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Abstract

Reproducibility of computations and data prove-
nance are very important goals to achieve in order to
improve the quality of one’s research. Unfortunately,
despite some efforts made in the past, it is still very hard
to reproduce computational experiments with high de-
gree of certainty. The Big Data phenomenon in recent
years makes this goal even harder to achieve. In this
work, we propose a tool that aids researchers to improve
reproducibility of their experiments through automated
keeping of provenance records.

1. Introduction

Reproducibility and provenance tracking is an on-
going concern in the scientific community. Historically
computational sciences were particularly bad about dis-
closing the actual data and code used to obtain published
results. To quote David Donoho “Computing results are
now being presented in a very loose, “breezy” way — in
journal articles, in conferences, and in books. All too
often one simply takes computations at face value. [1].”

With the recent increase of collaboration between
computational and biological scientific communities, it
is especially important to demonstrate provenance of the
source and allow other researchers to reproduce experi-
ments described in the publications. In fact according to
[2] a major cause of low rate of collaboration between
different research groups is attributed to difficulties in
reproduction of experiments. Which consequently leads
to the poor quality of research. Conversely it has been
argued that allowing for easier reproducibility of the
experiments leads to the higher quality of research [3].

To address this problem we must strive for higher
degree of reproducibility. Which is impossible without
thorough tracking of the provenance of original data and
all manipulations done to it.
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In this work, we propose a tool that aids tracking of
the provenance and the ability to achieve reproducibility
of experiments that involve big data workflows. The
development of this tool is still ongoing, therefore, the
code is not available to the public yet.

2. Background

Most of the scientific data analysis workflows have
very similar structure. Especially big-data workflows
that are based on Map-Reduce model[4]. A typical six
step big-data scientific pipeline is shown on Figure 1.
At step 1, the data is collected by observing some phe-
nomenon or performing a study of some population of
the subjects. For big-data workflows, this is usually done
by a third party. In the case of Gene Wide Association
Studies (GWAS) in United States, the National Center
for Biotechnology Information (NCBI) [5] would be
conducting the work.

At step 2, the data is transferred to the researcher
who considers it as raw data. For many domains espe-
cially the ones related to medicine or biology, where
the privacy of subjects is of very high importance, re-
searchers must follow specific protocols before the data
is released. Often most of the controlled distribution
datasets arrive encrypted and must be decrypted before-
hand. Very often the agencies encrypt the dataset using
the tools not available for the operating systems that will
be used for the actual analysis of the data. This step is
usually performed on a different machine.

For big-data workflows, after the data is decrypted
and converted it must be loaded onto the distributed
computation cluster that will be used for actual analysis.
Such transfer happens at step 3.

At step 4, the actual analysis takes place. During
this step the researcher uses some software that reads the
input data and outputs some results. Besides the input
data, the researcher can supply different parameters to



the software which will tune the course of the analysis.
The result of this step is a derived data that was obtained
as a result of the performed analysis. This step is usually
performed repeatedly, while the researcher fine-tunes the
parameters given to the analytic software. The software
itself could be changed either by the researcher or a third
party vendor. Also, this step could consist of multiple
sub-steps where the output of one sub-step is supplied
as an input or a parameter to the subsequent sub-step.

After the researcher have obtained the desired result
in step 4, step 5 is performed. In this step, the data is
extracted out of a distributed cluster and then visualized
and described to produce a publication.

At the final step, the derived data and/or publication
is placed into publicly accessible storage where it could
serve as raw data for a different research.
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Figure 1. Typical scientific big data workflow.

3. Prior work

Scientific workflow systems are widely used to
represent and execute computation experiments. Sys-
tems such as Kangaroo[6], VisTrails[7], NiPype[8],

Hamake[9] and Taverna[10] has been around for sev-
eral years and were used in a variety of research projects.
These systems allow the researcher to setup and exe-
cute analytic workflows. All of these tools represent a
workflow as a directed acyclic graph (DAG) where the
nodes are either data files, parameters or preprocessing
and analysis routines. The edges connect the inputs of
these routines to the datasets, parameters or the outputs
of another step. Usually these tools are more domain
oriented than traditional programming languages, thus
making a job of the researcher much easier.

Software developers have been using version con-
trol systems (VCS) for considerable time [11]. Among
the modern VCS tools there is a growing trend towards
distributed version control systems DVCS which do not
rely on a central server. The emergence of cloud based
web services such as GitHub and BitBucket has led to
the explosive popularity of DVCS tools.

Expressing and recording provenance information
has been a known problem. There were several attempts
to address it such as [12]. Recently W3C has introduced
a new standard PROV[13] for tracking provenance of
the artifact. A notable tool Git2Prov[14] was developed
to convert metadata stored in GIT version control system
into the PROV format.

Unfortunately, we believe that none of the tools men-
tioned above provide functionality that is comprehensive
enough to track provenance and provide reproducibil-
ity of big-data map-reduce workflows. Such workflows
have their own challenges. They must run on Hadoop
type distributed clusters. Whereas most of the scientific
workflow tools mentioned above, with the exception of
Kangaroo and Hamake, are designed to be used on a
single workstation. Also most of the tools above do not
provide the means to store and reconstruct inputs and ex-
act workflow steps. The tools that do either rely on VCS
systems to store the artifacts or in case of VisTrails they
assume that entire experiment including all code and
data files could be packaged and given to a third party.
Such approach would not work with strictly controlled
datasets that have strict distribution policies. Even for
publicly available datasets such approach is not feasible.
For example, GoogleBooks dataset is 2.2TB. Including
a copy of such large datasets in every workflow archive
will make regular exchange of the workflows infeasi-
ble. Storing such large datasets directly in the VCS also
does not work. In addition to poor performance and
inefficiency of these tools with very large files, most of
these tools limit the maximum object size well below the
file size found such datasets. Moreover, a typical map-
reduce file systems such as HDFS, do not implement full
POSIX call interface, so it is not possible to use standard
VCS with such file-system.



Recently a new tool called Git-Annex[15] was de-
veloped to address some problems of storing large files
in git repositories and allow for controlled transfers of
restricted datasets. This tool uses a storage format sim-
ilar to git, but it keeps the large object store separately
from the regular git-object store. The storage format of
git-annex has been modified to allow handling of very
large files on the order of multiple terabytes. However
the git-annex tools still maintains full metadata related
to the large files in the main git repository so git still
can record all manipulations done to these large files as
well as maintain the integrity of the repository through
the use of checksums. This is achieved by git-annex
checking-in the links to the hashes of the large files into
the git repository. Such scheme also allows research
groups at different organizations to share the code used
for processing the datasets without sharing the datasets
themselves, and at the same time both parties can obtain
the same dataset from the proper authority and indepen-
dently inject it into their repository. All of this could be
achieved through standard git commands without tedious
and error prone verifying of long checksums.

4. The PROB Tool

4.1. Design and Components

As a solution to the problems of tracking prove-
nance and ensuring reproducibility of big data workflows
used in our research, we have started the development
of PROB, a system for ensuring Provenance and Repro-
ducibility Of Big Data workflows.

The system is based on Git, Git-Annex[15],
Git2Prov[14]. The Git is used as a main version control
system and a repository of the provenance data. The Git-
Annex is an extension of the Git that allows for tracking
of version information about large files without checking
them into the repository. The reasons to use Git-Annex
for keeping track of the datasets are two-fold. First, it
solves the problem of inefficient handling of large files
by git. Second, it allows to share our workflows with
other groups without violating the terms of dataset usage.
The Git-Annex stores only the hash values of datasets in
the repository and keeps the data files themselves in a
separate location. Since many dataset related to genetic
information of human subjects are strictly controlled by
NCBI and institutional IRBs, posting only the hashes of
the files allows us to ensure that all the parties have ex-
actly the same datasets, even though we never exchanged
the controlled information. Rather such information was
independently obtained by each research group from the
source authority through the appropriate protocols.

The PROB defines it’s own ontology to represent the

provenance information. In addition to its own ontology,
the PROB tool uses several existing ontologies discussed
earlier. To represent basic provenance assertions such as
authorship and artifacts, we use PROV W3C standard.
The Git2Prov ontology is used to represent information
contained in Git version control system. The NiPype
ontology is used to express facts about data analysis
workflows and the execution environments.

At present the PROB tool is geared towards work-
flows written in PIG language which are intended to run
Hadoop Map-Reduce clusters. The tool could be used to
support the pipelines such as the one depicted on figure 1.
While the steps 2 through 4 of the pipeline are being exe-
cuted the tool makes the record of all produced artifacts
as well as exact operations that were performed on the
data objects. Later the same researcher, or a different
person could query the provenance store to determine
the exact steps that were performed to create any artifact
of the analysis also the reproducer will be able to obtain
the exact input files that were used as an input to these
steps. By expanding the search to the bounds of the
initial and final steps the verifier could reconstruct the
entire analysis pipeline.

The design goal of the PROB tool is to support both
scripted and interactive workflow. The scripted work-
flows are the workflows saved into the script file prior
to the analysis. On the other hand the interactive work-
flows are not stored in any files, but rather dynamically
constructed by the researcher by typing commands into
the PIG’s interactive shell called Grunt. It is actually
very important to keep track of dynamically constructed
workflows since such workflows facilitate creative ex-
ploration of the data, and at the same time unlike the
workflows executed from the script files there is never
a record of these workflows besides rudimentary com-
mand history kept by the PIG’s Grunt shell.

In addition to the third-party tools mentioned at the
beginning of this section, the PROB tool contains the
following components — (a) a set of python scripts, (b)
instrumented PIG interpreter, (¢) HDFS backend for git-
annex, (d) ontology defined to enrich provenance data
beyond what is provided by PROV and Git2Prov

The scripts are used to record the provenance of the
code and data as well as facilitate the transfer of large
data objects between different hosts involved in the anal-
ysis. The instrumented PIG interpreter is used to track
the execution of interactive workflows and record which
inputs and parameters were used at each stage of the
workflow. The HDFS backend for git-annex creates an
interface between git repository and the map-reduce file
system. The extra ontology types were developed to fix
problems in Git2Prov ontology, to allow execution on
the Hadoop clusters and achieve greater degree of repro-



ducibility. The extra ontology types will be explained in
the examples of the next section.

4.2. The tool operation

Below we will show the example of operation of
a PROB tool on a big data workflow. For the sake of
simplicity let’s consider this analysis. Say we wish to
find a frequency of each word in a text file. For this we
will use the PIG script shown below

A = load ’'/data/input.txt’;

B = foreach A generate flatten(TOKENIZE($0)) as word;
C = group B by word;

D = foreach C generate COUNT(B), group;

Dump D ;

We assume the input file was just decrypted and still
located on the Windows machine. During our analysis
we want to transfer the input file to the Hadoop cluster
and use the pig script above to perform the analysis.

So here are the steps that will be run to achieve this
goal and the artifacts that will be produced at each step.
The steps below describe the actions are performed by
the PROB at each step of the pipeline as well as show
the provenance data artifacts generated by the steps.

For the sake of brevity we will not include the
namespace declarations in the RDF documents. Be-
sides the standard namespaces of xsd and rfds , we
will use the following namespaces prov for PROV on-
tology defined by the W3C standard, git for Git2Prov
ontology, n for NiPype ontology and finally prob for
the PROB tool defined ontology.

4.3. Initial state

At the beginning of operations we assume that re-
searchers have setup the initial git repositories on all
the hosts involved in the processing. This includes link-
ing all the repositories together. Installing git-annex,
creating all necessary meta-data for git-annex to run, es-
tablishing remote relationships between git-annex repos-
itories, and of seting-up the git-annex HDFS plugin on
the machine that is used to launch hadoop jobs.

We also assume that the processing script show
above has been checked in into the git repository and the
large input file has been enrolled into git-annex. After
all the above operations are done, both git and git-annex
repositories have been synchronized.

4.4. Recording the state of git repository

This is the first operation of the pipeline. In fact it
has to be performed before and after of execution of each
step in the pipeline on every host involved in processing.
The operation is idempotent, meaning that it could be
performed any number of times with exactly the same

result provided there were no changes to the repository
between executions.

This operation involves synchronizing all reposi-
tories on all hosts, and making a web-service call to
Git2Prov service. The Git2Prov service downloads all
meta-data stored in the git repository and returns ex-
presses it as a set of PROV and Git2Prov assertions.

An example output is shown below. Note that for the
sake of brevity the output has been significantly abridged
to show only the triples relevant to discussion of the
subsequent steps. From this example you can infer that
there is a file named word-count.pig committed by the
user Vlad Korolev. There is a commit with the id a2el,
and there is a particular version of the word-count.pig
script that was created during above mentioned commit.

1| git:commit-a2el a prov:Activity ;
2

3 prov:qualifiedAssociation [ a prov:Association ;

4 prov:agent git:user-VladKorolev ;

5 prov:hadRole "author,_committer"@en ] ;

6 prov:used git:file-word-count-pig_commit-a2el ;
7 prov:wasAssociatedWith git:user-VladKorolev ;

8 prov:wasInformedBy git:commit-a2el ;

9 rdfs:label "update"@en .

11| git:file-word-count-pig prov:Entity ;
12 rdfs:label "word-count-pig"@en .

14| git:file-word-count-pig_commit-a2el a prov:Entity ;

15 prov:qualifiedAttribution [ a prov:Attribution ;
16 prov:agent git:user-VladKorolev ;
17 a "authorship"@en ] .

Unfortunately, the information generated by

git2prov is not enough for our purposes. Therefore the
PROB tool performs the following operation right after
gets results from execution of git2prov. The operation is:
go to the git repository and obtain a tree id linked to the
commit id. The result of this operation is shown below.

1| prob:git_tree_23442 a
2 prov:wasGeneratedBy git:commit_a2el ;
3 prov:wasGeneratedBy git:commit_3455 .

It shows that the a tree identified by id 23442 could
be materialized by checking either commit a2el or com-
mit 3455. This step is necessary because the PROB tool
uses tree id rather than commit id to restore contents
of a working directory. The advantage of using tree id
over commit id is that commit id contain extra metadata
such as author name, date of commit, position of commit
within the hierarchy. Thus, if two independent parties
performed a series of operations that resulted in exactly
the same dataset, the commit ids recorded by this step
would be different even though the contents are exactly
the same. However, the tree id are always the same for
the directories with the same content. Thus making the
tree more suitable for provenance tracking.

prob:git_tree ;

4.5. Loading the data

The next step in the pipeline will be loading the
dataset onto Map-Reduce cluster. This step involves

prov:endedAtTime "2013-05-21T09:08:21.000Z"~"xsd:dateTime ;
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loading using a sequence of git-annex sync commands to
make sure the data is propagate to the machine on HDFS
cluster. On that particular machine the tool executes a
sequence of git-annex get command for each dangling
link in the working directory. Next the git-annex HDFS
plug-in is used to push the working directory into the
HDEFS data-store. The small files that are commit di-
rectly to git are loaded into HDFS as is. The large files
tracked by git annex are loaded into special folder. The
git working directory is swept for the git-annex links to
record the mapping of file names to hashes in the annex
datastore. The mapping is recorded into the file and
pushed on hadoop cluster.

4.6. Running the analysis

Once data has been loaded to the HDEFS, the ac-
tual analysis of the data can take place. To perform the
analysis the user runs instrumented version of the Pig
interpreter giving the script as an argument. The inter-
preter reads the script and executes workflows described
in it on the map-reduce cluster. For each such execution
the instrumentation code outputs the analysis provenance
record similar to the one shown below.

prob:analysis 11299 a prob:analysis ;
prob: module module_2302 ;
n:duration 20s ;
n:wd /home/userl ;
n:ret_code 15 ;
n:platform MacOsS ;
n:platofrmVersion 10.5.0.2 ;
prob:treeld prob:git_23442 ;
prob:isClean vy ;
prob:input prob:input_3579 ;
prob:output prob:output_4593
prob:hdfs_map file-hdfs-entity-map-22333 .

This analysis record contains information about
which module was executed, in what environment, with
what inputs, and whether the working tree was clean.
Also it records the input taken by the workflow and the
output produced as a result.

Also another important modification of the PIG in-
terpreter is the level of indirection for the input files.
Although the script used in this analysis mentions the
file named Data.txt , no such file actually exist on the
HDEFS system. Rather HDFS system contains a file
named SHA-133aaa which contains the data loaded in
the previous steps. The instrumented PIG interpreter
uses the mapping file to resolve this indirection.

The PROB tool has a concept of a module. A mod-
ule is something that could be executed which could be
a script contained in a file, or a sequence of commands
typed into the interactive shell. For each execution of the
analysis the PROB tool identifies the executed module
and outputs provenance record like this.
| prob:module_23111 a prob:module ;

prov:Entity file-word-count-pig_commit-a2el;
prob:Dependency prob:module_92234 .

S0 uo ;s w0 —

Also, module could depend on modules in the file
system. Line 2 of the example above, refers to the PIG
script. Line 3 refers to the dependency which is in this
case a PIG interpreted itself. The information about
dependencies is stored in similar module records.

Besides the module information the instrumented
interpreter creates a provenance record regarding the
input and output. An example of such record is shown
below. Note that the PROB concept of the input refers
to the actual input parameters given to the script not the
contents of the files.

The actual content read by the analysis workflow
during particular run could be identified by combining
the elements of the input record with the tree id element
of the analysis execution record. Such combination will
uniquely identify the actual input data used by the analy-
sis.

prob:input_9322 a

prob:parameter_1
prob:parameter_2

prob:input ;
"dataFile.tsv" ;
n1gn .

prob:output_11234 a prob:output ;
prob:consoleQutput_23222 .

prob:consoleOutput_3322 a prob:console ;
prob:run_222_line_1 "dog,_34334343" ;

prob:run_222_line_2 "cat_123344" .

The output record is shown on the lines 8-10. In
this particular case for the sake of illustration we used
the console output. In practice use of console outputs
should be discouraged and all the intermediate results
show be saved to the files. The console output record
consist of a collection of output lines produced by the
script.

After the desired output is obtained and recorded
the goal of analysis is achieved and all the provenance
records are stored. At any future time the original re-
searcher or any third party could recreate this analysis.
Since all the artifacts used in the analysis are identified
by strong checksums one could determine with high de-
gree of certainty that the analysis performed later on is
equivalent to the analysis described in the records.
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Figure 2. Typical scientific big data workflow.
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The figure 2 shows the relationship between all ob-
jects described above after the analysis took place. The
environment consists of a git repository A, that contains
a git tree identified by id 1311. This tree contains a file
identified by name Script.pig and hash 2344. This
file was executed as part of the analysis for which the
analysis record was created. The analysis record refers
to the module identified by id 122, the module in turn
points back to the PIG script file. The script mentions the
file with id 3444 used as an input. This file id resolves
to an object stored in git-annex with the hash value of
SHA-13a32. This object is also stored in the HDFS
under the same name. When the script is executed the
custom indirection layer of PIG interpreter resolves the
file name data.tsv to the actual file stored HDFS and
performs the analysis on that file. The output is printed
to the console, which in turn captured by the interpreter
and placed into provenance record Output-1015. The
output record is in turn linked back to the analysis record.
This collection of records contains enough information
for someone to reproduce exactly the same analysis at
any point later in time.

4.7. Conclusion and future work

In this work we have shown a design of a PROB tool
and corresponding ontology. We have shown how the
provenance information of every computational step in
the big data data workflow could be captured and stored.
We have shown that provided all the provenance informa-
tion is kept, the analysis could be recreated later on. The
tool described in this work also allows different teams to
collaborate together by sharing the workflows without
sharing the actual dataset. This is a major concern for
bio-informatics work that involves human subjects. In
the near future we will continue development of this tool
with the intent of sharing it among the fellow researchers.
Although this particular implementation of the PROB
tool is geared towards Map-Reduce workflows written
in PIG, the general approach and developed ontology
could be re-used by other scientific workflow tools.

The tool will be solidified through additional exper-
iments. Then we will derive a final ontology that uses
work by the groups mentioned above and is rich enough
to express provenance for high degree of reproducibility.

Although we have shown how high degree of repro-
ducibility could be achieved using the method described
above, some challenges still do exist. One particular
challenge is reproducing results of stochastic algorithms
such as CART or K-Means. Another challenge is a case
of two different analysis arriving at exactly the same re-
sult even though the input and algorithms were different,
which common case for processing of satellite imagery.
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