully
using services on the cloud is that the they have complex
internal policies, as well as legal and statutory constraints
that require compliance. Such policies are today enforced on
internal resources controlled by the organization. When

acquiring remote services, it requires significant human
intervention and negotiation -- people have to check whether
a provider’s service attributes ensure compliance with their
organization’s constraints. This can get very complex if the
provider is composing services, some of which it gets from
other providers. A related issue is the lack of an integrated
methodology for service creation and deployment that
provides a holistic view of the service lifecycle on a cloud.
We have developed a methodology [6] to address the
lifecycle issue for virtualized services delivered from the
cloud and describe it briefly in section III. This lifecycle
provides ontologies to describe services and their attributes.
In particular, we used semantically rich descriptions of the
requirements, constraints, and capabilities that are needed at
each phase of the lifecycle. Policies can be described using
the same ontology terms so that compliance checks can be
automated. This methodology is complementary to previous
work on ontologies, e.g., OWL-S, for service descriptions in
that it is focused on automating processes needed to procure
services on the cloud. The methodology will enable
practitioners to plan, create and deploy virtualized services
successfully.

We have developed and implemented a cloud storage
service prototype to demonstrate and evaluate our
methodology. We used Semantic Web technologies such as
OWL, RDF, and SPARQL to develop this tool. The
prototype allows cloud consumers to discover and acquire
disk storage on the cloud by specifying the service
constraints, security policies and compliance policies via a
simple user interface. This prototype was developed as part
of our collaboration with National Institute of Standards and
Technology (NIST). We have integrated this tool with the
Eucalyptus [15] and VCL [27] cloud platforms and describe
our preliminary results for the same.

II. Related Work

Since cloud computing is a nascent field, there is lack of
standardization and there seems to be a need to clearly
define its key elements. NIST has released a special
publication 800-145 [13] defining cloud computing as a
model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction.
One of the key characteristics identified by NIST is that a

cloud service should have the capability of on-demand self-
service whereby a consumer can unilaterally provision
computing capabilities, such as server time and network
storage, as needed automatically without requiring human
interaction with each service provider. This capability of
automatically acquiring a service is currently either missing,
or very limited, in most cloud based services. Our
methodology aims to make it possible to automatically
discover, negotiate/acquire and consume cloud based
services.

In addition to the standard definition of Cloud
Computing, NIST has also released the Cloud Computing
Reference Architecture document [14] that describes a
reference architecture for cloud computing and also the key
roles and responsibilities of stakeholders. The authors of this
paper were part of the NIST cloud computing reference
architecture and taxonomy working group that participated in
developing the standard. Our ontology, described in the next
section, makes use of the NIST cloud computing standards
and definitions.

Current research on cloud or web services so far has been
limited to exploring a single aspect of the lifecycle such as
service discovery, service composition, or service quality.
There is no integrated methodology for the entire service
lifecycle - covering service planning, development and
deployment in the Cloud. In addition, most of the work is
limited to the software component of the service and does
not cover the service processes or human agents which are a
critical component of IT Services.

Papazoglou and Heuvel [16] have proposed a
methodology for developing and deploying web services
using service oriented architecture (SOA). Their approach,
however, is limited to the creation and deployment of web
services and does not account for virtualized environment
where services are composed on demand. Providers may
need to combine their services with other resources or
providers’ services to meet consumer needs. Other
methodologies, like that proposed by Bianchini et al. [1], do
not provide this flexibility and are limited to cases where a
single service provider provides one service. Zeng et al. [28]
address the quality based selection of composite services via
a global planning approach but do not cover the human
factors in quality metrics used for selecting the components.
Maximilien and Singh [11] propose an ontology to capture
quality of a web service so that quality attributes can be used
while selecting a service. While their ontology can serve as a
key building block in our system, it is limited by the fact that
it considers single web services, rather than service
compositions.

Black et al. [2] have proposed an integrated model for IT
service management. Their model is limited to managing the
service from the service provider’s perspective. Paurobally et
al. [17] have described a framework for negotiation of web
services using the iterated Contract Net Protocol (CNP) [21].
However their implementation is limited to pre-existing web
services and doesn’t extend to virtualized services that are
composed on demand. Our negotiation protocol accounts for
the fact that the service will be composed only after the
contract/SLA listing the constraints is finalized.

GoodRelations [3] is an ontology developed for E-commerce
to describe products. While this ontology is useful for
describing service components that already exist on the
cloud, it is difficult to describe composite virtualized
services being provided by multiple vendors using this
ontology. Cardoso et al. [24] have described a Unified
Service Description Language (USDL) a specification
language to describe services from a business, operational
and technical perspective.

The Information Technology Infrastructure Library
(ITIL) is a set of concepts and policies for managing IT
infrastructure, development and operations that has wide
acceptance in the industry. The latest version of ITIL lists
policies for managing IT services [23] that cover aspects of
service strategy, service design, service transition, service
operation and continual service improvement. However, it is
limited to interpreting “IT services” as products and
applications that are offered by in-house IT department or IT
consulting companies to an organization. This framework in
its present form does not extend to the service cloud or a
virtualized environment that consists of one or more
composite services generated on demand.

We use Semantic Web techniques for our services
lifecycle and prototype development. The Semantic Web
deals primarily with data instead of documents. It enables
data to be annotated with machine understandable meta-data,
allowing the automation of their retrieval and their usage in
correct contexts. Semantic Web technologies include
languages such as Resource Description Framework (RDF)
[9] and Web Ontology Language (OWL) [12] for defining
ontologies and describing meta-data using these ontologies
as well as tools for reasoning over these descriptions. These
technologies can be used to provide common semantics of
Service information and policies enabling all agents who
understand basic Semantic Web technologies to
communicate and use each other’s data and Services
effectively. The Ontology Web Language for Services
(OWL-S) [10] was developed to provide a vocabulary for
describing the properties and capabilities of Web Services in
unambiguous, computer-interpretable form. OWL-S allows
Service providers or brokers to define their Services based
on agreed upon ontologies that describe the functions they
provide. We have integrated the OWL-S ontology into our
ontology.

SPARQL Protocol and RDF Query Language (SPARQL)
is the query language for RDF that has been standardized by
W3C [18]. SPARQL can be used to express queries across
diverse data sources, whether the data is stored natively as
RDF or viewed as RDF via middleware. It has capabilities
for querying required and optional graph patterns and their
conjunctions and/or disjunctions. SPARQL also supports
value testing and altering of results. The results of queries
can be results sets or RDF graphs. A SPARQL abstract query
is defined in [18] as a tuple (E, DS, R) where E is a
SPARQL algebra expression, DS is an RDF Dataset and R is
a query form.

A SPARQL endpoint is a conformant SPARQL protocol
service as defined in the SPARQL Protocol for RDF
(SPROT) specification [22]. It enables users (human or

other) to query a knowledge base via the SPARQL language.
Results are typically returned in one or more machine-
processable formats. Therefore, a SPARQL endpoint is
mostly conceived as a machine-friendly interface towards a
knowledge base. Both the formulation of the queries and the
human-readable presentation of the results should typically
be implemented by the calling software, and not be done
manually by human users. We have used the Joseki [5]
server to simulate the SPARQL endpoint for our tool.

III. Lifecycle of Cloud Services

We have developed a methodology which integrates all the

processes and data flows that are needed to automatically

acquire, consume, and manage services on the cloud. We

divide this IT service lifecycle on a cloud into five phases.

In sequential order of execution, they are requirements,

discovery, negotiation, composition, and consumption; and

are illustrated in figure 1. We have described these phases in

detail along with the associated metrics in [6]. We have

developed the ontology for the entire lifecycle in OWL 2

DL profile, [7]. This ontology has been used in the

development of the Smart Cloud Services tool described in

the next section.

Figure 1: The IT service lifecycle on a virtualized cloud comprises five

main phases: requirements, discovery, negotiation, composition and

consumption

A. Service Requirements Phase

In this phase, the consumer details the technical and

functional specifications that a service needs to fulfill along

with the organizational policies for the providing agent, data

quality policy and security policies for the service. Service

compliance policies such as required certifications standards

to be adhered to, etc. are also identified. Depending on the

service cost and availability, a consumer may be amenable

to compromise on the service quality. Functional

specification describe in detail what functions/tasks should a

service help automate. The technical specifications lay

down the hardware, software, application standards, and

language support policies to which a service should adhere.

Once the consumers have identified and classified their

service needs, they issue a Request for Service (RFS). This

request could be made by directly contacting a few service

providers for their quotes. Alternatively, consumers can use

a service discovery engine or service broker on the cloud to

procure the service.

B. Service Discovery Phase

Service providers are discovered by comparing the

specifications listed in the RFS. The discovery is

constrained by functional and technical attributes defined,

and also by the budgetary, security, compliance, data

quality, and agent policies of the consumer. While searching

the cloud, service brokers can be employed. The broker

engine queries the service providers to match the service

data and security policies, compliance needs, functional, and

technical specifications; and returns the result with the

service providers in priority order. Sbodio et al. [20] and

Paliwal et al. [25] have presented semantic approaches for

service discovery which can be incorporated in our

methodology.

One critical part of this phase is service certification, in

which the consumers will contact a central registry, such as

UDDI [19], to get references for providers that they narrow

down to.

If a consumer finds the exact service within their

budgets, s/he can begin consuming the service immediately

upon payment. However, often the consumer will get a list

of providers who will need to compose a service to meet the

consumer’s specifications. The consumer will then have to

begin negotiations with the service providers. Each search

result will return the primary provider who will be

negotiating with the consumer.

C. Service Negotiation phase

The service negotiation phase covers the discussion and

agreement that the service provider and consumer have

regarding the service delivered and its acceptance criteria.

The service delivered is determined by the specifications

laid down in the RFS. Service acceptance is usually guided

by the Service Level Agreements (SLA) that the service

provider and consumer agree upon. SLAs define the service

data, delivery mode, agent details, quality metrics, and cost

of the service. While negotiating the service levels with

potential service providers, consumers can explicitly specify

service quality constraints (data quality, cost, security

policies, response time, etc.) that they require.

At times, the service provider will need to combine a set

of services or compose a service from various components

delivered by distinct service providers in order to meet the

consumer’s requirements. The negotiation phase also

includes the discussions that the main service provider has

with the other component providers. When the services are

provided by multiple providers (composite service), the

primary provider interfacing with the consumer is

responsible for composition of the service. The primary

provider will also have to negotiate the Quality of Service

(QoS) with the component providers to ensure that SLA

metrics are met.

The key deliverable of this phase is the service contract

between the service consumer and service provider. The

SLA is a key part of this service contract and will be used in

the subsequent phases to compose and monitor the service.

Another deliverable of this phase are the service sub

contracts between the service provider and component (or

dependent services) providers. The QoS are the essential

part of the service sub-contracts and are used in the

consumption phase to monitor service performance.

D. Service Composition phase

In this phase one or more services provided by one or more

providers are combined and delivered as a single service.

Service orchestration determines the sequence of the service

components.

E. Service Consumption/Monitoring phase

The service is delivered to the consumer based on the

delivery mode (synchronous/asynchronous, real-time, batch

mode etc.) agreed upon in the negotiation phase. After the

service is delivered to the consumer, payment is made and

the consumer then begins consuming the service. In a cloud

environment, the service usually resides on remote

machines managed by the service providers. The provider is

responsible for managing and monitoring the service. In this

phase, consumer will require tools that enable service

quality monitoring and service termination if needed. This

will involve alerts to humans or automatic termination based

on policies defined using the quality related ontologies. The

Service Monitor measures the service quality and compares

it with the quality levels defined in the SLA. This phase

spans both the consumer and cloud areas as performance

monitoring is a joint responsibility. If the consumer is not

satisfied with the service quality, s/he should have the

option to terminate the service and stop service payment.

The composite service is made up of human agents

providing the service, the service software, and dependent

service components. All the three elements, agents,

software, and dependent services, must be monitored to

manage the overall service quality. For the service, software

providers have to track its performance, reliability,

assurance, and presentation as they will influence

customer’s satisfaction rating (CSATs). Since the dependent

services/components will be at the backend and, will not

interface directly with the consumers, the service provider

only needs to monitor their performance. We have proposed

a framework to manage quality based on fuzzy-logic for

such composed services delivered on the cloud in [8].

Figure 2: User Interface for Smart Cloud Service allows users to specify the service constraints using drop down lists and generate a Request for Service

(RFS).

IV. Smart Cloud Services Tool

We have developed a prototype for automatically
acquiring cloud based services. This tool is based on the
lifecycle described in the previous section and uses the
ontology that we have developed for the same. It
demonstrates the capability that cloud users will have in the
future to automatically acquire cloud services. This tool
allows users to define a range of values for their constraints
and so accommodates for scenarios where the users may not
have finalized their requirements.

For the prototype we considered a simple Storage
service, as a representative scenario for Infrastructure as a
Service (IaaS), whereby users can store their files/data on the
cloud. It consists of a web interface (Figure 2) that enables
cloud users to easily define the service policies and
constraints by choosing predefined values from dropdown
fields. The tool then discovers the services that will match
the specified policies. A Cloud-provider end server process
interprets the policies specified by the user(s) and establishes
Service Level Agreements (SLAs) by the process of
negotiation. A virtual instance of the service based on the
SLA is created on the cloud platform.

A. Prototype Architecture

We used Semantic Web technologies to build the front
end of our prototype as they are platform independent and
inter-operable. We used SPARQL, Jena Semantic Web
framework [4] and the Joseki software [5], which is an
HTTP engine that supports the SPARQL Protocol and the
SPARQL RDF Query language, to develop the prototype.
The prototype mirrors the service lifecycle described in
section III and uses the service lifecycle ontology that we
have developed and the OWL-S ontology. In addition to
these two ontologies, we also created an OWL ontology to
describe the technical and security policies for the prototype.
We have incorporated actual enterprise policies related to
data storage and security that are practiced by large
organizations. We have used the policies defined in the use
case 3.9 [26] identified by the NIST cloud computing
initiative.

The smart cloud services tool consists of four main
components as illustrated in Figure 3.

 Web-based user interface: enables users to define their
service requirements as well as specify the data, security
and compliance policies that the service should meet.
After specifying the service values, the users can press
the ‘Request for Service (RFS)’ button to generate a
machine readable RFS (step (1) in figure 3) that is
specified as an RDF document. Figure 2 illustrates the
RFS in a RDF/XML format.

 Cloud Service Broker: Uses the RFS generated by the
user interface to discover services that will match the
specified policy constraints (step (2) in figure 3). This
component also executes the program to enable
automated SLA negotiation (step (3) in figure 3) and
sends the final SLA for approval (step (4) in figure 3).

 Service Endpoint: The service endpoint component
simulates a service provider providing the service. It
contains a list of all available services and their service
attributes (like cost, availability, etc.). We created a
SPARQL endpoint using Joseki. Since the Joseki server
allows multiple service definitions, we used it to
simulate both multiple services provided by the provider
as well as multiple instances of a same service.

 Cloud Platform: For the cloud-end processes, we use
the Eucalyptus Cloud [15] which is an open source
cloud platform and the IBM Virtual Computing Lab
(VCL) [29] platform. Both these platforms have been
installed in our research lab. The final approved SLA is
generated in a machine readable RDF format and is sent
to the cloud platform (step (5) in figure 3). The virtual
instance of the requested service is generated and (step
(6) in figure 3) and the URI of the service is returned to
the user (step (7) in figure 3).

B. Web-based User Interface

Users can specify their service requirements as well as

the data, security and compliance policies that the service
should meet using an easy to use web-based interface (Figure
2). There are four main categories of service attributes – core
service attributes, data/security policy attributes, compliancy
policy attributes and Cloud instance attributes. We describe
these in detail below.

Each field in the interface has an associated ‘Help’
description that describes the attributes and enables users to
determine which option to select. The fields in each section
are placed in descending order of priority. The priority was
determined in conjunction with our NIST collaborators. This
tool allows users to define a range of values for their
constraints and so accommodates for scenarios where the
users may not have finalized their requirements.

Figure 3: Smart Cloud services prototype architecture

1) CORE Attributes

The Core attributes include the mandatory attributes that

the service provider should meet.

1. Storage size: defines the storage size (in Giga Bytes /

Tera Bytes units) that the consumer wishes to procure

on the cloud.

2. Service Cost: This attribute refers to the price

consumers are willing to pay for the service. The

service cost will vary depending on the other attributes

specified by the cloud user and so the service is

searched on a range of costs as opposed to a specified

price.

3. Data Preservation/Backup: specifies the data backup

requirements.

4. Service Availability: This field specifies the minimum

level of service availability consumers expect from the

service provider.

2) DATA/SECURITY POLICY Attributes

The data and security policy attributes specify the policies

of the consumer organization with regards to their data on

the cloud. The policies that we selected are specific to the

NIST cloud computing User case 3.9 [26]. The priority of

each policy was determined by our NIST collaborators and

the fields were positioned in the tool in decreasing order of

their priority. The attributes in this section are listed below.

1. User authentication mechanism: specifies whether

FIPS 140-2 is to be supported by the cloud provider or

not. NIST issued FIPS (Federal Information Processing

Standard - Publication 140-2) is a U.S. government

computer security standard used to accredit

cryptographic modules.

2. Data Encryption: specifies if the consumer wants the

data to be encrypted when stored on the cloud.

3. Data Location: specifies the constraint the consumer

may have regarding the location of the cloud.

4. Data Deletion: enables consumer to specify their data

deletion policies for the cloud – whether the data is

deleted or merely made inaccessible, secure wipe is

supported or not. While in the cloud environment it

may be difficult to ensure the intended data deletion;

adding this policy to the Service SLA will make the

cloud provider liable if the deletion method specified is

not followed. So the onus to ensure appropriate data

deletion procedure will be on the cloud provider and

not the cloud user.

5. Virtual Machine (VM) separation: specifies whether

the cloud provider supports separate Virtual Machines

to store consumer’s data on the cloud. Some

organizations may desire separate Virtual Machines on

the cloud to ensure more security.

6. Interface for a storage specification: The consumer

can specify in their requirements whether they want

SOAP protocol or REST (Representational state

transfer) interface support.

3) COMPLIANCE POLICY Attributes

In the tool we have included two compliance policies

specified by NIST and majority of the US federal agencies.

They are listed below. The compliance policy constraints

have lower priority than the data/security policy constraints

and hence are relaxed after cloud instance constraints, but

before the data/security constraints during service

negotiation.

1. Trusted Internet Connection (TIC): Trusted Internet

Connection initiative is mandated in an OMB (Office of

Management and Budget) Memorandum (M-08-05)

meant to optimize individual external connections,

including internet points of presence currently in use by

the Federal government of the United States.

2. CC Evaluation Assurance Level (EAL) levels: The

Evaluation Assurance Level (EAL1 through EAL7) of

an IT product or system is a numerical grade assigned

following the completion of a Common Criteria

security evaluation, an international standard in effect

since 1999. This attribute accepts EAL number from 1

to 7.

4) CLOUD INSTANCE Attributes

If consumers have specific requirements of the Cloud

instance, they can specify the RAM size, CPU speed and

number of cores dedicated to the requested service. The

Cloud Instance policy constraints have the lowest priority

and hence are relaxed first during service negotiation.

C. Cloud Service Broker

The Cloud Service Broker component helps procure the

service that best matches the user specified requirements and
constraints. After generating the RFS, users press the
‘Discover Services’ button to search for services that match
the RFS constraints. The tool generates federated SPARQL
queries based on the selections on the screen. This query
runs across multiple SPARQL endpoints and retrieves a list
of matching services residing on that endpoint. If a query
matching all the constraints is found, it is displayed on the
screen. Otherwise, the user is advised to begin service
negotiation by selecting the Negotiation button.

The users press the ‘Negotiate and Finalize SLA’ button
to begin service negotiation. The tool iteratively relaxes the
requirements one by one and generates a new SPARQL
query to search the service endpoints. The order of constraint

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix itso: <http://ebiquity.umbc.edu/ontologies/itso/1.0/itso.owl>.
@prefix dc: <http://purl.org/dc/elements/1.1/>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix stg: <http://www.cs.umbc.edu/~kjoshi1/storage_ontology.owl>.

<http://localhost/SLA>
<http://ebiquity.umbc.edu/ontologies/itso/1.0/itso.owlExpected_Begin_Da
te_of_Service> " 1-1-2012\r\n";

 <http://ebiquity.umbc.edu/ontologies/itso/1.0/itso.owlService_
Cost_Constraint> " 0 ";

 <http://ebiquity.umbc.edu/ontologies/itso/1.0/itso.owlService_
Location_constraint> " global ";

 <http://www.cs.umbc.edu/~kjoshi1/storage_ontology.owlauthe
ntication> " FIPS 140 2 supported ";

 <http://www.cs.umbc.edu/~kjoshi1/storage_ontology.owlavail
ability> " 95 ";

 <http://www.cs.umbc.edu/~kjoshi1/storage_ontology.owlback
up> " Weekly ";

 <http://www.cs.umbc.edu/~kjoshi1/storage_ontology.owlcloud
_instance_cores> " 4 ";

 <http://www.cs.umbc.edu/~kjoshi1/storage_ontology.owlcloud
_instance_size> " 1073741824 ";

 <http://www.cs.umbc.edu/~kjoshi1/storage_ontology.owlcloud
_instance_speed> " 1GHz ";

 <http://www.cs.umbc.edu/~kjoshi1/storage_ontology.owldatad
eletion> " data archived ";

 <http://www.cs.umbc.edu/~kjoshi1/storage_ontology.owlEncr
yption> " No Encryption ";

 <http://www.cs.umbc.edu/~kjoshi1/storage_ontology.owlstora
ge> " 1073741824 ";

 <http://www.cs.umbc.edu/~kjoshi1/storage_ontology.owlstora
ge_interface> " SOAP WSDL ";

 <http://www.cs.umbc.edu/~kjoshi1/storage_ontology.owlTIC_
connection> " TIC Compliant ";

 <http://www.cs.umbc.edu/~kjoshi1/storage_ontology.owlVMs
eparation> " VM separation ".

relaxation for this prototype was determined by the NIST
team that was collaborating with us who specified the
priority of each constraint in the RFS. After each constraint
relaxation, the tool executes the new SPARQL query to
discover services that match the new constraint set. When a
service match is found, the tool returns the service details of
that service along with a list of constraints not met. The
consumer can finalize the SLA by accepting the service that
best matched the constraints. The final SLA (figure 4) is
generated as a RDF file and is in machine readable format.

The user next clicks the ‘Compose Services on the
Cloud’ button to compose the desired service.

D. Service Composition and Consumption on the Cloud

When the user clicks the Compose button, a Virtual

Machine is created on the cloud environment. The finalized
SLA is referred to by an automated routine when launching
the virtual machine. This URI of the service is then returned
to the end user to begin consuming the service. By clicking
on the Launch Service button, the consumer is directed to the
service URI on the cloud environment.

To interface our tool to a cloud system we chose
Eucalyptus [15], an Infrastructure as a Service (IaaS) cloud
solution and IBM Virtual Computing Lab (VCL) [29]
platform. Smart Cloud services tool and the cloud platforms
were installed on separate machines. Due to security reasons,
the cloud installation had no direct internet access and no
direct access to the tool. The only way to communicate
between the two systems was through an intermediate node
called Bluegrit which is a 116 core PowerPC cluster
managed at UMBC.

The software to manage the interaction between our tool
and the cloud platform is written in Perl and, due to the
layout of the system, resides on the Bluegrit cluster. When
the user presses the ‘Compose Services’ button on the tool, a
remote connection is established with the Bluegrit cluster
and the Perl code that parses the SLA RDF file (figure 4) is
executed to find the suitable cloud configuration. If all the
criteria are met, the software launches an instance of the
configuration and reports back the IP address of the newly
launched instance to the tool.

V. Conclusion and Future Work

In this paper we have described an integrated
methodology to automate IT services lifecycle on the cloud.
To the best of our knowledge, this is the first such effort, and
it is critical as it provides a holistic view of steps involved in
deploying IT services. Our methodology, described in
section III, complements previous work on ontologies for
service descriptions in that it is focused on automating the
processes needed to procure services on the cloud. The
methodology can be referenced by organizations to
determine what key deliverables they can expect at any stage
of the process. We also hope that it will enable the academia
and the industry to be on the “same page” when referring to
IT services on the cloud. The Smart Cloud Services tool
successfully demonstrated how our methodology can be used
to significantly automate the acquisition and consumption of
cloud based services thereby reducing the large time required
by companies to discover and procure cloud based services.
We are in the process of releasing this tool to multiple users
to analyze how this scales up. As part of our ongoing work in
this area, we are also working on improving the integration
of this tool with the VCL cloud platform and automate it
such that the cloud platform configuration is transparent to
the end user.

REFERENCES

[1] D. Bianchini, V. De Antonellis, B. Pernici, P. Plebani, Ontology-

based methodology for e-service discovery, International Journal of
Information Systems, The Semantic Web and Web Services, Volume
31, Issues 4-5, June-July 2006, pp 361-380

[2] J. Black et al, An integration model for organizing IT service
Management, IBM Systems Journal, VOL 46, NO 3, 2007

[3] M. Hepp , “GoodRelations: An Ontology for Describing Products and
Services Offers on the Web”, Proceedings of the 16th International

Figure 4: The finalized SLA is stored as a RDF document (N3 format)

Conference on Knowledge Engineering and Knowledge Management
(EKAW2008), Italy, 2008, Springer LNCS, Vol 5268, pp. 332-347.

[4] Jena– A Semantic Web Framework for Java,
http://incubator.apache.org/jena/, retrieved on Feb 22, 2012.

[5] Joseki - A SPARQL Server for Jena, http://www.joseki.org/, retrieved
on Feb 22, 2012.

[6] K. Joshi , T. Finin , Y. Yesha, "Integrated Lifecycle of IT Services in
a Cloud Environment", in Proceedings of The Third International
Conference on the Virtual Computing Initiative (ICVCI 2009),
Research Triangle Park, NC, October 2009

[7] K. Joshi, OWL Ontology for Lifecycle of IT Services on the Cloud,
2010, http://ebiquity.umbc.edu/ontologies/itso/1.0/itso.owl

[8] K. Joshi, A. Joshi and Y. Yesha , “Managing the Quality of
Virtualized Services”, in proceedings of the SRII Global conference,
San Jose, March 2011.

[9] O. Lassila, R. Swick and others, Resource Description Framework
(RDF) Model and Syntax Specification, World Wide Web
Consortium, 1999.

[10] D. Martin, et al., Bringing semantics to web services: The OWL-S
approach, Lecture Notes in Computer Science, volume 3387, pp. 26-
42, 2005, Springer.

[11] E. M. Maximilien, M.Singh, A Framework and Ontology for
Dynamic Web Services Se-lection, IEEE Internet Computing, vol. 8,
no. 5, pp. 84-93, Sep./Oct. 2004

[12] D. McGuinness, F. Van Harmelen, et al., OWL web ontology
language overview, W3C recommendation, World Wide Web
Consortium, 2004.

[13] NIST Special Publication 800-145, “The NIST Definition of Cloud
Computing”, Sep 2011.

[14] NIST Special Publication 500-292, “NIST Cloud Computing
Reference Architecture”, Nov 2011.

[15] Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S.,
Youseff, L., Zagorodnov, D., “The eucalyptus open-source cloud-
computing system”, 9th IEEE/ACM International Symposium on
Cluster Computing and the Grid, pp 124-131, 2009

[16] M. Papazoglou and W. Van Den Heuvel, Service-oriented design and
development methodology, International Journal of Web Engineering
and Technology, Volume 2, Number 4, 2006, pp. 412 – 442

[17] S. Paurobally, V. Tamma and M. Wooldrdige, A Framework for Web
Service Negotiation, ACM Transactions on Autonomous and
Adaptive Systems,Vol. 2, No. 4, Article 14, November 2007.

[18] E. Prud'hommeaux and A. Seaborne, SPARQL Query Language for
RDF, , W3C recommendation Jan 2008, http://www.w3.org/TR/rdf-
sparql-query/, retrieved on April 27, 2011

[19] S Ran, A model for web services discovery with QoS, ACM
SIGecom Exchanges, Vol 4, Issue 1, 2003, pp 1-10, 2003

[20] M. L. Sbodio, D. Martin, and C. Moulin, “Discovering Semantic Web
services using SPARQL and intelligent agents.” Journal of Web
Semant. 8, 4 (November 2010), 310-328.

[21] R. Smith, The Contract Net Protocol: High-Level Communication
and Control in a Distributed Problem Solver, IEEE Transactions on
computers, Volume C-29, Issue 12, 1980, pp 1104-1113.

[22] SPARQL Endpoint, http://semanticweb.org/wiki/SPARQL_endpoint,
retrieved on Feb 22, 2012.

[23] Van Bon et al., Foundations of IT service management based on ITIL
V3 , Van Haten Publishing, 2008

[24] J. Cardoso, A. Barros, N. May, and U. Kylau, Towards a Unified
Service Description Language for the Internet of Services:
Requirements and First Developments, IEEE Intl Conference on
Services Computing, IEEE Computer Society Press, 2010.

[25] Paliwal, A.; Shafiq, B.; Vaidya, J.; Xiong, H.; Adam, N.; , "Semantics
Based Automated Service Discovery," Services Computing, IEEE
Transactions on , vol.PP, no.99, pp.1, 0, doi: 10.1109/TSC.2011.19

[26] NIST Cloud Computing Use Case 3.9: Query Cloud-Provider
Capabilities and Capacities, http://www.nist.gov/itl/cloud/3_9.cfm,
retrieved on February 25, 2012

[27] IBM VCL : A Cloud Computing Solution in Universities,
http://www.ibm.com/developerworks/webservices/library/ws-vcl/,
retrieved on February 25, 2012

[28] L Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, Q. Sheng,
Quality driven web services composition, Proceedings of the 12th
international conference on World Wide Web, 2003, pp 411 - 421 G.
Eason, B. Noble, and I. N. Sneddon, “On certain integrals of
Lipschitz-Hankel type involving products of Bessel functions,” Phil.
Trans. Roy. Soc. London, vol. A247, pp. 529–551, April 1955.

[29] H. Schaffer, S. Averitt, M. Hoit, A. Peeler, E. Sills, M. Vouk,
"NCSU's Virtual Computing Lab: A Cloud Computing Solution,"
Computer , vol.42, no.7, pp.94-97, July 2009

