
Semantic Message Passing for
Generating Linked Data from Tables?

Varish Mulwad, Tim Finin and Anupam Joshi

University of Maryland, Baltimore County
Baltimore, MD 21250 USA

{varish1,finin,joshi}@cs.umbc.edu

Abstract. We describe work on automatically inferring the intended mean-
ing of tables and representing it as RDF linked data, making it available for
improving search, interoperability and integration. We present implementa-
tion details of a joint inference module that uses knowledge from the linked
open data (LOD) cloud to jointly infer the semantics of column headers,
table cell values (e.g., strings and numbers) and relations between columns.
The framework generates linked data by mapping column headers to classes,
cell values to LOD entities (existing or new) and by identifying relations
between columns.e also implement a novel Semantic Message Passing al-
gorithm which uses LOD knowledge to improve existing message passing
schemes. We evaluate our implemented techniques on tables from the Web
and Wikipedia.

Keywords: Tables, Semantic Web, Linked Data, Graphical Models

1 Introduction

Tables are an integral part of documents, reports and Web pages, compactly
encoding important information that can be difficult to express in text. Table-
like structures outside documents, such as spreadsheets, CSV files, log files and
databases, are widely used to represent and share information. Tables are im-
portant to a number of domains including the Web, healthcare, e-science and
public policy. Google study [2] found more than 150 million high quality rela-
tional tables on the Web. Many governments share public data useful to citizens
and businesses as tables. The U.S. government’s data sharing website, for exam-
ple, had nearly 400,000 such datasets as of September 2012. Medical researchers
can asses treatment efficacy via a meta-analysis of previously published clinical
trials, often using systems like MEDLINE1 to find relevant articles and extract
key data, which is typically summarized in tables, like the one in Figure 1.

Integrating and searching over this information benefits from a better un-
derstanding of its intended meaning, a task with several unique challenges. The

? This is an extended version of a paper with the same title that appears in the
Proceedings of the 2013 International Semantic Web Conference.

1 http://nlm.nih.gov/bsd/pmresources.html

This is an extended version of the paper: Varish Mulwad, Tim Finin and Anupam Joshi, Semantic Message 
Passing for Generating Linked Data from Tables, 12th Int. Semantic Web Conf., Sydney, Oct. 2013.



2 V. Mulwad, T. Finin and A. Joshi

very structure of tables which adds value and makes it easier for human under-
standing also makes it harder for machine understanding. Web search engines,
for example, perform well when searching over narrative text on the Web, but
poorly when searching for information embedded in tables in HTML documents.

We might interpret tables using proven

Fig. 1: Tables in clinical trials reports [22]
often have both row and column headers,
contain numerical data and have captions
with critical metadata.

NLP techniques; after all, tables also contain
text. We understand the meaning of a sen-
tence by understanding the meaning of the
individual words, which in turn are under-
stood using grammatical knowledge and the
context provided by the surrounding text.
Contrast that with a table like Figure 1,
where uncovering its meaning requires in-
terpreting the row and column headers, the
relation between them and mapping cell val-
ues to appropriate measurements.

The intended meaning of tables is strongly
suggested by the column and row headers,
cell values and relations between the columns. Additional context can often be
found in a caption or other text near the table. How does one capture this
intended meaning? Consider the leftmost column in the table shown in Fig-
ure 2. The column header City represents the class and the values Baltimore,
Philadelphia, New York and Boston are instances of that class. Capturing the
relationships between table columns can help confirm or deny prior understand-
ing. Consider the strings in the third column of the table in Figure 2. An initial
analysis of the column might suggest that they refer to Politicians. Additional
information that strings in column one represent cities, can help confirm that
they are not only Politicians but also Mayors of the cites mentioned in the first
column.

Our goal is to encode a table as City State Mayor Population
Baltimore MD S.Rawlings-Blake 640,000
Philadelphia PA M.Nutter 1,500,000
New York NY M.Bloomberg 8,400,000
Boston MA T.Menino 610,000

Fig. 2: A table with information about U.S. cities.

RDF linked data, mapping columns
to appropriate classes, linking cell val-
ues to entities, literal constants or im-
plied measurements, identifying rela-
tions between columns and asserting
appropriate RDF triples. We describe an extensible, domain-independent frame-
work to do this using background knowledge from an LOD resource. A novel
feature is the incorporation of semantic knowledge in the message passing algo-
rithm used for joint assignments in a graphical model.

Producing linked data representation is a complex task that requires devel-
oping an overall understanding of the intended meaning of the table as well as
choosing the right URIs to represent its schema and instances. We decompose it
as follows: (1) assign column (and/or row) headers classes from an appropriate
ontology, (2) link cell values to literals or entities (creating them as necessary),
(3) discover relations between table columns and add properties to represent



Generating Linked Data from Tables 3

them, and (4) generate a linked data representation. We describe our approach
to these tasks and an evaluation of the results in the remainder of the paper.

2 Approach

Figure 3 shows our extensible and do-

Fig. 3: Our extensible and domain independent
framework relies on a joint inference module to
generate a representation of the the meaning of
the table as a whole.

main independent framework for infer-
ring the meaning of a table and repre-
senting it explicitly as linked data. An
input table first goes through a prepro-
cessing phase with modules to handle
a number of pragmatic issues, such as
sampling rows from large tables and rec-
ognizing and expanding acronyms and
stylized literal values (e.g., phone num-
bers). These modules can be developed
independently and added to the frame-
work without affecting others or ham-
pering the workflow. Puranik [14], for
example, developed modules to identify
whether a column in a table consists of
commonly encoded data such as SSN,
zip codes, phone numbers and addresses.

A table is then processed by the query
and rank module which queries the background LOD sources to generate initial
ranked lists of candidate assignments for column headers, cell values and re-
lations between columns. Once candidate assignments are generated, the joint
inference component uses a probabilistic graphical model to capture the corre-
lation between column headers, cell values and column relations to make class,
entity and relation assignments. After the mapping is complete, linked data
triples are produced. Although our goal is to develop a fully automated system
achieving a high level of accuracy, we recognize that practical systems will ben-
efit from or even require human input. Future work is planned to allow users to
view the interpretation and give feedback and advice if it is incorrect.

While we presented a brief sketch of our framework previously [11], the con-
tributions of this paper include (1) an implementation of the graphical model
with improved factor nodes, (2) enhancements to our novel Semantic Message
Passing algorithm and a detailed description of its implementation, and (3) a
thorough evaluation. The rest of the section consists of a brief review of the
query and rank module followed by details of the joint inference module, which
is the key focus of this paper.

2.1 Query and Rank

The query and rank module generates an initial ranked list of candidate assign-
ments for the column headers, cell values and column relations using data from



4 V. Mulwad, T. Finin and A. Joshi

DBpedia [1], Yago [17] and Wikitology [18]. For most of the general tables, es-
pecially ones found on the Web, these knowledge sources provide good coverage.
Additional LOD data sources can be selected and incorporated, automatically
or manually, based on the table’s domain.

Generating and ranking candidates for cell values. We generate an initial
set of candidate entities for each cell value using Wikitology, a hybrid knowl-
edge base combining unstructured and structured information from Wikipedia,
DBpedia and Yago. The contents of the column header and other row values
are used as context when querying Wikitology. The query for Baltimore, for ex-
ample, consists of the query string Baltimore and the context data City, MD,
S.C.Rawlings-Blake, and 640,000 [12]. Wikitology returns ranked lists of entities
and classes, which for Baltimore, include the entities Baltimore, John Baltimore
and Baltimore Ravens along with DBpedia classes City, PopulatedPlace and
Place and Yago types CitiesInMaryland and GeoclassPopulatedPlace. An en-
tity ranker then re-ranks a cell’s candidates entities using an approach adapted
from [4] and features from [12] to return a measure of how likely the given en-
tity (e.g., John Baltimore) is the correct assignment for the string mention (e.g.,
Baltimore).

Generating candidates for columns. Initial candidate classes for a column
are generated from its cell values, each of which has a set of candidate entities,
which in turn have sets of DBpedia and Yago classes. The column’s potential
classes is just the union of the classes from the its cells. We generate two separate
set of candidate classes – one for DBpedia classes and another for Yago classes.

Generating candidate relations between columns. Identifying relations
between table columns is an important part of table understanding and is mod-
eled by finding appropriate predicates from the reference LOD’s ontologies (e.g.,
DBpedia). We generate candidate relations for every pair of columns in the table,
based on the cell value pairs in the respective columns. Each cell value has a set
of candidate entities, which in turn may be linked to other entities in the refer-
ence LOD resources. For example, the DBpedia entities Baltimore and Maryland
are linked via the predicates isPartOf and subdivisionName.

We use the links between pairs of entities to generate candidate relations.
For a pair of cell values in the same row between the two columns, the candidate
entity sets for both cells are obtained. For each possible pairing between the
entities in both the candidate sets, we query Yago and DBpedia, to obtain rela-
tion in either direction i.e. entityrow1 someproperty1 entityrow2 and entityrow2
someproperty2 entityrow1. This gives us a candidate set between pair of row cell
values. The candidate relation set for the entire column pair is generated by
taking a union of the set of candidate relations between individual pairs of row
cell values. Thus for example, the candidate relations between column City and
column State might include isPartOf, capitalCity, bornIn etc. Again, we generate
two sets of candidate relations, one from DBpedia and the other from Yago.

Literal Constants. We use a regular expression to distinguish string men-
tions, which probably refer to entities, and literal constants such as numbers
and measurements, which probably do not. If the cell value is a literal constant,



Generating Linked Data from Tables 5

candidate entities are not generated and the cell is mapped to no-annotation.
If all the cells in a column are literals, we update the column header annotation
to no-annotation.

2.2 Joint Inference

Once the initial sets of candidate assignments are generated, the joint inference
module assigns values to columns and row cell values and identifies relations
between the table columns. The result is a representation of the meaning of the
table as a whole. Probabilistic graphical models [8] provide a powerful and con-
venient framework for expressing a joint probability over a set of variables and
performing inference or joint assignment of values to the variables. Probabilistic
graphical models use graph based representations to encode probability distri-
bution over a set of variables for a given system. The nodes in such a graph
represent the variables of the system and the edges represent the probabilistic
interaction between the variables.

We represent a table as a Markov

Fig. 4: This graph represents the interactions be-
tween the variables in a simple table. Only some
of the connections are shown to keep the figure
simple.

network graph in which the column head-
ers and cell values represent the vari-
able nodes and the edges between them
represent their interactions. The edges
in a Markov network graph are undi-
rected because the interactions between
the variables are symmetrical. In the
case of tables, interactions between the
column headers, table cell values and
the relation between table columns are
symmetrical and thus a Markov net-
work is well suited for tables.

Figure 4 shows interaction between
the column headers (represented by Ci

where i ∈ 1 to 3) and cell values (rep-
resented by Rij where i, j ∈ 1 to 3). In a typical well-formed table, each column
contains data of a single syntactic type (e.g., strings) that represent entities or
values of a common semantic type (e.g., people). For example, in a column of
cities, the column header City represents the semantic type of values in the col-
umn and Baltimore, Boston and Philadelphia are instances of that type. Thus,
knowing the type of the column header, influences the decision of the assignment
to the table cells in that column and vice-versa. To capture this interaction, we
insert an edge between the column header variable and each of the cell values in
that column.

Table cells across a given row are also related. Consider a table cell with a
value Beetle, which might refer to an insect or a car. Suppose an adjacent cell has
a string value red, which is a reference to a color, and another cell in the same
row has the string value Gasoline, which is a type of fuel source. As a collection,
the cell values suggest that the row represents values of a car rather than an



6 V. Mulwad, T. Finin and A. Joshi

insect. Thus, the interpretation of each cell is influenced by the interpretation
of the others in its row. This co-relation when considered between pairs of table
cell values between two columns can also be used to identify relations between
table columns. To capture this context, we insert edges between all the table
cells in a given row.

Similar interactions exist between the column headers. By itself, the column
header City suggests that column’s cells might refer to city instances. However,
if the other columns appear to refer to basketball players, coaches and basketball
divisions, we can infer that the cities column refers to a team itself. This is an
example of metonymy, in which an entity (i.e., the team) is referenced by one
of its significant properties (i.e., the location of its base). This interaction is
captured by inserting edges between column header variables.

To perform any meaningful infer-

Fig. 5: This factor graph is a parameterized
Markov network wherein the square nodes rep-
resent factor nodes.

ence over the graph, it must be param-
eterized. We do so by representing the
graph in Figure 4 as a factor graph as
shown in Figure 5. The graph’s square
nodes represent what are known as ‘fac-
tor nodes’, which compute and capture
affinity or agreement between interact-
ing variables. For example, ψ3 in Figure
5 computes the agreement between the
class assigned to column header and en-
tities linked to the cell values in that
column; ψ4 between row cell values for
a given pair of columns and ψ5 between column headers.

Semantic Message Passing. Factor nodes allow the joint inference process
to operate. Typical inference algorithms such as belief propagation and message
passing rely on pre-computed joint probability distribution tables (PDTs) stored
at the factor nodes. For example, the factor node ψ3 for column header variable
C1 would store a PDT over the variables C1, R11, R12, R13; i.e. ψ3 would pre–
compute and store a PDT over the column header and all row cell values. As the
size of the candidate set of values that Ci and Rij can be mapped to increases,
the size of the PDT will rapidly grow. Assuming that the size of the candidate
set for a variable is 25, ψ3 associated with the variables C1, R11, R12, R13 would
have 390,625 entries in the joint PDT!

We implement a variation of an inference algorithm which incorporates se-
mantics and background knowledge from LOD to avoid the problem of comput-
ing large joint PDTs at factor nodes. Our Semantic Message Passing algorithm
is conceptually similar to the idea of Message Passing schemes. Algorithm 1 gives
a high level overview of our ’Semantic Message Passing’ algorithm.

The variable nodes in the graph send their current assignment to the factor
nodes to which they are connected. For example, R11 sends its current assign-
ment to factor nodes ψ3 and ψ4. Once the factor nodes receive values from all
connected variable nodes, they compute agreement between the values. Thus, in



Generating Linked Data from Tables 7

Algorithm 1 Semantic Message Passing

1: Let V ars be the set of variable nodes and Factors be the set of factor nodes in
the graph.

2: for all v in V ars do
3: Let F ′ be the set of factor nodes v is connected to.
4: for all f ′ in F ′ do
5: v sends its current assignment (value) to f ′.
6: end for
7: end for
8: for all f in Factors do
9: Compute agreement between the received assignments.

10: Identify variable nodes that may have sent an incorrect assignment.
11: Send a no-change message to all nodes that are in agreement, as determined

by f .
12: Send change message and characteristic of expected assignment to all the nodes

that have an incorrect assignment, as determined by f .
13: end for
14: for all v in V ars do
15: Let Messages be the set of messages received by v.
16: If all m ∈ Messages are no-change, do nothing.
17: If few or all m ∈ Messages are change, update the current assignment by

choosing a new one from the candidate set which satisfies the characteristics
sent by the factor nodes.

18: end for
19: Repeat till convergence.

one of the iterations, ψ3 might receive values City, Baltimore Ravens, Philadel-
phia, New York and Boston. The goal of ψ3 is to determine if all the assignments
agree and, if not, identify the outliers.

In this case ψ3 identifies Baltimore Ravens as an outlier and sends a change
message to R11, together with its semantic preferences for a new, alternate value
that R11 might produce. In our example, ψ3 informs R11 of its preference for
update to an entity of type City. To the rest of the variable nodes, ψ3 sends
a no-change message. This process is performed by all factor nodes. Once a
variable node receives messages from all of its connected factor nodes, it decides
whether to update its value or not.

If it receives a message of no-change from all factor nodes, its current
assignment is in agreement with the others and it need not update its assignment.
If it receives a change message from some or all factor nodes, it updates its
current assignment, taking into consideration the semantic preferences provided
by the factor nodes. The entire process repeats until convergence, i.e., agreement
over the entire graph is achieved. A hard convergence metric could be to repeat
the process until no variable node receives a change message.

Our Semantic Message Passing algorithm thus circumvents the problem of
computing joint PDTs at factor nodes by computing agreement over current
assigned values. Furthermore, our scheme not only detects individual variable



8 V. Mulwad, T. Finin and A. Joshi

nodes that have incorrect assignments, but provides the nodes with guidance on
the characteristics or semantics associated with the value that a variable node
should update to. This capability requires defining semantically-aware factor
nodes that can perform such functions. In this paper, we describe our imple-
mentation of factor nodes ψ3 and ψ4 and the process by which a variable node
updates its values based on the messages received and our metric for graph
convergence.

ψ3 – Column header and row cell value agreement function. Algorithm
2 gives an overview of the column header and row cell value agreement function.
The ψ3 factor node computes agreement between the class assigned to the column
and the entities assigned to its cell values. For example, agreement between the
column assigned type City and candidate cell assignments Baltimore Ravens,
Philadelphia, New York and Boston. Recall that at the end of the query and rank
phase, every row cell value has an initial entity assignment and every column
header has a set of candidate classes. In our current implementation every column
header Ci maintains two separate sets of candidate classes – one from Yago’s
classes and the other from DBpedia’s. Each cell value in a column is mapped to
an initial entity e which in itself has its own set of Yago and DBpedia classes.
The initial entities assigned to a column’s cell values perform a majority voting
over the Yago and DBpedia class set to pick the top Yago and DBpedia class.
Each entity votes and increments the score of a class from the candidate set by
1 if the class is present in the class set associated with e.

The Yago and DBpedia candidate class sets are ordered by votes. ψ3 com-
putes the top score for each of the top classes. The top score is simply equal
to the number of votes for the top class divided by the number of rows in the
column. Ideally, we want to pick more specific classes (e.g., City) over general
classes (e.g., Place) when making an assignment to the column headers. Thus,
if multiple Yago classes get voted as top class, we use a ‘granularity’ score as
tie-breaker. The ‘granularity’ score is computed by simply dividing the number
of instances that belong to the class by the total number of instances and sub-
tracting the result from one. This assigns a higher score to specific classes and
a lower score to general classes.

Once the top class(es) are identified and their scores computed, ψ3 deter-
mines if they can be used in the process of identifying cell values with incorrect
assignments. It checks whether the top scores for the classes are below a certain
threshold. If so, it implies lower confidence and agreement between row cell val-
ues and that the top classes cannot be relied upon. In such scenarios, ψ3 sends
a message of low-confidence and no-change to the variable nodes and also
maps the column header class to no-annotation.

If scores for both the top Yago and DBpedia classes are above the threshold,
ψ3 assigns both the classes to the column header and uses them in the process
of identifying its cell values with incorrect assignments. However if either class is
below threshold, it checks if the classes are aligned. We define the two classes as
aligned if either the DBpedia class is a subclass of the Yago class or vice-versa.



Generating Linked Data from Tables 9

Algorithm 2 ψ3 – Column Header – Row Values Agreement

1: Let Y ago and DBp be the column header Ci’s candidate class sets from Yago &
DBpedia respectively and RowV als be the set of row cell values in Ci.

2: for all r in RowV als do
3: Let e be the currently assigned entity to r and ty, td be the set of Yago and

DBpedia classes for e.
4: Majority Vote Score: For each class in Y ago, increment the score by 1 if it is

present in ty. Similarly, using td, increment the scores for classes in DBp.
5: end for
6: for all y in Y ago do
7: Get the “granularity” score for y.
8: end for
9: Order the classes in Y ago in descending, first by vote scores and then by granularity

scores. Let topy be the Yago class with maximum vote score and best “granularity
score”.

10: Order the classes in DBp in descending by vote scores. The class at the top is the
one with maximum votes. Let this class be topd.

11: Let topScorey and topScored be scores for topy and topd respectively, where
topScore = numberOfV otes/numberOfRows

12: If the scores are below threshold, send low-confidence and no-change mes-
sages to all the row cell values in RowV als. Update Ci’s class annotations to
no-annotation.

13: If the scores are above threshold, update Ci’s class annotations to topy and topd.
Send appropriate change or no-change messages to row cell values in RowV als
as shown next.

14: for all r in RowV als do
15: Let e be the currently assigned entity to r and ty, td be the set of Yago and

DBpedia classes for e.
16: If ty, td for e, do not contain either topy or topd, send change message. Send

topy, topd as the classes for the entity that r should update to; else send the
no-change message.

17: end for



10 V. Mulwad, T. Finin and A. Joshi

The subclass relation between the DBpedia and Yago classes is obtained via the
PARIS project [16].

If the alignment exists, then ignoring the lower score to either Yago or DB-
pedia, ψ3 picks both the classes as the Yago and DBpedia assignments for the
column header respectively. Otherwise, the class with the lower score is ignored,
and the other one is selected as the column class. Once the column header is
mapped to a class assignment, ψ3 revisits each entity assignment in the column.
All cell values (variable nodes) whose currently assigned entity e include the top
class(es) in their class set are sent a message of no-change. Ones whose entity
do not contain the top class in their class set are sent a change message. These
variable nodes are also provided with the top class(es) as semantic preferences
that their next entity assignment should try to fulfill. ψ3 also sends the top score
as a confidence score associated with the message.

ψ4 – Relations between pair of columns. Algorithm 3 gives an overview of
function that identifies relation between pair of columns in a table. The goal of
factor node ψ4 is to discover if a relation exists between a pair of columns, say
City and State, and, if so, to use it as evidence to uncover any incorrect entity
assignments in the columns’ cells. At the end of query and rank phase, every row
cell value has an initial entity assignment, e. The pair of column headers is also
associated with a set of candidate relations. The initial assigned pair of entities in
the two columns perform majority voting to select the best possible relation from
the candidate relation set. Each pair of entities in every row between the two
columns votes for a relation rel. It increments its score by 1 if < ei,k > < rel >
< ej,k > or < ej,k > < rel > < ei,k > is true (here i, j refer to two columns and
k refers to entities from the k th row between the two columns). Factor node ψ4

queries Yago and DBpedia separately to check if the relations exists. The current
ψ4 implementation also maintains two separate sets of candidate relations (one
for Yago and the other for DBpedia) ordered by votes.

Factor node ψ4 also computes a value for topScore for both top Yago and
DBpedia relations as the the number of votes divided by the number of cells in
the column. If a score is below the current threshold, the relations are discarded
and ψ4 sends low-confidence and no-change messages to all of the row
cell values in both columns and updates the relation between the columns to
no-annotation. If the scores are above threshold, the top Yago and DBpedia
relations between the two columns are updated. ψ4 then revisits the pair of
entities from the columns to discover possible incorrect assignments. For every
currently assigned entity e in the two columns, ψ4 checks if e appears as a subject
or object of the top relations (depending upon the relation direction; either Yago
or DBpedia). If e satisfies this constraint, a no-change message is sent to the
row cell and a change message is sent otherwise. The ψ4 factor node also sends
the relation information as characteristics the row cell should use for picking
the next entity assignment and topScore as confidence score associated with the
message.

Updating entity annotations for row cell value variables. Every row cell
r in the table receives messages from two types of factor nodes – column header



Generating Linked Data from Tables 11

Algorithm 3 ψ4 – Relation between pair of columns

1: Let Y agoCandidateRels and DBpCandidateRels be the set of Yago and DBpedia
candidate relations between the columns ci and cj .

2: Let numberOfRows be the total number of rows in the table.
3: for k = 1 to numberOfRows do
4: Let ri,k and rj,k be the row values from columns i and j at row k.
5: Let ei,k, ej,k be the currently assigned entities for ri,k and rj,k.
6: for all rel in Y agoCandidateRels do
7: Majority Voting : If < ei,k > < rel > < ej,k > or < ej,k > < rel > < ei,k >

is true, increment the score of rel by 1
8: end for
9: Repeat the same majority voting process for candidate relations from

DbpCandidateRels
10: end for
11: Sort the Y agoCandidateRels and DbpCandidateRels sets in descending order.

The relations at the top of the sets are the ones with maximum votes. Let
topRely and topReld be the top Yago and DBpedia relations respectively. Let
topRelScorey and topRelScored be scores for topRely and topReld, where topScore
= numberOfV otes / numberOfRows

12: if topRelScorey and topRelScored < relThreshold then
13: Send message low-confidence and no-change to the row values in columns

ci and cj .
14: Update relation annotation to no-annotation.
15: end if
16: if topRelScorey >= relThreshold then
17: Update the top Yago relation between the columns ci and cj to topRely.
18: end if
19: Similarly update the top DBpedia relation between columns ci and cj .
20: for k = 1 to numberOfRows do
21: Let ei,k, Let ej,k be the currently assigned entities for ri,k and rj,k.
22: If < ei,k > < topRel > < ej,k > and < ej,k > < topRel > < ei,k > is false, send

thechange message to the row value, whose entity violates the relation. Send
top relation as the relation row variable entity assignment should participate in.
(topRel can be either topRely or topReld)

23: Else, send theno-change message to both ri,k and rj,k.
24: end for



12 V. Mulwad, T. Finin and A. Joshi

factor node (ψ3) and relation factor node (ψ4). While r will receive only one
message from the column header (since r belongs to only one column), it might
receive multiple messages from relation factor nodes if its column is related to
several columns in the table. For example, the column City is associated with
columns State, Mayor and Population. The result is that r can receive conflicting
messages – some factor nodes might send a change message, while others a no-
change message.

If all of the messages received by r are no-change, r does not update. If
all messages received by r are change, it decides to update its assignment. In
the case of conflicting messages, r uses the confidence score sent by each factor
node along with the message to compute the average score associated with the
change messages and compares it against the average score associated with the
no-change messages. If the average change message score is higher, r updates
its current assignment, otherwise it does not.

When r chooses to update its current assignment, it picks a new assignment
based on the semantic preferences sent by the factor nodes. For example, a row
cell value in the first column of the table in Figure 2 might receive messages to
update to an entity which will have a rdf:type City and is the subject of rela-
tions isPartOf and hasMayor. The row cell value r iterates through its ranked
list of candidate entity set and picks the next best entity satisfying all the se-
mantic preferences specified in the message. In cases where r cannot find an
entity that satisfies them all, it orders them based on the confidence scores asso-
ciated with the respective messages and attempts to pick an entity assignment
that satisfies the highest rank combination. For example, if there were three
preferences, ranked 1, 2 and 3, r will first attempt to find an entity that satis-
fies[1,2,3] followed by [1,2] ; [1,3]; [2,3]; [1]; [2] and so on. If r is unable to find
an entity that satisfies any preferences, then it updates its current assignment
to no-annotation.

An exception to this process occurs when the candidate entities for the cell
all have low confidence (i.e., below the threshold (index threshold)). This is
typically the case if the entity is absent from the knowledge base. In such cases,
the algorithm maps the row cell value to no-annotation rather than linking
to any candidate. If the column header is mapped to no-annotation, the row
cell values retain the top ranked entity assignment as suggested by the entity
ranker.

Halting condition. Once the row cell values have updated, they send their
new assignments to the factor nodes and the entire process repeats. Ideally, the
process should be repeated until best possible assignments are achieved; i.e., re-
peat until no variable node receives a change message or none of the variable
nodes select a new assignment. Practically, this a hard convergence metric and
it is often not achieved. In our current implementation, the Semantic Message
Passing algorithm lets this cycle repeat for five iterations. After five iterations,
the algorithm checks the number of variables that have received a change mes-
sage. If the number of variables is lower than the threshold required to update
the column header or relation annotation, the process is stopped, else the pro-



Generating Linked Data from Tables 13

cess continues until convergence or the tenth iteration has been completed. The
assignments at the end of the final iteration are chosen as final values.

3 Evaluation

We begin by describing the experimental setup and follow by presenting our
evaluation and analysis for column header, cell value and relation annotations,
and performance of the graphical model in terms of convergence and running
times.

Experimental Setup. We used
Dataset Col & Rel Cell Value Avg.[Col,Row]

Web Manual 150 371 [2,36]
Web Relation 28 – [4,67]
Wiki Manual 25 39 [4,35]
Wiki Links – 80 [3,16]

Fig. 6: Number of tables and the average number of
columns (col) and rows in the sets used for column
header, cell value and relation annotation. Average
is over the number of tables used in cell value anno-
tation.

tables from four different sets in our
evaluation (see Figure 6). The orig-
inal table sets, obtained from [10],
include ground truth annotations in
which column headers are mapped
to Yago classes, relations between
columns to Yago properties and row
cell values linked to Yago entities.
However, we could not use these assessments for column headers and relations,
since our system uses data from both DBpedia and Yago, and thus developed
our own gold standard. We ran our factor nodes ψ3 and ψ4 at low threshold (5%)
to generate candidate classes and relation between table columns. We presented
these candidates along with raw tables to human annotators, who marked each
as vital, okay or incorrect (as in [20]). For example, annotators could mark the
label City as vital, PopulatedPlace as okay and Person as incorrect for the first
column of the table in Figure 2. Thus each column can have multiple vital and
okay class labels as per annotator judgment.

For the evaluation that follows, we used the framework with the following
values: for every cell value we chose the top 25 candidate entities from the entity
ranker; the column header top score threshold used by ψ3 and the relation top
score threshold used by ψ4 were set to 0.5; index threshold used by a row cell
value to determine low confidence entities was set to 10. The number of joint
inference model iterations is as described in the previous section.

Evaluating column header annotations. We generated a ranked list of at
most top ten class annotations for every column, with no-annotation as the
single value if no appropriate class was found. We compared the set of generated
classes to those obtained from annotators, computing precision and recall for
each k between 1 to 10. For precision, we assign a score of 1 for every vital class
and 0.5 for every okay class identified by the framework. For recall, we assign 1
for every vital and okay class identified. This evaluation scheme is similar to the
one described in [20].

Figure 7(a) shows the annotation results for class labels at rank 1 across
three different sets. We observed that a single column had more than one label
marked vital or okay by annotators and the recall increasing with k. The lower



14 V. Mulwad, T. Finin and A. Joshi

Fig. 7: (a) Precision, Recall and F-scores for column header annotations. (b) % of vital and okay
class labels at rank 1.

recall can be explained by the combination of having multiple labels for each
column and only one label retrieved at rank 1. Due to space constraint, we do
not show results for precision and recall for values of k between two and ten.

We also computed how often the label predicted at rank 1 was either vital
or okay, as shown in Figure 7(b). The high percentage of a combination of vital
and okay labels at rank 1 for all three sets (79% or greater) indicates that the
top ranked labels are relevant. The results for the three sets are for the classes
from the DBpedia ontology. We note that our F–scores for Web Manual (0.57)
and Wiki Manual (0.60) are better than the previously reported scores of 0.43
and 0.56 in [10]. We fare slightly poorer for both datasets against scores of 0.65
and 0.67 as reported in [20]. However, we note that their evaluation is over
the annotations of the original ground truth in which every column header had
only one, or sometimes two, correct classes. This leads to a better recall at rank
1, as compared to multiple correct classes, as in our case, with a combination
of vital and okay labels. We also note that the task of the system in [20] is
predicting classes for column headers and relation between “primary column”
(e.g., a key) and other columns in the table independently. Our framework, in
contrast, attempts to jointly map column header, cell values, relation between
columns to appropriate assignments which in certain cases can lead to incorrect
assignments.



Generating Linked Data from Tables 15

Fig. 8: (a) Precision, Recall and F-scores for relation annotations. (b) % of vital and okay relation
labels at rank 1, as predicted by the framework. Dataset names followed by a dbp are results for
DBpedia relations; whereas the ones followed by yago are for Yago relations.

Evaluating relation annotations. We generated and ranked the best ten
relations (as RDF properties) both from DBpedia and Yago. We compared the
set of relations generated to those obtained from the annotators, computing
precision and recall for k from 1 to 10 as described in the previous section. Figure
8(a) shows the results across four different sets for both Yago and DBpedia
relations. While it is plausible for a column header to have multiple vital and
okay classes, the same may not hold true for relation between columns. We
observed in our annotations that for every pair of columns, the set of vital and
okay relations was smaller.

We explored possible relations between all pairs of columns, even though
tables typically represent a small number of relations. Typically a table’s pri-
mary (e.g., key) column participates in binary relations with many or most of
the other columns in the table. Thus our system generates a fair number of
no-annotation labels. We believe both these reasons explain higher values for
precision and recall. We also compute the percentage of vital and okay relations
predicted by the framework at rank 1 (see Figure 8 (b)). Analogous to precision
and recall results, a high percentage of labels were vital and okay indicating that
our framework is generating relevant labels. Our F–scores for relation annota-
tions for the datasets Web Manual yago (0.89), Web Relation yago(0.86) and



16 V. Mulwad, T. Finin and A. Joshi

Fig. 9: X is the iteration number and Y the number of variables that received change message in
that iteration. The value at x=0 is the number of cells in the table.

Wiki Manual yago(0.97) fare better as compared to the scores of 0.51, 0.63, 0.68
reported in [10].

Evaluating Cell value annotations. We compared the entity links gener-
ated by our framework to those obtained as ground truth from the original
dataset [10]. Our framework linked the table cell value to an entity from DBpe-
dia wherever possible, else it linked to no-annotation. If our predicted entity
link matched the ground truth, we considered it as a correct prediction, else in-
correct. We obtained an accuracy of 75.89% over the Wiki Links dataset; 67.42%
over the Wiki Manual dataset and 63.07% over the Web Manual dataset. Lower
accuracy for entity linking is likely due to the lack of relevant data in Yago and
DBpedia. Although our framework might have discovered the correct assign-
ments for column header and relation, if the entity did not have the class and
relation information present on DBpedia or Yago, our framework will fail to find
it.

For example, even if we discover the Yago class YagoGeoEntity which links
all places, the DBpedia Berlin entity does not have that class, thus can lead
to an incorrect assignment. Lower accuracy may also stem from the size of the
candidate entity set. We restricted the size of the candidate entity set to 25; thus
it is possible that the correct assignment could be outside this set. We also note
certain discrepancy in the ground truth annotations. We discovered cases where
we were able to discover a correct entity annotation, whereas the ground truth
said it was no-annotation, which led to counting our annotation as incorrect.
We are working on improving the ground truth annotation and we have not
incorporated the results from the updated ground truth.

Graph Convergence. Figure 9 gives insight into how quickly the graph con-
verges, showing the number of variable nodes that receive a change message at
the end of every iteration (for eight tables). For most tables, the number of vari-
able nodes that receive a change message stabilize after the first iteration. We
had few cases, where the variable count fluctuated, i.e., increasing and decreas-
ing as iterations increased. We also noticed cases where the variable count does



Generating Linked Data from Tables 17

not go to zero. Some number of “stubborn” variables keep receiving a change
message at the end of every iteration, but cannot find a new value. However, we
noticed that the number of stubborn variables are less as compared to the origi-
nal number of variables in the table. We present results for eight tables for visual
purposes; the results are representative of rest of the tables in the dataset. The
average time required for the inference model across all tables was 3.4 seconds.

Entity Ranker. The entity ranker uses a classi-
Class Precision Recall F-Score

0 0.959 0.849 0.901
1 0.871 0.966 0.916

Fig. 10: Precision, recall and F-score
for the Naive Bayes model.

fier that produces likelihoods that strings should
be linked to entities. The training and test datasets
were generated using the ground truth for en-
tity annotations from Wiki Links set. For every
string mention in the table, we queried Wikitology to get candidate entities and
then computed feature values for the string similarity and popularity metrics for
each mention/entity pair. A class label of 1 was assigned if the candidate entity
was the correct assignment (available via ground truth in the dataset) and a 0
otherwise. The training set included 600 instances, evenly split between positive
and negative instances. The test set included in all 681 instances with 331 posi-
tive and 350 negative instances. Out of the 681 instances, the model was able to
correctly classify 619 instances with an accuracy of 90.9 %. The precision, recall
and F-score are presented in Figure 10.

4 Related Work

Our work is related to two threads of research, one focused on pragmatically
generating RDF from databases, spreadsheets and CSV files and a more recent
one that addresses inferring the implicit semantics of tables. Several systems
have been implemented to generate semantic web data from databases [15, 19,
13], spreadsheets [6, 9] and CSV files [3]. All are manual or only partially au-
tomated and none has focused on automatically generating linked RDF data
for the entire table. In the domain of open government data, for example, [3]
presents techniques to convert raw data (CSV, spreadsheets) to RDF but the
results do not use existing classes or properties for column headers, nor does
it link cell values to entities from the LOD cloud. Generating richer, enhanced
mappings requires a manually constructed configuration file.

Early work in table understanding focused on extracting tables from docu-
ments and web pages [7, 5] with more recent research attempting to understand
their semantics. Wang et al. [21] began by identifying a single ‘entity column’ in a
table and, based on its values and rest of the column headers, associate a concept
from the Probase knowledge base with the table. Their work does not attempt to
link the table cell values or identify relations between columns. Ventis et al. [20]
associate multiple class labels (or concepts) with columns in a table and identify
relations between the ‘subject’ column and the rest of the columns in the table.
Their work also does not attempt to link the table cell values. Limaye et al. [10]
use a graphical model which maps every column header to a class from a known
ontology, links table cell values to entities from a knowledge-base and identifies



18 V. Mulwad, T. Finin and A. Joshi

relations between columns. They rely on Yago for background knowledge. The
core of our framework is a probabilistic graphical model that captures more se-
mantics, including relations between column headers and between row entities.
Current table interpretation systems rely on semantically poor and possibly noisy
knowledge-bases and do not attempt to produce a complete interpretation of a
table. None generate high quality linked data from the inferred meaning or can
interpret columns with numeric values and use the results as evidence in table
interpretation, a task essential for many domains.

5 Conclusions

Generating an explicit representation of the meaning implicit in tabular data
will support automatic integration and more accurate search. In this paper, we
presented an implementation of our graphical model which infers a table’s mean-
ing relative to a knowledge base of general and domain-specific knowledge. We
described a novel Semantic Message Passing algorithm which avoids computing
potentially huge joint-probability distribution tables normally required in such
graphical models.

A thorough evaluation showed promising results, but leaves room for im-
provement. We believe our extensible and domain independent framework can
address the existing challenges in converting tabular data to RDF or high quality
linked data. In the future, we will work on designing a cooperative environment
in which a person-in-the-loop identifies bad system choices for column classes
and relations, cell value entities and optionally suggests better ones from the
alternate candidates.

Acknowledgement. This work was supported by AFOSR award FA9550-08-
1-0265 NSF awards 0326460 and 0910838 and a gift from Microsoft Research.

References

1. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hell-
mann, S.: Dbpedia - a crystallization point for the web of data. Journal of Web
Semantics 7(3), 154–165 (2009)

2. Cafarella, M.J., Halevy, A.Y., Wang, Z.D., Wu, E., Zhang, Y.: Webtables: exploring
the power of tables on the web. PVLDB 1(1), 538–549 (2008)

3. Ding, L., DiFranzo, D., Graves, A., Michaelis, J.R., Li, X., McGuinness, D.L.,
Hendler, J.A.: TWC data-gov corpus: incrementally generating linked government
data from data.gov. In: Proc 19th WWW. pp. 1383–1386. ACM (2010)

4. Dredze, M., McNamee, P., Rao, D., Gerber, A., Finin, T.: Entity disambiguation
for knowledge base population. In: COLING. pp. 277–285 (2010)

5. Embley, D.W., Lopresti, D.P., Nagy, G.: Notes on contemporary table recognition.
In: Document Analysis Systems. pp. 164–175 (2006)

6. Han, L., Finin, T., Parr, C., Sachs, J., Joshi, A.: RDF123: from Spreadsheets to
RDF. In: Proc. 7th Int. Semantic Web Conf. Springer (October 2008)



Generating Linked Data from Tables 19

7. Hurst, M.: Towards a theory of tables. IJDAR 8(2-3), 123–131 (2006)
8. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-

niques. MIT Press (2009)
9. Langegger, A., Wob, W.: Xlwrap - querying and integrating arbitrary spreadsheets

with SPARQL. In: Proc. 8th Int. Semantic Web Conf. (October 2009)
10. Limaye, G., Sarawagi, S., Chakrabarti, S.: Annotating and searching web tables

using entities, types and relationships. In: Proc. 36th VLDB (2010)
11. Mulwad, V., Finin, T., Joshi, A.: A Domain Independent Framework for Extract-

ing Linked Semantic Data from Tables. In: Search Computing - Broadening Web
Search, pp. 16–33. Springer (July 2012), lNCS volume 7538

12. Mulwad, V., Finin, T., Syed, Z., Joshi, A.: Using linked data to interpret tables.
In: Proc. 1st Int. Workshop on Consuming Linked Data. Shanghai (2010)

13. Polfliet, S., Ichise, R.: Automated mapping generation for converting databases
into linked data. In: Proc. 9th Int. Semantic Web Conf. (Nov 2010)

14. Puranik, N.: A Specialist Approach for Classification of Column Data. Master’s
thesis, University of Maryland, Baltimore County (August 2012)

15. Sahoo, S.S., Halb, W., Hellmann, S., Idehen, K., Thibodeau Jr, T., Auer, S., Se-
queda, J., Ezzat, A.: A survey of current approaches for mapping of relational
databases to rdf. Tech. rep., W3C (2009)

16. Suchanek, F.M., Abiteboul, S., Senellart, P.: PARIS: Probabilistic Alignment of
Relations, Instances, and Schema. PVLDB 5(3), 157–168 (2011)

17. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: A Core of Semantic Knowledge.
In: 16th Int. World Wide Web Conf. ACM Press, New York (2007)

18. Syed, Z., Finin, T.: Creating and Exploiting a Hybrid Knowledge Base for Linked
Data. Springer (April 2011)

19. Vavliakis, K.N., Grollios, T.K., Mitkas, P.A.: RDOTE- transforming relational
databases into semantic web data. In: 9th Int. Semantic Web Conf. (2010)

20. Venetis, P., Halevy, A., Madhavan, J., Pasca, M., Shen, W., Wu, F., Miao, G., Wu,
C.: Recovering semantics of tables on the web. In: Proc. 37th VLDB (2011)

21. Wang, J., Shao, B., Wang, H., Zhu, K.Q.: Understanding tables on the web. Tech.
rep., Microsoft Research Asia (2011)

22. Zagari, R., Bianchi-Porro, G., Fiocca, R., Gasbarrini, G., Roda, E., Bazzoli, F.:
Comparison of 1 and 2 weeks of omeprazole, amoxicillin and clarithromycin treat-
ment for helicobacter pylori eradication: the hyper study. Gut 56(4), 475 (2007)




