
TABEL – A Domain Independent and Extensible

Framework for Inferring the Semantics of Tables

by

Varish Vyankatesh Mulwad

Thesis submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2015

ABSTRACT

Title of Thesis: TABEL – A Domain Independent and Extensible Framework for Inferring

the Semantics of Tables

Varish Vyankatesh Mulwad, PhD, May, 2015

Thesis directed by: Dr. Tim Finin, Professor
Department of Computer Science and
Electrical Engineering

Tables are an integral part of documents, reports and Web pages, compactly encoding

important information that can be difficult to express in text. Table like structures out-

side documents, such as spreadsheets, CSV files, log files and databases, are widely used

to represent and share information. Many scientific and technical domains use tables to

compactly depict information which is difficult to express in text. However, tables remain

beyond the scope of regular text processing systems which rely on sentence and grammat-

ical structure as well as the context from surrounding words to understand the meaning

of text. They also ignore the structure of table, which humans use to both encode and

understand the meaning of information inside a table.

This dissertation presents TABEL – a domain independent & extensible framework

to infer the semantics of tables and represent them as RDF Linked Data. TABEL captures

the intended meaning by mapping header cells to classes, data cell values to existing en-

tities and pair of columns to relations from an given ontology and knowledge base. The

core of the framework consists of a module that represents a table as a graphical model

to jointly infer the semantics of headers, data cells and relation between headers. We also

introduce a novel Semantic Message Passing scheme, which incorporates semantics into

message passing, to perform joint inference over the probabilistic graphical model. We

present techniques that are both extensible and domain agnostic. Our framework allows

the addition of “preprocessing” modules without affecting existing ones, making TABEL

extensible. It allows the inferred semantics to be represented as RDF triples using the

framework’s ontology or a user’s custom ontology. TABEL also allows the background

knowledge bases to be adapted and changed based on the domains of the table, thus mak-

ing it domain independent. We also introduce & explore a “human-in-the-loop” paradigm,

presenting different models of user interaction with TABEL and its impact on the quality of

inferred semantics.

We demonstrate the extensibility and domain independence of our techniques by de-

veloping an application of TABEL in the healthcare domain. Evidence–based Medicine

analyzes questions such as efficacy of drug dosages, correlates various medical factors

or tries to find a correlation between drugs by performing meta–analyses (i.e., systematic

reviews) over evidence and data previously published in scientific literature and clinical

trial studies. We develop a proof of concept system that can automatically produce meta–

analyses reports to replace the existing manual and tedious process. Tables from medical

research reports (medical tables) not only pose domain challenges, but also structural ones

as they are multi–dimensional in nature. TABEL is both extended and adapted by adding a

new domain specific preprocessing module and domain specific knowledge bases. We use

TABEL to infer the semantics of medical tables and build a proof of concept user interac-

tive system which utilizes the inferred semantics to help researchers discover, extract and

integrate data from relevant studies to produce meta–analysis reports.

A thorough evaluation with experiments over dataset of tables from the web and med-

ical research reports present promising results. Our experiments also show that limited

user feedback can have significant impact on the quality of the semantics inferred by our

framework.

c© Copyright Varish Vyankatesh Mulwad 2015

Dedicated to my parents

ii

ACKNOWLEDGMENTS

First and foremost, I would like to thank my adviser Dr. Tim Finin who is an excellent

research adviser, mentor and a wonderful human being. I would like to thank him for

accepting me as his Master’s student in the Spring of 2009 as one amongst the many bright

students he accepted that semester. As my interest in pursuing a research career piqued,

he encouraged and supported me to join the PhD program. It is one of the best decisions

I made and has been a truly rewarding and enriching experience. Throughout my Masters

and PhD, Dr. Finin provided me the complete freedom to work through my problems,

letting me grow as a researcher. He always stepped in when I faced hurdles and his ability

to quickly find solutions to complex problems that I stared at for days was amazing. The

depth and long term vision in his approach and solutions has always been mind blowing.

His hunger to learn new things is matched by none. I thank him for being a great research

& life mentor and a constant source of inspiration.

I would also like to thank Dr. Anupam Joshi with whom I have closely collaborated

throughout my PhD. His technical depth as well as breadth of knowledge across several

areas has been extremely helpful. He encouraged me to work on challenging use–cases

and always kept me focused whenever I lost track. I would especially like to thank him for

helping me prepare and search for a career after my PhD. I would like to thank him for his

guidance and his support which has been invaluable. I would like to thank both Drs. Finin

and Joshi for supporting me to travel and present my research at several top conferences

around the world. These travels have been an enriching experience in my life.

I would like to thank the rest of my committee members – Drs. Tim Oates, Yun

Peng, L. V. Subramaniam and Indrajit Bhattacharya for providing valuable feedback and

comments. Dr. Oates’s Machine Learning class at UMBC is one of the best classes I ever

iii

took. I will like to thank him for being an amazing teacher and providing me the much

needed final push to wrap up my work and defend. I would like to thank Dr. Subramaniam

for hosting me at IBM Research for a day, allowing me to present and giving early feedback

on my work. I will also like to thank Sandeep Suresh and Todd Segal from Microsoft

Bing and Dr. Evelyne Viegas from Microsoft Research for providing wonderful internship

opportunities and valuable industry exposure.

My colleagues in the Ebiquity Research Lab provided a stimulating environment to

perform research. I would like to thank my amazing seniors – Palani, Zareen, Wenjia,

Justin, Lushan, Vlad, Kishor and Audumbar for their mentorship in my early days in grad-

uate school. Palani and Kishor, especially helped me make the right choices while selecting

courses and doing research in my first year. Zareen provided me with valuable guidance

during my Master’s research which laid the foundations for my PhD research. I would like

to thank all of them for being available for many days after their respective graduation. I

would like thank other members of the Ebiquity Lab, the CSEE department and UMBC–

Tejas, Krishna, Anand, Will, Ashwini, Amit, Pramod, Mohit, Akshaya, Pradeep, Amey,

Anurag, Nikhil, Sumit, Prajit, Dibyajyoti, Aru, Swarna, Anjana, Tejashree, Sushmita, Jen-

nifer, Clare, Abhay, Lisa, Arnav, Ravendar, Sandhya, Deepal, Puneet, Satyajit, Sunil, Pri-

mal, Roberto, Piyush and Sudip for the innumerable discussions over coffee, lunches and

dinners.

Graduate school would not have been possible with out the support of amazing friends

especially Mayank, Niyati, Vivek, Bhushan, Tejas, Tushar, Sanatan, Chaitra, Sayantan,

Nikhil, Ashwin, Prajit, Sunil, Primal and Roberto. A lot of credit goes to Mayank, my

first roommate who helped me adjust to a new environment and for putting up with all

my idiosyncrasies! Thank you for being a constant support and a great friend all through

these years. Niyati Chhaya has always been like an elder sister to me. I have discussed

with her innumerable questions, problems and she always had answers. The dedication

iv

and efforts Vivek and Bhushan put always motivated me to work harder. I would also like

to thank them for making me feel at home during my internships in the Seattle area. Tejas,

Tushar, Sanatan and Chaitra have been an inspiration in showing me how to be great at

studies and yet be very good at other things like music, photography, sports and dance.

I thank Tushar for keeping our entire group together and planning our innumerable road

trips. I have explored the United States of America all because of his efforts. Sayantan has

always been a great listener and helped me solve all my problems, be it research or in life.

If I cook better and dress smartly, it’s because of him. When things got a little slow and

difficult towards the end, Nikhil and Ashwin helped me maintain my sanity. My unending

discussions with Nikhil & Ashwin on a variety of topics have been both enriching and stress

busters. I thank them for being amazing roommates for the past year and a half. I thank

Ashwin for proof reading my entire thesis document. Prajit, Sunil, Primal and Roberto

have shown me tremendous support in the final year of my PhD. My friends in graduate

school not only made me a better researcher, but also a better person.

I would also like to thank the past and present staff of the CSEE department at UMBC

– Jane, Dee Ann, Vera, Donna, Keara, Camilla, Olivia, Geoff and Marie Tyler for all their

help and support. They have been extremely kind and patient with me. Foundations for

my interests in research and problem solving can be traced back to my undergraduate days,

aided by my wonderful friends Mandeep, Purushottam and Vijay and our undergraduate

project adviser Anil Joshi. I would like to thank all of them for continuing to encourage me

throughout my Masters and PhD. I would also like to thank Drs. Shyam and Shoba Shirali

for being like family away from home.

Amol Dhamdhere has been a mentor since my undergraduate days. This PhD simply

would not have been possible without Amol kaka’s support. Outside my family, he has

been my strongest supporter in some of my toughest days. Last, but by no means the least,

I want to thank my parents and family. I thank Aai, Baba for letting their only son to

v

travel abroad to pursue both a Masters and a PhD. Without their strong support, advice,

encouragement, this would not have been possible. I thank them for all the sacrifices they

made and all that they have done for me till date.

I would like to end this long acknowledgment on a verse from the Bhagvad Gita, which

remains one of my guiding principles: “karmanye vadhikarasthe ma bhaleshu kathachana

ma karmabhalahethurbhurma the sanghohasthwakarmani”.

vi

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF FIGURES . x

Chapter 1 INTRODUCTION . 1

1.1 Motivation . 2

1.2 Inferring the Semantics of Tables . 4

1.3 Representing the Intended Meaning . 6

1.4 Contributions . 7

Chapter 2 RELATED WORK . 9

2.1 Databases to RDF . 9

2.2 Tables to RDF . 10

Chapter 3 FRAMEWORK . 13

3.1 Preprocessing . 14

3.2 Query and Rank . 16

3.2.1 Generating candidates for data cells 16

vii

3.2.2 Literal Constants . 19

3.2.3 Generating candidates for header cells 21

3.2.4 Generating candidates for relation between header cells 21

3.3 Joint Inference . 22

3.3.1 Variables . 23

3.3.2 Graphical Representation . 23

3.3.3 Inference . 25

3.4 RDF Linked Data . 34

3.5 Human-in-the-loop . 36

Chapter 4 EVALUATION . 41

4.1 Dataset . 41

4.2 Experimental Setup . 43

4.3 Column Header Annotations . 43

4.4 Relation Annotations . 47

4.5 Data Cell Annotations . 51

4.6 Convergence . 52

4.7 Entity Ranker . 53

4.8 Literal Constants . 54

4.9 Human in the Loop . 55

4.10 Comparison with baseline systems . 56

Chapter 5 USE CASE . 59

5.1 Introduction . 59

5.2 Related Work . 62

5.3 Approach . 64

viii

5.3.1 Inferring the semantics of medical tables 64

5.3.2 Find – Extract – Integrate . 74

5.4 Evaluation . 77

5.4.1 Semantics of Medical Tables . 77

5.4.2 Discovering Relevant Studies . 80

Chapter 6 CONCLUSION AND FUTURE WORK 82

6.1 Conclusion . 82

6.2 Future Work . 83

6.2.1 Extending Semantic Message Passing 83

6.2.2 Literal Values . 84

6.2.3 Combine Schema and Instance approach 84

6.3 Concluding Remarks . 85

REFERENCES . 86

ix

LIST OF FIGURES

1.1 Typical tables found in medical research reports include both row and col-

umn headers. Information in both header and data cells often encode addi-

tional metadata such as units or data cell value type. 4

1.2 A simple table representing information about cities in United States of

America . 5

3.1 TABEL relies on a joint inference module to generate a representation of

the meaning of the table as a whole. 14

3.2 Wikitology query to generate candidate entities for data cells in a table . . . 17

3.3 The entity ranker architecture . 19

3.4 Graph representing interactions between the variables in a simple table.

Only some of the connections are shown to keep the figure simple and easy

to understand. 24

3.5 Parameterized Factor Graph for a table. 25

3.6 Visualization of the Tables ontology. The prefix ‘xsd’ is for XML schema,

‘rdfs’ is for the RDF Schema, ‘owl’ is for the OWL Ontology and ‘rdf’ is

for the RDF vocabulary. 35

3.7 Subset of RDF for data in Figure 1.2. The prefixes ‘tab’ is for our Tables

Ontology; ‘dbpedia’ and ‘dbpedia-owl’ is for DBpedia ontology and ‘xsd’

is for XML schema. 36

x

4.1 Number of tables and the average number of columns (col) and rows in the

sets used for column header, cell value and relation annotation. Average is

over the number of tables used in cell value annotation. 41

4.2 Percentage of vital and okay DBpedia class labels at rank 1. 44

4.3 Percentage of relevant class labels at ranks 1–10. 44

4.4 Percentage of relevant class labels at ranks 1–10. 45

4.5 Precision and recall for class labels at ranks 1–10. 46

4.6 Quality of relations at rank 1. Dataset names followed by a dbp are results

for DBpedia relations; whereas the ones followed by yago are for Yago

relations. 47

4.7 Percentage of relevant relations at different ranks. 49

4.8 Precision, Recall and F–score for relations at rank 1. 49

4.9 Precision and Recall for relation annotation at different ranks. 50

4.10 Percentage of data cells with correctly linked entity. 51

4.11 X axis represents the iteration number and Y represents the number of vari-

ables that received CHANGE message in that iteration. The value at x=0 is

the number of cells in the table. 52

4.12 Precision, recall and F–score for the Naive Bayes model. 53

4.13 List of DBpedia properties used to generate NumKB. 54

xi

4.14 Distribution of expected properties at different ranks. Majority of them

appear at ranks 1, 2 and 3. 55

4.15 Comparison between data cell annotation quality with and without user

feedback. 56

4.16 Quality of data cell annotations for all four configurations. 57

5.1 Number of meta–analysis, clinical trials, comparative studies, prospec-

tive studies and case–control studies published between 2005 and 2013.

Data was obtained from PubMed by querying for publication types “Meta–

Analysis”,“Clinical Trial” “Comparative Studies”, “Prospective studies”,

and “Case-Control Studies” . 60

5.2 An example table typically found in medical research reports. 61

5.3 Core of the Medical Tables Ontology. The prefix ‘xsd’ is for XML schema

and ‘owl’ is for the OWL Ontology. 70

5.4 Subset of RDF triples for data in Figure 5.2. The prefixes ‘mto’ is for our

Medical Tables Ontology; ’umls’ is for UMLS Metathesaurus and ‘xsd’ is

for XML schema. 72

5.5 Subset of RDF triples for data in Figure 5.2 using the Tables and MTO

ontologies. 73

5.6 An interactive interface will allow users to define search criteria. 75

5.7 SPARQL query for parameters defined in Figure 5.6. 76

xii

5.8 Users can select entire table or subset of the table to be integrated for the

final meta–analysis report. 77

5.9 Tables numbers extracted from each study. 78

5.10 Distribution of header cell concepts at different ranks. 79

5.11 Table # and individual studies associated with each risk factor. 80

xiii

Chapter 1

INTRODUCTION

The Web has become a primary source of knowledge and information, largely replac-

ing encyclopedias and reference books. Most Web text is written in a narrative form such

as news stories, blogs, reports, etc., but significant amounts of information is also encoded

in structured forms such as tables embedded in Web pages and documents. It is estimated

that the Web contains over 150 million high quality relational html tables (Cafarella et al.

2008). Table like structures outside documents, such as spreadsheets, CSV files, databases

and log files, are widely used to represent and share information. Tables are used to present

and summarize key data and results in documents in many subject areas, including science,

medicine, healthcare, finance, and public policy. Governments around the world, as a part

of a coordinated open data and transparency initiative, are publishing government data in

CSV format on sites such as data.gov.

However, tables remain beyond the scope of regular text processing systems. No-

table progress has been made in developing techniques for analyzing natural language

text. These techniques, however, do not work well for tables. To understand the mean-

ing of a word or set of words, they often rely on grammatical knowledge and the context

provided by surrounding text which is absent in the case of tables. The very structure

of tables which adds value and makes it easier for human understanding also makes it

1

2

harder for machine understanding. Integrating and searching over information encoded

in tables benefits from a better understanding of its intended meaning. Early work fo-

cused on extracting tables from documents and web pages (Hurst 2006; Embley, Lopresti,

& Nagy 2006) with more recent research attempting to interpret their semantics. Exist-

ing work in table interpretation either partially infer the semantics (Venetis et al. 2011;

Wang et al. 2012) based on what application is built on top or only focus on a particu-

lar domain such as the Web (Limaye, Sarawagi, & Chakrabarti 2010). In this thesis, we

present TABEL 1 – a domain independent and extensible framework for inferring the se-

mantics of tables and representing them as RDF Linked Data. Our framework, grounded in

a probabilistic graphical model, jointly infers the semantics by mapping every header cell

to a class from an ontology, data cell values to existing entities and every pair of column to

a relation from an ontology. The inferred semantics is represented as RDF triples allowing

applications to utilize the recovered knowledge.

1.1 Motivation

A number of problems and applications can benefit from the inferred semantics of

tables or table like structures. Search engines do an excellent job of searching over docu-

ments and web pages, but poorly when searching over information encoded inside tables.

Using the inferred semantics, search engines will be able return tables or web pages that

contain tables for queries such as US president birthdays, US cities and mayors, coffee

production in Africa.

Table like structures also appear in the network security domain in the form of log

files. Security software and devices such as Intrusion Detection and Prevention systems,

webservers, firewalls, and routers generate log files recording not only debugging and diag-

1TABEL is an acronym for Tables Extracted as Linked Data.

3

onistic information, but also events and information useful for audit trails and forensics in

the event of malicious activities or system attacks. Analyzing log files can provide valuable

insights into system (mis)configuration as well as existing vulnerabilities. This information

can be used proactively to protect the host network against attacks. Where a particular log

file format is well known, existing systems such as Splunk2 suffice. The challenge arises

when we see a log file which is not from a known service or device, in other words, when

we do not know what the rows and columns mean, or what relationships exist between

them which is common in large heterogeneous networks. An automated system analyzing

and reasoning over log files can benefit from its semantic RDF Linked Data interpretation.

In the medical domain, evidence–based medical research can benefit from exploiting

information encoded in tables. Evidence–based medicine analyzes the efficacy of drug

dosages, correlates various medical factors, or tries to find a correlation between drugs

by performing meta-analyses (i.e., systematic reviews) over evidence and data previously

published in scientific literature and clinical trial studies. Key information required not

only to discover relevant studies, but also to produce an evidence report (or a meta–analysis

report) is encoded in tables like the one in Figure 1.1. Tools for generating meta–analyses

reports automatically will benefit from the inferred semantics of tables, both during the

discovery of relevant studies and integration of data from multiple studies.

Finally, transforming legacy data stored in tables or table like structures such as CSV

or spreadsheets into RDF has been a long standing problem in the Semantic Web com-

munity. Existing techniques are either manual or semi–automatic often requiring users to

provide terms (classes, relations) to be used in the mapping process. Users who are not

well-versed with the Semantic Web find this process challenging; however with the grow-

ing number of ontologies and datasets, this becomes a harder task, even for expert users.

2www.splunk.com

4

FIG. 1.1. Typical tables found in medical research reports include both row and column
headers. Information in both header and data cells often encode additional metadata such
as units or data cell value type.

Our proposed solution can assist users in automatically transforming tabular data into RDF.

1.2 Inferring the Semantics of Tables

Analyzing tables provides unique challenges. Tables often use idiomatic patterns to

represent data. Consider tables found in medical research reports (similar to the one shown

in Figure 1.1). Medical tables often exhibit both column and row headers; the data cell

represents the value of the relationship between the headers. Furthermore, the content

in header and data cells is represented using idiomatic patterns often encoding additional

5

City State Mayor Population
Baltimore MD S.C.Rawlings-Blake 640,000

Philadelphia PA M.Nutter 1,500,000
New York NY M.Bloomberg 8,400,000

Boston MA T.Menino 610,000

FIG. 1.2. A simple table representing information about cities in United States of America

metadata in header cells or representing the literals in data cells as “complex objects”. Ta-

bles from several domains, be it medical or Web, also use acronyms and abbreviations mak-

ing disambiguation harder. TABEL deals with these challenges via a set of pre–processing

modules.

The semantics of a table can be captured by the semantics of its sub–parts such as

header cells, data cells and relations between headers. A possible approach could be in-

ferring the semantics of the sub–parts individually or sequentially (Mulwad 2010), header

cells followed by data cells and finally the relations between headers. There is a possibil-

ity of the individual approach failing to capture fine grained semantics (see the following

example) or error percolating in the sequential approach if the semantics of header or data

cells was inferred incorrectly. Consider the table shown in Figure 1.2. Examining just

the column header strings and mapping them to appropriate classes from an ontology (e.g.

mapping City to dbpedia-owl:City) will help us infer that the table conveys information

about cities using attributes such as mayor and population. The semantics of the column

header can be further enriched by linking the data cell strings in the column to appro-

priate entities from a knowledge base. For example, linking the data cells’ strings from

column 1 in Figure 1.2 to appropriate DBpedia entities (e.g. mapping Baltimore to dbpe-

dia:Baltimore, Boston to dbpedia:Boston), provides additional fine grained semantics that

all cities are located in the United States of America, allowing the column header class

to be updated to yago:CitiesInTheUnitedStates. Similarly, inferring relationships between

6

columns 1 and 2 in Figure 1.2 helps us infer that the cities are the largest cities in their re-

spective states. It is clear that to infer fine grained semantics, it is necessary to incorporate

evidence from the entire table instead of analyzing the individual sub parts.

To overcome the problems of individual and sequential approaches, to infer rich fine

grained semantics and to capture the interrelation between the table sub parts, TABEL

jointly infers the semantics using techniques grounded in probabilistic graphical models. It

represents a table as an undirected Markov network, in which the header and data cells are

represented as nodes; edges in this network capture interaction or dependence between the

nodes. We also introduce a novel inference technique, Semantic Message Passing (SMP),

as a method of communication between nodes during the joint inference process. SMP al-

lows us to incorporate semantics and background knowledge from Linked Data into regular

message passing schemes.

Once the semantics are inferred TABEL generates a RDF Linked Data representation

of the table. We propose an ontology to represent the raw information as well as inferred

semantics associated with the table. While the goal of our research is to automatically

infer the semantics, achieving 100% accuracy is very difficult, if not impossible. Certain

applications and sensitive domains such as healthcare will benefit from a human-in-the-

loop paradigm to improve the quality of inferred semantics. TABEL allows various models

of human interaction with the system.

1.3 Representing the Intended Meaning

We capture the semantics of tables by using knowledge representation techniques

grounded in the Semantic Web (Berners-Lee et al. 2001) and Linked Data (Berners-Lee

2006). Projects such as DBpedia (Bizer et al. 2009), IBM Watson, Google Knowledge

Graph and Microsoft’s Satori have all demonstrated both the benefits and impact of knowl-

7

edge representation grounded in Semantic Web technologies and principles. The principles

of Linked Open Data (LOD) encourage users to represent things using unique dereference-

able HTTP URIs, providing useful information about the thing using standards such as

RDF. It also encourages interlinking with related resources and things from other datasets.

For example, the DBpedia URL for the English football player David Beckham3, when

dereferenced, provides information such as his teams, height, date of birth, place of birth

and so on in machine understandable format. Ever since its inception in 2006, Linked

Open Data has grown rapidly providing a vast amount of knowledge with 295 datasets and

more than 31 billion triples4 publishing facts related to things in a number of domains such

as General Knowledge (Wikipedia), Media, Geography, Publications, and Life sciences.

With vast knowledge and proven impact, we believe that the Semantic Web standards such

as RDF, OWL, and ontologies and datasets from LOD are appropriate choices to represent

the inferred semantics of tables.

1.4 Contributions

This thesis presents TABEL, a domain independent and extensible framework for in-

ferring the semantics of tables and representing them as RDF Linked Data. To the best of

our knowledge, we are the first to propose to the capture semantics of a table as a mapping

of header cells to classes, data cells to entities, and capturing relations between header cells

(Syed et al. 2010). This thesis also presents a probabilistic graphical model to jointly infer

the semantics of header, data cells and relations between headers. It also introduces a novel

inference technique, Semantic Message Passing (SMP), which incorporates semantics and

background knowledge from Linked Data into message passing schemes. We also incor-

porate a human-in-the-loop paradigm to improve the quality of the inferred semantics and

3http://dbpedia.org/resource/David Beckham
4Information as of Sepetember 2011 – http://lod-cloud.net/state/

8

discuss different models of human interaction with the framework. We present a thorough

evaluation of TABEL performed against a dataset of tables extracted from the Web and

Wikipedia.

We also present an application of this work in the healthcare domain. We develop a

system that can automatically produce meta–analyses reports, replacing the existing tedious

and largely manual process. We present an evaluation of the quality of inferred semantics

from tables in medical research reports and a proof-of-concept interactive interface that

will help researchers discover, extract and integrate data from relevant studies to produce

meta–analysis reports.

Chapter 2

RELATED WORK

Our work is related to two threads of research, one focused on pragmatically generat-

ing RDF from databases, spreadsheets and CSV files (section 2.1), and a more recent one

that addresses inferring the implicit semantics of tables (section 2.2).

2.1 Databases to RDF

Several systems have been implemented to generate semantic web data from databases

(Sahoo et al. 2009; Vavliakis, Grollios, & Mitkas 2010; Polfliet & Ichise 2010), spread-

sheets (Han et al. 2008; Langegger & Wob 2009) and CSV files (Ding et al. 2010;

Ermilov, Auer, & Stadler 2013). Most approaches are manual or partially automated re-

quiring users to specify the mapping to be used in the translation process. Automated

solutions follow the model of mapping every table as a class, every row as a RDF node and

column headers as predicates (i.e. properties) generating local ontology mappings. These

approaches fail to reuse classes and properties from existing ontologies; neither do they

map data cell values in tables to entities in a knowledge base. Automated techniques that

allow users to map data to existing onotologies require the users to specify the mapping

to be used. Our approach, on the other hand, maps a table to classes and properties and

entities from existing ontologies and knowledge bases (KB) with a goal to generate “Five

9

10

Star Linked Data” (Berners-Lee 2006).

2.2 Tables to RDF

Early work in table understanding focused on extracting tables from documents and

web pages (Hurst 2006; Embley, Lopresti, & Nagy 2006) with more recent research at-

tempting to understand their semantics.

Wang et al. (Wang et al. 2012) identify an ‘entity column’ in the table, and based

on its values and the rest of the column headers, maps the table to a concept from Probase

(Wu et al. 2012). Zwicklbauer et al. (Zwicklbauer et al. 2013) present an algorithm

which annotates column headers with classes from the DBpedia ontology and Wikipedia

categories. The algorithm generates a candidate set of classes for every column, by taking

a union of the classes associated with the candidate entities for each data cell value in

the column. The most frequently occurring class is chosen as the final assignment for the

column header. Deng et al. (Deng et al. 2013) present a scalable algorithm for mapping

column headers in a table to a set of top k classes from a KB. The similarity between a

column and a candidate class is determined using fuzzy set similarity between the contents

in the column and entities belonging to the candidate class.

Venetis et al. (Venetis et al. 2011) associate multiple class labels (or concepts) with

columns in a table and identify relations between the ‘subject’ column and the rest of the

columns in the table. Concept and relation identification is based on a maximum likelihood

hypothesis, i.e., the best class label (or relation) is the one that maximizes the probability of

the values given the class label (or relation) for the column. Zhang (Zhang 2014c; 2014a;

2014b) presents TableMiner, a system that maps column headers to classes and data cell

values to entities from a KB using a ‘two phase bootstrapping’ approach. The first phase

learns an initial interpretation using partial data from the table whereas the second phase

11

uses the initial interpretation as constraint to interpret the rest of the semantics.

Muñoz, Hogan, & Mileo (Muñoz, Hogan, & Mileo 2014; Munoz, Hogan, & Mileo

2013) use existing entity links in tables found on Wikipedia and relations between them

to enrich Linked Data KBs. The primary goal of their work is identify existing relations

between entities and suggest that the same relations hold true for other entities in the same

columns. KARMA (Knoblock et al. 2012; Szekely et al. 2013; Knoblock et al. 2013) is a

user interactive tool which maps structured data such as tables, spreadsheets and CSV into

RDF. KARMA generates an RDF representation of a table by mapping columns to semantic

types (OWL class or range of a data property) and identifying relations between those

types (i.e. relation column headers). It uses a conditional random field to suggest semantic

types allowing users to correct incorrect types along the way. Once the semantic types are

identified, it further refines the model and identifies relations between those types. While

linking data cells is not the primary focus of this work, Szekely et al. extend KARMA to

build a custom module to link artist names from the Smithsonian American Art Museum

dataset to existing DBpedia entities (Szekely et al. 2013).

Limaye, Sarawagi, & Chakrabarti (Limaye, Sarawagi, & Chakrabarti 2010) use a

graphical model that maps every column header to a class from a known ontology, links

table cell values to entities from a KB and identifies relations between columns, relying on

Yago for background knowledge. Their graphical model defines node potentials over col-

umn headers and data cells and clique potentials over a subset of related variables, namely,

column headers and data cells; pair of column headers and the relation between them; and

a pair of data cells and relation between them. The joint probability over all the variables

is computed as a product of the node and clique potential functions. Both potentials are

computed as a dot product between a feature vector over the variables and a weight vec-

tor (learned from labeled data) for each node/clique. They use standard message passing

during inference to identify an assignment that maximizes the probability.

12

The majority of the table interpretation systems focus only on part of the table, infer-

ring the semantics of either the column headers, data cells, relations between headers or

a combination of any of the two. Limaye, Sarawagi, & Chakrabarti and to certain extent

KARMA come close to our work and infer the complete semantics of a table. No system

barring KARMA generates a formal RDF Linked Data representation from the inferred se-

mantics. TABEL not only infers the complete semantics, but also generates a RDF Linked

Data representation of a table, allowing other applications to exploit the encoded informa-

tion. Our RDF representation also captures a table’s structural information allowing it to

be reconstructed. The joint inference module (Chapter 3, section 3.3) in our framework

uses a factor node representation reducing the number of potential functions as compared

to the model presented by Limaye, Sarawagi, & Chakrabarti. Instead of standard inference

techniques, we introduce a novel Semantic Message Passing algorithm, which incorporates

semantics and background knowledge from Linked Data sources into message passing.

Our human-in-the-loop paradigm (Chapter 3, section 3.5) not only allows users to provide

feedback or update inaccurate assignment, but also allows the framework to request specific

input from the user, making it a two way interaction. Our work on medical tables (Chapter

5) demonstrates that our framework adapts to tables from different domain and tables with

different structures.

Chapter 3

FRAMEWORK

We develop TABEL, a domain independent and extensible framework for inferring the

semantics of tables and representing it as RDF Linked Data (Figure 3.1). An input table

first goes through a preprocessing phase which includes modules to handle a number of

pragmatic issues such as dealing with idiomatic patterns in medical tables, recognizing

and expanding acronyms and stylized literal values, and recognizing commonly encoded

data such as addresses, telephone numbers, zip codes, etc. These modules are developed

independently and can run either in parallel or sequentially. Newer modules can be added

to the framework without hampering the work flow, providing the option of extensibility in

the future.

The table is then processed by the Query and Rank module which queries background

Linked Data sources to generate an initial ranked lists of candidate assignments for headers,

data cells and relations between headers. The Linked Data sources or the knowledge bases

for generating candidates can be adapted and changed based on the domain of the table,

providing domain independence to the framework.

Once candidate assignments are generated, the joint inference module simultaneously

infers the semantics of headers, data cells and relations between headers by representing

a table as a probabilistic graphical model to capture correlation between sub–parts of a

13

14

FIG. 3.1. TABEL relies on a joint inference module to generate a representation of the
meaning of the table as a whole.

table and performing inference over the model. After the semantics are inferred, RDF

Linked Data triples are generated. Although our goal is to develop an automated system

achieving a high level of accuracy, we recognize that practical systems will benefit from

or even require human input. We develop different models of human interaction with the

framework; Figure 3.1 shows one possible model for a human-in-the-loop paradigm. Users

have the option of verifying the inferred semantics and make corrections if necessary by

choosing new values from the list of candidates. Finally, the generated linked data can be

stored in a knowledge base (KB) or published to the Linked Data cloud. In the rest of this

chapter we describe each of the modules in detail.

3.1 Preprocessing

Tables present several pragmatic challenges such as use of acronyms and stylized

literal values, tables with large number of rows and columns, the use of idiomatic patterns

(especially in medical tables), etc. It is often better to preprocess the table and address such

15

challenges using custom modules, each focusing on a specific task before it passes through

the rest of the modules. For instance, a preprocessing module can solely focus on detecting

and expanding acronyms and abbreviations, while another can address idiomatic patterns

used in medical tables.

We design a modular preprocessing block. Each preprocessing module operates in-

dependently of the others working directly on the input table or the output of the previous

module. This allows addition of newer modules without affecting existing ones or the rest

of the framework. It also allows the option of selecting modules to be used during the

preprocessing phase. To demonstrate the modular nature of the preprocessing block, we

implement modules to deal with acronyms, abbreviations, idomatic patterns (described in

Chapter 5) and commonly encoded data in tables such as telephone numbers, zip codes, etc.

Acronym and Abbreviation Detector: As the name suggests, the Acronym and Abbre-

viation Detector (AAD) identifies if the header or data cell string is an acronym or an

abbreviation and replaces it with the expanded form. AAD is developed on a dictionary

based approach maintaining a key value pair of acronym/abbreviation and its expansion

(e.g. MD, Maryland). For every string mention in a table cell, AAD checks if the string

matches one of the keys. If a match is found, the respective string is replaced with its

expanded version.

The current dictionary based approach can be replaced with a more automatic and

semantic based approach. Several ontologies have begun encoding acronym and abbrevi-

ation information. For example, DBpedia provides information about postal abbreviations

for states located in the United States of America using the postalabbreviation property.

Similarly medical ontologies such as UMLS (Schuyler et al. 1993) and SNOMED CT

(Stearns et al. 2001) also provide both acronyms and synonyms for each medical concept.

In the future, it would be possible to construct acronym and abbreviation dictionaries auto-

16

matically using such ontologies.

Identifying Commonly Encoded Data: Several tables often consist of commonly occur-

ring data such as Social Security Numbers, zip codes, etc. Puranik (2012) developed ‘a

specialist approach’ to identify if a table column consists of either Social Security Num-

bers, zip codes, airport codes, stock tickers, phone numbers, dates or addresses. The tech-

niques used by the ‘specialists’ included regular expressions, dictionaries and machine

learning based approaches. The module was developed independently and integrated into

the framework.

3.2 Query and Rank

The Query and Rank module generates an initial set of candidate assignments for

headers, data cells and relations between headers using appropriate Linked Data sources.

The choice of the source as a KB depends on the domain of the table. Linked Data KBs such

as DBpedia and Yago (Suchanek, Kasneci, & Weikum 2007) provide excellent coverage for

general purpose topics such as places, organizations, music, movies, politics, and sports.

These can be complimented or replaced with domain specific ones; for example SNOMED

CT and UMLS can be used as a compliment or replacement in the case of medical tables.

For the rest of chapter, we use the table from Figure 1.2 as an example and DBpedia and

Yago as our reference LOD sources.

3.2.1 Generating candidates for data cells

We generate an initial set of candidate entities for every string mention in the data cells

in a table using Wikitology (Syed & Finin 2011), a hybrid KB combining unstructured in-

formation from Wikipedia with structured information from a number of sources including

17

Input: data cell string (QueryString): {Baltimore}
row values (RowData): {MD, S.C.Rawlings-Blake, 640,000}
header string (HeaderString): {City}

Query = wikiTitle: {Baltimore} (or)
redirects: {Baltimore} (or)
firstSentence: {Baltimore}, {City} (or)
types: {City} (or)
categories: {City} (or)
contents: ({Baltimore}) ˆ 4.0, {MD, S.C.Rawlings-Blake, 640,000} (or)
linkedConcepts: ({Baltimore}) ˆ 4.0, {MD, S.C.Rawlings-Blake, 640,000} (or)
propertiesValues: {MD, S.C.Rawlings-Blake, 640,000}

Output: Top “N” matching instances from KB (TopN): {Baltimore, Baltimore Ravens,
John Baltimore, ...}

FIG. 3.2. Wikitology query to generate candidate entities for data cells in a table

DBpedia and Yago. Wikitology allows queries against several fields of a Wikipedia article

including title, first sentence, infobox, content, and categories.

We formulate the Wikitology query for generating candidate entities for data cell val-

ues as follows. The data cell value string is used as the query string, along with the contents

of the column header and other row values as context in the query. The data cell string is

mapped to the title, redirects and the first sentence fields in Wikitology. The redirects field

helps in identifying right candidates in cases of misspellings and pseudo names. The col-

umn (or row) header string to which the data cell belongs is mapped to the first sentence,

types and categories fields, since the header often describes the type of instances present in

the column (or row).

The data cell string (with a Lucene query weight boost of 4.0) along with the rest of

the values in the row are mapped to contents and the linked concepts fields. Values in a

single row are likely to be correlated; hence we map the row data to the linked concept

18

field which captures correlation between Wikipedia articles. The row values (excluding

the data cell string) are also mapped to the property values field, since they can possibly

represent values of properties associated with the candidate instance. Figure 3.2 describes

the Wikitology query using data cell Baltimore from the table in Figure 1.2 as an example.

Wikitology returns a ranked list of entities for every query, along with the Wikipedia

article page length and approximate Google Page Rank for each entity. We additionally

query and obtain DBpedia and Yago classes for each entity. The query for Baltimore returns

entities such as Baltimore, Baltimore Ravens, John Baltimore along with DBpedia and

Yago classes such as City, PopulatedPlace, Place and CitiesInMaryland, GeoclassPopulat-

edPlace for Baltimore and Person and American conductors (music) for John Baltimore.

We re–rank the results returned by Wikitology using an entity ranker. Figure 3.3

shows the architecture. We train a Naive Bayes classifier that predicts how likely a candi-

date entity is to be a correct assignment for a given query string. The classifier is trained on

a set of string similarity and popularity metrics as its features, an approach adapted from

Dredze et al. (2010).

The string similarity metrics provide a syntactic comparison, whereas the popular-

ity metrics helps in cases where disambiguation is difficult due to large numbers of entities

having the same or similar names. In the latter case, the most popular entity is often the cor-

rect entity. We use the Levenshtein Distance (Levenshtein 1966) and Dice Score (Salton

& Mcgill 1986) for each query string – candidate entity pair as the string similarity fea-

tures and the candidate entity’s Wikitology index score, predicted Google Page Rank, and

Wikipedia article length as the popularity features.

For each query’s TopN candidates, the classifier generates a score indicating how likely

each entity is the correct assignment. Using this score, the entity ranker re–orders the

candidate entity set to produce a final ranked list. We add an additional N.A. (no annotation)

entity to each candidate entity set to handle cases where a data cell cannot be mapped to

19

FIG. 3.3. The entity ranker architecture

any of the existing entities in the KB.

3.2.2 Literal Constants

Tables often include columns that contain literal constants like numerical data. Literals

cannot be linked to entities from a KB; but rather they represent values of properties. The

properties themselves can be associated with other entities in the table. For example, the

values in the column Population in Figure 1.2 represent values of the property dbpedia-

owl:populationTotal which in turn is associated with entities of type dbpedia-owl:City.

Existing techniques map strings to entities in a KB using textual features (similar to

the ones described in section 3.2.1). Similarly, we create a KB encoding properties along

with the distributions of their values. Using numerical values as input, we further query

against this KB to generate a ranked list of property values for each numerical data cell.

We first describe how we generate this KB and follow it up with a description of the query

technique.

NumKB – Knowledgebase of Numbers: We capture the distribution associated

with values for datatype properties in the DBpedia ontology. We begin by identify-

ing the domains associated with each property. Although domains can be obtained

by looking up rdfs:domain, this information is not available for several properties in

DBpedia. A list of domains for every property is enumerated by obtaining the types

20

(i.e.rdf:type) associated with the subjects of the triples in which the property is a

predicate. Consider dbpedia-owl:height; the subjects for this property include dbpe-

dia:Michael Jordan, dbpedia:David Beckham, dbpedia:Brooklyn Bridge and so on. The

types associated with these instances, dbpedia-owl:Athlete, dbpedia-owl:SoccerPlayer,

dbpedia-owl:ArchitecturalStructure, become the domains for the property. We rank the

domains based on the number of the instance–property pairs, assigning a domainRank

of 1 to the one with the highest number, 2 to the next and so on. We use these ranks to

compute a domain score as follows: 1/
√
domainRank. Domain scores help us identify

the most popular domains for every property.

We create a property–domain duplet by pairing a property with each of its domain (i.e.

height–SoccerPlayer, height–ArchitecturalStructure). We further obtain a list of property

values and generate distributional features for each duplet. We sort and ignore the tail (2.5%

at each end) to create a subset of the original values. We compute mean (µ) and standard

deviation (σ) for the subset and use them to create multiple ranges for each duplet. Ranges

are created based on the 68–95–99.7 rule or the three sigma rule. The first range consists

of values between µ− σ and µ + σ; second range between µ− 2σ and µ + 2σ, excluding

values from the first range and so on until all the values in the subset are exhausted. We

also record the % of the total values present in each range.

Generating candidate properties for literals: We query against NumKB to gener-

ate candidate properties for literal values (i.e. numerical data) in a column. We use the nu-

merical data cell value along with the column header string as query parameters. NumKB

returns a list of property–domain duplet ranges whose property name match the column

header string or whose range includes the data cell value. We further re–rank the results

using an equally weighted combination of domain score and the % of total values that be-

long to the range, thus returning a ranked list of properties along with domain information

21

for every numerical data cell value.

3.2.3 Generating candidates for header cells

The initial candidate classes for column (or row) headers are generated from its data

cell values. Each data cell is associated with a set of candidate entities; each entity is also

associated with a set of classes. For example, we know the classes City and PopulatedPlace

are associated with the entity Baltimore. The candidate classes for a header are generated by

taking the union of all the classes associated with the candidate entities for all the data cells.

For example, the candidate classes for the column header City include City, SportTeam,

Person, PopulatedPlace etc. We generate two separate candidate sets – one for classes

from the DBpedia ontology and another from the Yago ontology.

3.2.4 Generating candidates for relation between header cells

Identifying relations between header cells is an important part of table understanding

and is modeled by finding appropriate predicates (or properties) from the reference KBs.

We generate candidate relations for every pair of column headers in the table based on the

entities associated with respective data cell value pairs in those columns. Each data cell

has a set of candidate entities, which in turn may be linked to other entities in the reference

KB via a set of properties. For example, the DBpedia entities Baltimore and Maryland are

linked via the properties isPartOf and subdivisionName.

We use these links to generate candidate relations. For a pair of data cells in the same

row between two columns, the candidate entity sets for both cells are obtained. For each

possible pairing between the entities in both the candidate sets, we query DBpedia and

Yago to obtain relations in both direction, i.e., entityrow1 someproperty1 entityrow2 and

entityrow2 someproperty2 entityrow1. This gives us a candidate set between pairs of data

cell values (e.g., {someproperty1, someproperty2, someproperty3 ...}). The candidate set

22

of relations for the entire column pair is generated by taking a union of the set of candidate

relations between individual pairs of data cell values. Thus for example, the candidate

relations between columns City and State include isPartOf, capitalCity, bornIn etc. We

generate two sets of candidate relations, one from the DBpedia ontology and other from

the Yago ontology.

3.3 Joint Inference

Once the initial sets of candidate assignments are generated, the joint inference mod-

ule assigns values to headers and data cells, and identifies relation between the headers. In

our previous work (Mulwad 2010; Mulwad et al. 2010), we explored a sequential approach

which mapped column headers to classes, mapped data cells to entities using the predicted

class as additional knowledge, and finally used both the class and entity assignments to

map every pair of columns to a relation from the given ontology. However, this sequential

approach led to percolation of error through the stages. An incorrect assignment for the

header or data cell would lead to further erroneous assignments. From our previous dis-

cussion (section 1.2), it is also evident that rich fine grained semantics can be inferred by

capturing correlations and jointly inferring semantics of the sub parts of a table.

Probabilistic Graphical Models (PGMs) (Koller & Friedman 2009) provide a power-

ful and convenient framework for capturing correlation between variables in a system to

compute joint probability over all the variables or a joint assignment of values to all the

variables. As the name suggests, the variables are represented as nodes in a graph, with

the edges capturing the interaction between them. Constructing a graphical model repre-

sentation typically involves (i) identifying variables in the system (ii) choosing a graphical

model representation and capturing the interaction between the variables and (iii) choosing

an appropriate technique to perform inference over the graph. We discuss each of these

23

steps in the context of constructing a graphical model for tables, which is the core of the

joint inference module.

3.3.1 Variables

The headers, data cells, and relations between headers are represented as nodes (or

variables) in a graphical model representation of a table. Each node in associated with a set

of values, which is generated as described in section 3.2. Each data cell is initially mapped

to the top ranked entity from its candidate set.

3.3.2 Graphical Representation

There are, broadly speaking, three different techniques for graphical representations

in PGMs – directed models (Bayesian network), undirected models (Markov network) and

partially directed models. We choose the undirected Markov network model to represent

the interactions in a table. In Markov networks, undirected edges indicate symmetrical

interaction between the nodes. In the context of tables, an undirected model is a good fit

since, as our following discussion will indicate, interaction between the headers, data cell

values and relations between headers are symmetrical in nature.

We capture various interactions between sub parts of a table. In a typical well–formed

table, each column contains data of a single syntactic type (e.g., strings) that represent

entities or values of a common semantic type (e.g., people). For example, the column

header City represents the semantic type of values in the column and Baltimore, Boston,

and Philadelphia are instances of that type. Thus, knowing the type of the column header,

influences the decision of the assignment of entities to the data cells in that column and

vice-versa. To capture this interaction, we insert an edge between the column header vari-

able and each of the data cell variables in that column. Note that this interaction is symmet-

rical; i.e. the entities assigned to the data cells equally influence the column header class

24

FIG. 3.4. Graph representing interactions between the variables in a simple table. Only
some of the connections are shown to keep the figure simple and easy to understand.

as much as the class influences the entity assignments.

Data cells across a row are also related. Consider a data cell with a value Beetle; it

might refer to an insect or a car. Suppose an adjacent cell has a string value Red, which is a

reference to a color, and another cell in the same row has the string value Gasoline, which

is a type of fuel source. As a collection, the data cell values suggest that the row represents

values of a car rather than an insect. Thus, the interpretation of each data cell is influenced

by the interpretation of others in its row. This correlation when considered between pairs of

data cell values between two columns can also be used to identify relations between table

columns. To capture this context, we insert edges between all the table cells in a given row.

Similar interactions exist between the headers. By itself, the column header City

suggests that columns cells might refer to city instances. However, if the other columns

appear to refer to basketball players, coaches and basketball divisions, we can infer that

the cities column refers to a team itself. This is an example of metonymy, in which an

entity (i.e., the team) is referenced by one of its significant properties (i.e., the location of

25

FIG. 3.5. Parameterized Factor Graph for a table.

its base). This interaction is captured by inserting edges between column header nodes.

Figure 3.4 shows interactions between the various nodes; column headers are represented

by Ci where i ∈ {1,2,3} and data cells are represented by Rij where i, j ∈ {1,2,3}.

3.3.3 Inference

To perform any meaningful inference over the graph, it needs to be parameterized.

Markov networks are parameterized using factor nodes. Figure 3.5 shows the parame-

terized factor graph for a table. The graph’s square nodes represent what are known as

‘factor nodes’, which compute and capture affinity or agreement between interacting vari-

able nodes. The factor node ψ3 computes the agreement between the class assigned to

column header and entities linked to the data cells in that column; ψ4 between the entities

linked to the data cells for a given pair of columns and ψ5 between classes assigned to the

column headers. Typical inference techniques such as Message Passing or Belief Propa-

gation group all nodes that are correlated using common nodes between the groups as a

26

Algorithm 1 Semantic Message Passing
1: Let V ars be the set of variable nodes and Factors be the set of factor nodes in the

graph.
2: for all v in V ars do
3: Let F ′ be the set of factor nodes v is connected to.
4: for all f ′ in F ′ do
5: v sends its current assignment (value) to f ′.
6: end for
7: end for
8: for all f in Factors do
9: Compute agreement between the received assignments.

10: Identify variable nodes that may have sent an incorrect assignment.
11: Send a NO-CHANGE message to all nodes that are in agreement, as determined by f .
12: Send CHANGE message and semantics of expected assignment to all the nodes that

have an incorrect assignment, as determined by f .
13: end for
14: for all v in V ars do
15: Let Messages be the set of messages received by v.
16: If all m ∈Messages are NO-CHANGE, do nothing.
17: If few or all m ∈Messages are CHANGE, update the current assignment by choos-

ing a new one from the candidate set which satisfies the semantics sent by the factor
nodes.

18: end for
19: Repeat till convergence.

mode of communication or for passing messages between groups. While we retain the idea

of grouping correlated nodes in a factor, we modify existing techniques to incorporate the

semantics and background knowledge from Linked Data into the inference process. We

propose and implement a new technique, Semantic Message Passing (SMP), an algorithm

conceptually similar to the idea of Message Passing/Belief Propagation, but one that factors

in semantics into messages.

Algorithm 1 gives a high level overview of Semantic Message Passing. The variable

nodes in the graph send their current assignment to all the connected factor nodes. For

example, R11 sends its current assignment to the factor nodes ψ3 and ψ4 (see Figure 3.5).

27

Once the factor nodes receive values from all connected variable nodes, they compute

agreement between the values. Thus, in one of the iterations, ψ3 might receive the class

City and entity assignments Baltimore Ravens, Philadelphia, New York and Boston. The

goal of ψ3 is to determine if all the assignments agree and, if not, identify the outliers.

In this case ψ3 identifies Baltimore Ravens as an outlier and sends a CHANGE message

to R11, together with its semantic preferences for a new, alternate assignment that R11

should choose. In our example, ψ3 informs R11 of its preference for an update to an entity

of type City. To the rest of the variable nodes, ψ3 sends a NO-CHANGE message. This

process is performed by all factor nodes. Once a variable node receives messages from all

of its connected factor nodes, it decides whether to update its assignment.

If a variable node receives a message of NO-CHANGE from all its connected factor

nodes, it indicates that the current assignment is in agreement with others assignments. If

it receives a CHANGE message from some or all factor nodes, it updates its current assign-

ment, taking into consideration the semantic preferences provided by the factor nodes. The

entire process repeats until convergence, i.e., agreement over the entire graph is achieved.

A hard convergence metric could be to repeat the process until no variable node receives a

CHANGE message.

Our Semantic Message Passing algorithm, thus, not only detects individual variable

nodes that have incorrect assignments, but provides the nodes with guidance on choosing

a new value, thus incorporating semantics into messages. This capability requires defining

semantically-aware factor nodes that can perform such functions. We describe and imple-

ment two such semantically-aware factor nodes, ψ3 and ψ4. We also describe the process

by which a variable node updates its values based on the messages received and our metric

for convergence in this graph.

ψ3 – Column header and data cell value agreement function. Algorithm 2 gives an

28

Algorithm 2 ψ3 – Column Header – Row Values Agreement
1: Let Y ago and DBp be the column header Ci’s candidate class sets from Yago & DB-

pedia respectively and RowV als be the set of data cell values in Ci.
2: for all r in RowV als do
3: Let e be the currently assigned entity to r and ty, td be the set of Yago and DBpedia

classes for e.
4: Majority Vote Score: For each class in Y ago, increment the score by 1 if it is present

in ty. Similarly, using td, increment the scores for classes in DBp.
5: end for
6: for all y in Y ago do
7: Get the “granularity” score for y.
8: end for
9: Order the classes in Y ago in descending, first by vote scores and then by granularity

scores. Let topy be the Yago class with maximum vote score and best “granularity
score”.

10: Order the classes in DBp in descending by vote scores. The class at the top is the one
with maximum votes. Let this class be topd.

11: Let topClassScorey and topClassScored be scores for topy and topd respectively,
where topClassScore = numberOfV otes/numberOfRows

12: If the scores are below threshold, send LOW-CONFIDENCE and NO-CHANGE mes-
sages to all the data cell values in RowV als. Update Ci’s class annotations to NO-
ANNOTATION.

13: If the scores are above threshold, update Ci’s class annotations to topy and topd. Send
appropriate CHANGE or NO-CHANGE messages to data cell values in RowV als as
shown next.

14: for all r in RowV als do
15: Let e be the currently assigned entity to r and ty, td be the set of Yago and DBpedia

classes for e.
16: If ty, td for e, do not contain either topy or topd, send CHANGE message. Send topy,

topd as the classes for the entity that r should update to; else send the NO-CHANGE

message.
17: end for

29

overview of the column header and data cell value agreement function. The factor node

ψ3 computes agreement between the class assigned to the column and the entities assigned

to its cell values i.e. agreement between the column assigned type City and candidate cell

assignments Baltimore Ravens, Philadelphia, New York and Boston.

Recall that at the end of the Query and Rank phase, every data cell value has an initial

entity assignment and every column header has a set of candidate classes. Every column

header Ci maintains two separate sets of candidate classes – one from the Yago ontology

and other from the DBpedia ontology. Each cell value in a column is mapped to an initial

entity ewhich is also associated with a set of Yago and DBpedia classes. The initial entities

assigned to a column’s cell values perform a majority vote over the Yago and DBpedia class

sets to pick a top class from each set. Each entity votes and increments the score of a class

from the candidate set by 1 if it is also present in the class set associated with e.

The Yago and DBpedia candidate class sets are ordered by votes. ψ3 computes the top

score for each of the top classes. The top class score is equal to the number of votes for

the top class divided by the number of rows in the column. Ideally, we want to pick more

specific classes (e.g., City) over general classes (e.g., Place) when making an assignment to

the column headers. The granularity score is computed by simply dividing the number of

instances that belong to the class by the total number of instances in the KB and subtracting

the result from one. This assigns a higher score to specific classes and a lower score to

general classes. If multiple Yago classes get voted as the top class, ψ3 uses the granularity

score as tie-breaker, choosing the class with a higher score.

Once the top class(es) are identified and their scores computed, ψ3 determines if they

can be used in the process of identifying cell values with incorrect assignments. It checks

whether the top scores for the classes are below a certain threshold. If so, it implies lower

confidence and low agreement between the entities assigned to the data cell values and

that the top classes cannot be relied upon. In such scenarios, ψ3 sends a message of LOW-

30

CONFIDENCE and NO-CHANGE to the variable nodes and also maps the column header

class to NO-ANNOTATION.

If scores for both the top Yago and DBpedia classes are above the threshold, ψ3 assigns

both the classes to the column header and uses them in the process of identifying cell values

with incorrect assignments. However if either class is below threshold, it checks if the

classes are aligned. We define the two classes to be aligned if either the DBpedia class is

a subclass of the Yago class or vice-versa. The subclass relation between the DBpedia and

Yago classes is obtained via the PARIS project (Suchanek, Abiteboul, & Senellart 2011).

If the classes are aligned, ψ3 picks both the classes as the top Yago and top DBpedia

assignments for the column header respectively. If the classes are not aligned, ψ3 discards

the top class which has a top class score below the threshold. ψ3 further uses the top classes

to identify variable nodes with incorrect assignments.

All variable nodes whose currently assigned entity e include the top class(es) in their

class set are sent a message of NO-CHANGE. The variable nodes whose current entity as-

signment diagree with the top class(es) are sent a CHANGE message. These variable nodes

are also provided with the top class(es) as semantic preferences for their next entity assign-

ment. ψ3 also sends the top class scores as a confidence score to all the variable nodes.

ψ4 – Relations between pair of columns. Algorithm 3 gives an overview of the function

that identifies relations between pairs of columns in a table. The goal of the factor node ψ4

is to discover if a relation exists between a pair of columns, say City and State, and, if so,

to use it as evidence to uncover any incorrect entity assignments in the columns’ cells. At

the end of the Query and Rank phase, every data cell value has an initial entity assignment

e and the pair of column headers has a set of candidate relations. The initial assigned pair

of entities in the two columns performs majority voting to select the best possible relation

from the candidate relation set. Each pair of entities in every row between the two columns

31

Algorithm 3 ψ4 – Relation between pair of columns
1: Let Y agoCandidateRels and DBpCandidateRels be the set of Yago and DBpedia

candidate relations between the columns ci and cj .
2: Let numberOfRows be the total number of rows in the table.
3: for k = 1 to numberOfRows do
4: Let ri,k and rj,k be the data cell values from columns i and j at row k.
5: Let ei,k, ej,k be the currently assigned entities to ri,k and rj,k.
6: for all rel in Y agoCandidateRels do
7: Majority Voting : If < ei,k > < rel > < ej,k > or < ej,k > < rel > < ei,k > is

true, increment the score of rel by 1
8: end for
9: Repeat the same majority voting process for candidate relations from

DBpCandidateRels
10: end for
11: Sort Y agoCandidateRels and DBpCandidateRels in descending order. The re-

lations at the top of the sets are the ones with maximum votes. Let topRely and
topReld be the top Yago and DBpedia relations respectively. Let topRelScorey
and topRelScored be scores for topRely and topReld, where topRelScore =
numberOfV otes / numberOfRows

12: if topRelScorey and topRelScored < relThreshold then
13: Send message LOW-CONFIDENCE and NO-CHANGE to the data cell values in

columns ci and cj .
14: Update relation annotation to NO-ANNOTATION.
15: end if
16: if topRelScorey >= relThreshold then
17: Update the top Yago relation between the columns ci and cj to topRely.
18: end if
19: Similarly update the top DBpedia relation between columns ci and cj .
20: for k = 1 to numberOfRows do
21: Let ei,k, ej,k be the currently assigned entities for ri,k and rj,k.
22: If < ei,k > < topRel > < ej,k > and < ej,k > < topRel > < ei,k > is false,

send CHANGE message to the data cell value. Send top relation the data cell entity
assignment should participate in. (topRel can be either topRely or topReld)

23: Else, send NO-CHANGE message to both ri,k and rj,k.
24: Send topRelScore as confidence score associated with the message.
25: end for

32

votes for a relation rel. The candidate relation rel’s score is incremented by 1 if < ei,k >

< rel > < ej,k > or < ej,k > < rel > < ei,k > is true (here i, j refer to two columns

and k refers to entities assigned to data cells from the k th row between the two columns).

Factor node ψ4 queries Yago and DBpedia separately to check if the relations exists. ψ4

also maintains two separate sets of candidate relations (one for Yago and the other for

DBpedia), ordered by votes.

ψ4 further computes topRelScore for both the top Yago and DBpedia relations by di-

viding the number of votes for the top relation with the number of cells in the column. If the

score is below a certain threshold, the relations are discarded. ψ4 sends LOW-CONFIDENCE

and NO-CHANGE messages to all of the data cell values in both columns and updates the

relation between the columns to NO-ANNOTATION. If the scores are above threshold, the

top Yago and DBpedia relations between the two columns are updated. ψ4 then revisits

the pair of entities from the columns to discover possible incorrect assignments. For every

currently assigned entity e in the two columns, ψ4 checks if e appears as a subject or object

of the top relations (depending upon the relation direction; either Yago or DBpedia). If e

satisfies this constraint, a NO-CHANGE message is sent to the data cell; a CHANGE message

is sent otherwise along with the relation information as characteristics the data cell should

use for picking the next entity assignment. topRelScore is sent as confidence score asso-

ciated with the message to all the data cells.

Once all the semantically–aware factor nodes send their messages variable nodes pick

a new assignment and the entire process repeats. We next describe the process of updating

the an assignment.

Updating entity annotations for row cell value variables. Every data cell r in the table

receives messages from two types of factor nodes – column header factor nodes (ψ3) and

33

relation factor nodes (ψ4). While r will receive only one message from the column header

(since r belongs to only one column), it might receive multiple messages from relation

factor nodes if its column is related to several columns in the table. For example, the

column City is associated with columns State, Mayor and Population. r can also receive

conflicting messages – some factor nodes might send a CHANGE message, while others a

NO-CHANGE message.

If all of the messages received by r are NO-CHANGE, r does not update. If all mes-

sages received by r are CHANGE, it decides to update its assignment. In the case of con-

flicting messages, r uses the confidence score sent by each factor node along with the mes-

sage to compute the average score associated with the CHANGE messages and compares

it against the average score associated with the NO-CHANGE messages. If the average

CHANGE message score is higher, r updates its current assignment, otherwise it does not.

When r chooses to update its current assignment, it picks a new assignment based on

the semantic preferences sent by the factor nodes. For example, the data cell value in the

first column of the table in Figure 1.2 might receive messages to update to an entity which

will have a type City and is the subject of relations isPartOf and hasMayor. The row cell

value r iterates through its ranked list of candidate entity set and picks the next best entity

satisfying all the semantic preferences specified in the message. In cases where r cannot

find an entity that satisfies all of the constraints, it orders them based on the confidence

scores associated with the respective messages and attempts to pick an entity assignment

that satisfies the highest rank combination. For example, if there were three preferences,

ranked 1, 2 and 3, r will first attempt to find an entity that satisfies[1,2,3] followed by [1,2]

; [1,3]; [2,3]; [1]; [2] and so on. If r is unable to find an entity that satisfies any of the

preferences, then it updates its current assignment to NO-ANNOTATION.

An exception to this process occurs when the candidate entities for the data cell all

have low confidence (i.e., below the threshold (index threshold)). This is typically the

34

case if the entity is absent from the knowledge base. In such cases, the algorithm maps

the data cell value to NO-ANNOTATION rather than linking to any candidate. If the column

header is mapped to NO-ANNOTATION, the row cell values retain the top ranked entity as-

signment as suggested by the entity ranker.

Halting condition. Once the data cell values update and send their new assignments to

the factor nodes, the entire process repeats. Ideally, the process should be repeated until

the best possible assignments are achieved; i.e., repeat until no variable node receives a

CHANGE message or none of the variable nodes select a new assignment. Practically, this

a hard convergence metric and it is often not achieved. We define an alternate convergence

metric. At the end of every iteration, Semantic Message Passing, checks the number of

variables that have received a CHANGE message. If the number of variables is lower than

the threshold required to update the column header or relation annotation, the process is

stopped, else the process continues. In cases where the convergence metric fails, the infer-

ence process is stopped after ten iterations. The assignments at the end of the final iteration

are chosen as final values.

3.4 RDF Linked Data

We develop the TABLES ontology (Figure 3.6) to model and represent a table and its

inferred semantics as a set of RDF Linked Data triples. Every table cell (header and data

cell) is represented via an instance of one of the classes in the ontology. Header cells are

represented as instances of either the ColumnHeader or RowHeader class; data cells are

represented as instances of the DataCell class.

The raw string value of every table cell is captured via the cellLabel property. The

domain of this property is the class TableCell (which is the super class of HeaderCell and

35

FIG. 3.6. Visualization of the Tables ontology. The prefix ‘xsd’ is for XML schema, ‘rdfs’
is for the RDF Schema, ‘owl’ is for the OWL Ontology and ‘rdf’ is for the RDF vocabulary.

DataCell) and its range is string. We also capture the original position of the table cell via

the columnIndex and rowIndex properties allowing the table to be reconstructed. Instances

of the ColumnHeader class are associated with the columnIndex property; instances of the

RowHeader are associated with rowIndex property and instances of DataCell with both

the columnIndex and rowIndex properties. Both properties have the domain TableCell and

range as integer. Every header cell is mapped to an appropriate class from an ontology; this

class is captured by the valueType property. Entity assignments for data cells are captured

using the entity property.

We create an additional class TableRelation to capture inferred relations between

header cells. The properties relFromColumn and relToColumn capture the header cells

participating in the relation. The domain for both properties is TableRelation and the range

is the class HeaderCell (which is the super class of both ColumnHeader and RowHeader).

The property relLabel captures the inferred relation. Figure 3.7 shows RDF triples for a

subset of the table from Figure 1.2.

36

FIG. 3.7. Subset of RDF for data in Figure 1.2. The prefixes ‘tab’ is for our Tables
Ontology; ‘dbpedia’ and ‘dbpedia-owl’ is for DBpedia ontology and ‘xsd’ is for XML

schema.

3.5 Human-in-the-loop

Although our goal is to develop an automated system achieving a high level of accu-

racy, we recognize that practical systems will benefit from or even require human input. We

discuss three possible models of human interaction with the framework and how TABEL

incorporates user feedback into the inference process. A user can interact before the infer-

ence begins, during the inference process and after the inference process. Figure 3.1 shows

user interaction after the inference is complete.

User interaction before inference: There are two different scenarios of user feedback

before the inference process. In the first scenario, user feedback is during the preprocessing

phase and in the form of highlighting relevant parts of the table. User could mark a column

in the table to be ignored (for example, a column that includes serial numbers 1–10 used

37

to order elements) if no relevant semantics can be inferred. In cases of large tables, users

could sample and reduce the size by selecting smaller numbers of rows or columns which

TABEL should use during the inference process. User feedback during the preprocessing

phase will help the framework focus on relevant sections of the table and thus perform a

better job at inferring its semantics.

The second scenario of user feedback is after the Query and Rank phase, before the

Joint Inference module. A user can provide initial assignments for header and data cells

and relations between headers by choosing a value from the ranked candidate set. If the

value is missing in the candidate set, an interface allows the user to search the KB and

add the new desired value to the set. The user assignments are treated as true values by

TABEL during the joint inference process. These assignments are not changed; all other

assignments are selected such that they are compatible to the user assignments.

User assignment for a column header impacts the behavior of factor node ψ3. For

example, user could assign the class dbpedia-owl:City to the first column from table in

Figure 1.2. The joint inference module will make all other assignments compatible to

dbpedia-owl:City. Before Semantic Message Passing starts, data cell variables nodes in the

graph update their assignment to the highest ranked entity of the user assigned class from

the candidate set. In this case, the variable nodes will choose an entity of type dbpedia-

owl:City.

During Semantic Message Passing, data cell variable nodes may update their assign-

ment based on messages received from the other factor node ψ4. However higher preference

will be given to the user assigned class when choosing a new entity assignment. For ex-

ample, ψ4 might send the relation dbpedia-owl:isPartOf as a semantic preference for a new

entity assignment to the variable node Batlimore. The variable node will attempt to pick

a new entity assignment that satisfies both dbpedia-owl:City and dbpedia-owl:isPartOf;

dropping the latter as constraint if it does not find such a entity. That is, the variable node

38

will always stick to an assignment whose type is the same as a user assigned class.

User assignment for relations between header cells impacts the behavior of the factor

node ψ4. Consider the case where a user assigns the relation dbpedia-owl:isPartOf between

the columns City and State. As in the case of user assigned column header classes, the

data cell variable nodes of both the columns will update their assignment to the highest

ranked entity which participates in the user assigned relation (in our example it will be

dbpedia-owl:isPartOf). During Semantic Message Passing variable nodes may update their

assignment based on messages received from the column header factor node ψ3. However,

in this case preference will be given to relation semantics over the column header class

when the variable node selects a new entity assignment. Variable nodes will always select

an entity that satisfies the user specified relation constraint.

User assignment for a data cell impacts the behavior of both ψ3 and ψ4. For example,

the user might map the data cell Seattle to the entity dbpedia:Seattle. The respective candi-

date header class set and relation set are reduced to include only classes and relations of the

user assigned entity. In cases where user assigns entities to multiple data cells, the classes

and relation from those entities are merged to produce a reduced size candidate class and

relation set. The rest of the Semantic Message Passing process remains the same; albeit

now operating on a smaller size candidate set.

A user is not restricted to a single type of assignment; i.e., the user might simultane-

ously make assignments for column header, data cells and relation between columns. The

behavior of the factor nodes and variable nodes is impacted based on these assignments.

There are four possible combinations for user assignments – (i) class and entity assignment,

(ii) relation and entity assignment, (iii) class and relation assignment and (iv) class, relation

and entity assignment.

39

(i) Class and Entity assignment: A user simultaneously assigns a class to a column header

and entity to a data cell in the same column. For example, a user might map the column

header City to dbpedia-owl:City and the data cell Seattle to dbpedia:Seattle. The behav-

ior of the factor node ψ3 is the same as in the case of a user assigned class (as described

above). Data cells in the column will always select an entity of the user assigned class. The

behavior of ψ4 is impacted by the user assigned entity. As described above, the size of the

candidate relation set is reduced for all pair of columns in which the entity is present.

(ii) Relation and Entity assignment: This scenario is similar to (i); the user assigns a re-

lation between a pair of columns. A user might specify the relation dbpedia-owl:isPartOf

between the columns City and State along with the entity assignment dbpedia-Seattle for

the data cell Seattle. The behavior of factor node ψ4 is the same as in the case of user

assigned relation and the candidate class set for the column in which the entity is assigned

is reduced as described above.

(iii) Class and Relation assignment: The user assigns a class and a relation to the same

column. The behavior for ψ3 and ψ4 is the same as described above in the cases of user

assigned class and relation respectively. Data cells will select an entity assignment that

satisfies both the semantic class and relation constraints.

(iv) Class, Relation and Entity assignment: After the class and relation assignment, an

entity assignment in the same column does not offer additional benefits to the inference

process. The behavior of the factor and data cell variable nodes is the same as in (iii).

User interaction during inference: User interaction during the inference process not only

helps the user guide the process, but also provides TABEL an opportunity to request spe-

40

cific inputs from the user. At the end of every iteration during Semantic Message Passing,

the framework highlights assignments for headers, data cells and relations between head-

ers with low confidence. It uses threshold scores from the factor nodes to determine low

confidence assignments. For example, TABEL might fail to infer the class to be assigned

to the column Mayor and ask the user to select an appropriate class. Another scenario

where the framework requests user input is in the case of stubborn variable nodes. TABEL

highlights variable nodes that changes it assignment in every iteration, never settling down

on a value. Values assigned by the user during inference process are also treated as true

values. Besides correcting assignments highlighted by the framework, users can update

assignments for other variable nodes, in the same manner as they would have before the

inference process began. Once the user updates assignments, Semantic Message Passing

alters its behavior for the remaining iterations as described above. The user also has the

option of halting the inference process, if he/she is satisfied with the inferred semantics.

User interaction after inference: Finally, there is the option of user’s interaction with the

framework after the inference process is complete. At this point, the user can correct any

inaccurate assignments by selecting a new value from the respective candidate set or new

value by directly searching the KB. The RDF Linked Data representation is accordingly

updated.

Chapter 4

EVALUATION

We begin by describing the datasets and the experimental setup used for evaluation

followed by sections on column header, relation and data cell annotation quality. We end

the chapter by briefly describing the impact of user feedback (human in the loop) on our

framework.

4.1 Dataset

We use a dataset of tables obtained from the Web and Wikipedia shared by Limaye,

Sarawagi, & Chakrabarti (2010). The original dataset consists of four distinct subsets as

shown in Figure 4.1. The Wiki Manual subset consists of non infobox tables extracted

from Wikipedia articles. The column headers, data cells and relations between columns

Dataset Col & Rel Cell Value Avg.[Col,Row]
Wiki Manual 25 39 [4,35]
Web Manual 150 371 [2,36]
Web Relation 28 – [4,67]

Wiki Link – 80 [3,16]

FIG. 4.1. Number of tables and the average number of columns (col) and rows in the sets
used for column header, cell value and relation annotation. Average is over the number of
tables used in cell value annotation.

41

42

are manually annotated with class, entity and relations using the Yago ontology. The

Web Manual subset includes tables extracted from web pages; column headers, data cells

and relations between columns are manually annotated using the Yago ontology. Limaye,

Sarawagi, & Chakrabarti point out that header and data cell text tends to be more noisy in

this subset.

The Web Relation subset includes tables extracted from web pages, but only rela-

tions between table columns are annotated with relations from the Yago ontology. The

Wiki Link subset includes non infobox tables extracted from Wikipedia articles. Tables in

which more than 90% of the data cells were linked to a Wikipedia article were included.

The links are used as ground truth for data cell value annotation; column header and rela-

tions between column headers were not annotated.

While the original tables include ground truth annotations in the form of Yago classes

and properties, we could not use these assessments for column headers and table relations

because we use data from both the DBpedia and Yago ontologies. We retain ground truth

for data cell annotations and develop our gold standard for column header classes and

header cell relations with the help of human evaluators. We begin by running TABEL with

lower threshold values in factor nodes ψ3 and ψ4, generating a large number of possible

column header classes and relations between column headers. Any class or relation that

received at least 5% of the votes was included in the evaluator’s set (i.e. the threshold

values in ψ3 and ψ4 were set to 0.05).

We presented these candidates along with the raw tables to human evaluators, who

marked each class and relation as vital, okay or incorrect, a strategy similar to the one

adopted by Venetis et al. (2011). For example, annotators could mark the class dbpedia-

owl:City as vital, dbpedia-owl:PopulatedPlace as okay and dbpedia-owl:Person as incor-

rect for the column City from the table in Figure 1.2. Thus each column class and relation

can have multiple vital and okay labels as per evaluator judgment. The task of generat-

43

ing gold standard evaluation was split between eight human evaluators who were graduate

students in Computer Science at the University of Maryland, Baltimore County.

Figure 4.1 gives a summary of the tables used in our experiments. We evaluated

column header and relation annotation over 203 tables and data cell annotation over 490

tables. Figure 4.1 also reports the average size of the tables in each of the subsets.

4.2 Experimental Setup

For the evaluation that follows, TABEL was initialized with the following values: for

every data cell we chose the top 25 candidate entities from the entity ranker; the column

header top score threshold used by ψ3 and the relation top score threshold used by ψ4 were

set to 0.5; index threshold used by a data cell to determine low confidence entities was set

to 10. The number of joint inference model iterations is set to 5. For every iteration after

the 5th, the halting condition decides whether the inference process should continue or halt.

If the halting condition fails, the inference process is hard stopped at the end of the 10th

iteration.

4.3 Column Header Annotations

We use TABEL to generate a ranked list of at most ten class annotations for every

column, with NO-ANNOTATION as the single value if no appropriate class was found. We

compared the set of system generated classes to those obtained from human evaluators. We

first measure the quality of predicted class labels by calculating the fraction of vital and

okay class labels at rank 1.

More than 78% of the top ranked class labels (from the DBpedia ontology) for

Wiki Manual, Web Manual and Web Relation are relevant labels, i.e., either vital or okay

(see Figure 4.2). A further look at the distribution between vital and okay labels indicate a

44

FIG. 4.2. Percentage of vital and okay DBpedia class labels at rank 1.

FIG. 4.3. Percentage of relevant class labels at ranks 1–10.

45

FIG. 4.4. Percentage of relevant class labels at ranks 1–10.

higher percentage of vital labels for Wiki Manual and Web Manual with 55.90% and 60%

respectively. The distribution is skewed in favor of okay for tables in the Web Relation

set due to combination of a larger number of rows in those tables coupled with missing

information in KBs leading to a lack of higher agreement for vital class labels.

Figure 4.3 shows the fraction of relevant class labels at different ranks. The majority

of the relevant labels appear in the top five positions. Approximately 56% of the columns

have two or more relevant labels in the ground truth in the Web Relation dataset, resulting

in a higher percentage of relevant labels at ranks 2 and 3.

We also compute precision and recall at each k between 1 to 10. For precision, we

assign a score of 1 for every vital class and 0.5 for every okay class identified by the

framework. For recall, we assign 1 for every vital and okay class identified. This evaluation

scheme is similar to the one used by Venetis et al. (2011). Figure 4.4 shows the annotation

results for class labels at rank 1 across three different sets. A significant percentage of the

46

FIG. 4.5. Precision and recall for class labels at ranks 1–10.

columns had two or more expected relevant labels, which explains the lower recall and

F–score at rank 1 for all the three sets. Figure 4.5 further confirms this. As expected,

recall rapidly increases with k, stabilizing at k = 5, since most of the relevant labels appear

between ranks 1 and 5.

A direct comparison between our framework and related work (Limaye, Sarawagi, &

Chakrabarti 2010; Venetis et al. 2011) is not possible since we use a subset of the tables

used in their evaluations and due to the difference in ground truth as pointed out in Section

4.1. Our F–score is measured over classes from the DBpedia ontology, while the others

report over the Yago ontology. The idea behind the following comparison is to help readers

get a perspective of our performance.

Our F–scores for Web Manual (0.57) and Wiki Manual (0.60) are better than the pre-

viously reported scores of 0.43 and 0.56 in (Limaye, Sarawagi, & Chakrabarti 2010). We

fare slightly poorer for both datasets against scores of 0.65 and 0.67 as reported in (Venetis

47

FIG. 4.6. Quality of relations at rank 1. Dataset names followed by a dbp are results for
DBpedia relations; whereas the ones followed by yago are for Yago relations.

et al. 2011). The original ground annotations typically have one expected class for every

column header leading to better recall at rank 1. Moreover, the system from Venetis et al.

(2011) does not focus on entity linking. It predicts classes for column headers and relations

between the “primary column” (e.g., a key) and other columns in the table independently.

Our framework, in contrast, attempts to jointly map column header, cell values, relation

between columns to appropriate assignments which in certain cases can lead to incorrect

assignments.

4.4 Relation Annotations

TABEL also generates a set of top ten relation annotations for every pairs of column

in a table with NO-ANNOTATION as the top assignment if it failed to find an appropriate

relation. Our framework generated two separate sets of relations – one from the DBpe-

48

dia ontology and another from Yago. We compared them against the DBpedia and Yago

relations obtained from human evaluators.

The percentage of relevant relations (i.e., vital and okay) at rank 1 vary with both the

dataset as well as the ontology (see Figure 4.6). More than 50% of relations at rank 1, both

from DBpedia and Yago, for Web Relation and Wiki Manual are vital relations. TABEL

performs poorly on the Web Manual dataset with only 34% of vital labels at rank 1. A

lack of agreement between the entities in column pairs is a major reason for these average

results. For more than 64% of column pairs, for all the datasets and both the ontologies,

TABEL predicted NO-ANNOTATION at rank 1. The lack of agreement can also be attributed

to incorrect entity assignments to the data cell values. Entity linking evaluation shows

better results for the the Wiki Manual dataset as compared to the Web Manual dataset.

A similar trend is reflected in relation annotation evaluation with results for Wiki Manual

being better than Web Manual. Finally, missing relations in KBs (which is more common

than missing classes) also contributes to the average results.

Figure 4.7 shows the distribution of relevant relations at different ranks. The majority

of them appear between ranks 1 and 3. While TABEL performs poorly in predicting a rele-

vant relation at rank 1 for the Web Manual dataset, it is compensated by a larger percentage

of relevant relations appearing at ranks 2 and 3.

We also compute precision, recall and F–score as described in section 4.3. Figure

4.8 presents the results for relations at rank 1. Besides errors in predicting relevant labels

at rank 1, lower recall and f–scores can be attributed to the larger size of the expected

relation set. Human evaluators identified at least two relevant relations for most column

pairs. Web Manual yago had the least such column pairs with 2.3% having two relevant

relations, while Web Manual dbpedia had most column pairs with 24.2% having two or

more relevant relations.The typical size of the expected relation set identified by human

evaluators was smaller in comparison to the set of relevant class labels. Fewer column

49

FIG. 4.7. Percentage of relevant relations at different ranks.

FIG. 4.8. Precision, Recall and F–score for relations at rank 1.

50

FIG. 4.9. Precision and Recall for relation annotation at different ranks.

pairs had more than two relevant relations in their expected set.

Figure 4.9 shows precision and recall at different ranks. Recall rapidly converges to-

wards 1 (and conversely precision towards zero) for most datasets. Recall scores show two

distinct trends in the graph – i) gradual convergence and ii) a rapid convergence towards

one. Datasets with larger expected relevant relations converge gradually, recall scores

steadying around ranks 4–6, while ones with a smaller set converge much quickly, scores

steadying around ranks 2–3. As mentioned in section 4.3, direct comparison between our

work and Limaye, Sarawagi, & Chakrabarti (2010) is not possible, but we report their

scores to give perspective to our results. They report f–scores of 0.51 for Web Manual,

0.63 for Web Relation and 0.68 for Wiki Manual for the relation annotation tasks. Rela-

tions in their ground truth belonged to the Yago ontology and the typical size of expected

relation set was one.

51

FIG. 4.10. Percentage of data cells with correctly linked entity.

4.5 Data Cell Annotations

We compared the entity links generated by our framework to those obtained as ground

truth from the original dataset (Limaye, Sarawagi, & Chakrabarti 2010). Our frame-

work linked a data cell value to an entity from DBpedia wherever possible, else to NO-

ANNOTATION. If the predicted entity link matched with ground truth, we considered it as a

correct prediction, else incorrect. We obtained an accuracy of 75.89% over the Wiki Links

dataset; 67.42% over the Wiki Manual dataset and 63.07% over the Web Manual dataset

(Figure 4.10).

One of the reasons for lower accuracy is missing data in the KBs. Even if TABEL

discovers the correct class and relation, the framework will fail to identify if an entity is

correct if these annotations are missing for the entity. For example, even if we discover

the Yago class YagoGeoEntity for a column of places, the entity dbpedia:Berlin does not

have that class and thus can lead to an incorrect assignment. Lower accuracy also stems

52

FIG. 4.11. X axis represents the iteration number and Y represents the number of variables
that received CHANGE message in that iteration. The value at x=0 is the number of cells in
the table.

from the size of the candidate entity set. We restricted the size of the candidate entity set

to 25; thus it is possible that the correct assignment could be outside this set. We also

note certain discrepancies in the ground truth annotations. We noticed several cases where

we were able to discover a correct entity annotation, whereas the ground truth said it was

NO-ANNOTATION, which led to counting our annotation as incorrect.

4.6 Convergence

Figure 4.11 gives insight into how quickly Semantic Message Passing (SMP) con-

verges. Each line in the graph represents a table; every point on the line represents the

number of variable nodes in the table that received a CHANGE message at the end of the

53

Class Precision Recall F-Score
0 0.959 0.849 0.901
1 0.871 0.966 0.916

FIG. 4.12. Precision, recall and F–score for the Naive Bayes model.

given iteration. For most tables, the number of variable nodes that receive a CHANGE mes-

sage stabilize after the first iteration. We had few cases where the variable count fluctuated,

i.e., increasing and decreasing as iterations increased. We also noticed cases where the

variable count does not go to zero. Some number of “stubborn” variables keep receiving a

CHANGE message at the end of every iteration, but cannot find a new value. However, we

noticed that the number of stubborn variables is less as compared to the original number

of variables in the table. Recollect, we let SMP run for five iterations before our halting

condition checks if it can be stopped. In most tables the inference stops after five iterations.

We present results for eight tables for visual purposes; the results are representative of the

rest of the tables in the dataset. The average time required for the inference model across

all tables was 3.4 seconds.

4.7 Entity Ranker

The entity ranker uses a Naive Bayes classifier to produce likelihoods that strings

should be linked to entities. We choose Naive Bayes because the features, the string simi-

larity and popularity metrics, are fairly independent of each other. The training and test sets

were generated using the ground truth for entity annotations from the Wiki Links dataset.

For every string mention in the table, we queried Wikitology to get candidate entities and

then computed feature values for the string similarity and popularity metrics for each men-

tion/entity pair.

A class label of 1 was assigned if the candidate entity was the correct assignment

54

numberOfDoctoralStudents numberOfGraduateStudents numberOfPostgraduateStudents
numberOfStudents numberOfUndergraduateStudents populationMetro
populationRural populationTotal populationTotalRanking
populationUrban totalPopulation fuelCapacity

capacity postalCode seatingCapacity

FIG. 4.13. List of DBpedia properties used to generate NumKB.

(available via ground truth in the dataset) and a 0 otherwise. The training set included 600

instances, evenly split between positive and negative instances. The test set included in

all 681 instances with 331 positive and 350 negative instances. Out of the 681 instances,

the model was able to correctly classify 619 instances with an accuracy of 90.9 %. The

precision, recall and F–score are presented in Figure 4.12.

4.8 Literal Constants

We evaluate the quality of header cell annotations for literal value columns. The

properties used to represent literal constants are also used to represent the header

string; i.e., we map the header string Population in Figure 1.2 to the property dbpedia-

owl:populationTotal. We choose 16 tables, with 17 literal value columns from the

Wiki Link dataset. We generate a candidate property set for each column by querying

against NumKB generated from the DBpedia properties listed in Figure 4.13. The rest of

the experimental setup remains the same (as described in section 4.2).

We obtain ground truth by manually annotating each literal value column with an

appropriate DBpedia property. Figure 4.14 shows the distribution of the expected properties

at different ranks. Our approach shows promising results with a majority of the expected

properties appearing at ranks 1, 2 and 3 (76.47%). The slightly lower % at rank 1 can be

attributed to the ambiguous properties totalPopulation and populationTotal. When we treat

either of the properties to be a correct prediction for a column of population values, the %

55

FIG. 4.14. Distribution of expected properties at different ranks. Majority of them appear
at ranks 1, 2 and 3.

of correct properties at rank 1 jumps to 64.71.

4.9 Human in the Loop

We evaluate and quantify the impact of user feedback on our framework by choosing

12 tables from the Wiki Link dataset and providing class annotations for column headers.

A single column was annotated with the correct DBpedia and Yago class for ten of these

tables, while two columns were annotated in the remaining two tables. While this feedback

was provided before the inference process starts, the same could have been provided during

inference. Using these annotations, our framework inferred the rest of the semantics with

the modified behavior of Semantic Message Passing as defined in section 3.5.

Column header annotations have a direct impact on the quality of data cell value an-

notations. Our results show that small (1–2 classes) but accurate feedback can significantly

56

FIG. 4.15. Comparison between data cell annotation quality with and without user
feedback.

improve annotation quality. Data cell value annotations improved by 10.2% from 60.94%

to 71.14% with the help of user class annotations. Figure 4.15 shows the impact of annota-

tions on the individual tables. The number of correctly annotated data cells increased in 9

tables, remained the same in 2, and, decreased in 1.

4.10 Comparison with baseline systems

We evaluate the effectiveness of the Query and Rank (Q&R) module and Semantic

Message Passing (SMP) by replacing them with naive baseline alternatives. We create a

naive alternative for the Query and Rank module, by modifying the Wikitology query for

generating candidate entities for data cells. The data cell value string is mapped to the

title field in Wikitology. The context provided by the column header string and rest of the

row values is not used. The candidate generation process for column header classes and

57

FIG. 4.16. Quality of data cell annotations for all four configurations.

relations between columns remains the same. We refer to this alternative as WWiki.

A naive alternative for Semantic Message Passing (RSMP) is created as follows: The

factor nodes operate as described in section 3.3.3; however in the modified RSMP, they do

not send semantics along with the CHANGE message. Variable nodes update their assign-

ments if they receive at least one CHANGE message. With the lack of semantics, variable

nodes pick the next highest ranked entity as a new assignment. The rest of process remains

the same.

We create three different baselines with configurations WWiki–RSMP, WWiki–SMP

and Q&R–RSMP and compare them against our default system which uses Q&R and SMP.

Figure 4.16 presents the quality of data cell annotations for all four configurations over the

Wiki Links and Wiki Manual datasets. A naive Q&R module along with a naive SMP

58

leads to the lowest accuracy for data cell annotations. The strength of our Q&R module

is demonstrated by the Q&R–RSMP configuration. Our Q&R module with a naive SMP

still leads to good data cell annotations. While SMP individually improves the annotation

quality, it still depends on the candidate entities, classes and relations. A naive Q&R leads

to poor candidate sets and thus impacts the inference process and annotation quality.

Chapter 5

USE CASE

We demonstrate the extensibility and domain independence of our techniques by de-

veloping an application of TABEL in the healthcare domain. We first introduce the problem

and our application, describe how TABEL was extended and adapted for tables from the

medical domain and finally evaluate the quality of the inferred semantics as well as its

effectiveness for the developed application.

5.1 Introduction

Evidence–based medicine (EBM) is commonly defined as “the conscientious, explicit,

and judicious use of current best evidence in making decisions about the care of individual

patients” (Sackett et al. 1996). EBM analyzes questions such as efficacy of drug dosages,

correlation between various medical factors or correlation between drugs by performing

meta–analyses (i.e., systematic reviews) over evidence and data previously published in

scientific literature and clinical trial studies. The goal is to find, integrate and analyze

available high-quality quantitative data to inform clinical and health care related decisions.

EBM has been gaining traction for the past several years. A search on PubMed1

for publication type “Meta–Analysis” shows, while only 272 meta–analyses reports were

1http://www.ncbi.nlm.nih.gov/pubmed

59

60

FIG. 5.1. Number of meta–analysis, clinical trials, comparative studies, prospective stud-
ies and case–control studies published between 2005 and 2013. Data was obtained from
PubMed by querying for publication types “Meta–Analysis”,“Clinical Trial” “Comparative
Studies”, “Prospective studies”, and “Case-Control Studies”

published in 1990, more than 6600 meta–analyses reports were published in 2013. Orga-

nizations such as The Cochrane Collaboration2 have a dedicated set of medical researchers

whose primary goal is to perform and publish systematic reviews on a number of health

care related issues and to keep them updated as new medical research findings become

available.

The process of generating a meta–analysis report is still largely manual. Medical

researchers start with keyword search on systems like MEDLINE3 which often lead to

thousands of initial set of studies. Researchers carefully analyze each study reducing the

result set to a few hundred studies or less which are included in the final meta–analysis.

2http://www.cochrane.org/
3http://nlm.nih.gov/bsd/pmresources.html

61

FIG. 5.2. An example table typically found in medical research reports.

Often a two stage filtering is done in which studies are accepted or rejected first based on

the title and abstract and then later filtered after a close examination. A meta–analysis of

the correlation between cardiovascular risk factors and venous thromboembolism (Ageno

et al. 2008), for example, started with an initial search yielding 1949 studies which were

downselected to just 22 for the final analysis and report. Figure 5.1 gives insight into

how tedious the process is. While the number of meta-analysis reports published each

year is growing, they are out-paced by the number of clinical trials, comparative studies,

prospective studies and case–control studies that potentially provide evidence.

Key information required to produce meta–analyses reports is often obtained from

tables like the one shown in Figure 5.2. Consider an analysis of the correlation between

Obesity, a cardiovascular risk factor and venous thromboembolism. Conclusions about the

correlation are derived by first identifying relevant studies such as (Prandoni et al. 2003;

62

Paganin et al. 2003) and then by extracting and integrating results from these individual

studies. In this example, information such as number of individuals that suffer from obesity

and venous thromboembolism (23/299) and number of individuals that suffer only from

obesity (16/150) is of key interest. Such information, as seen from Figure 5.2, is encoded

in tables published in medical studies.

The automatic discovery and interpretation of tables in a medical research report gives

strong evidence that (i) the report includes empirical data and (ii) the degree of relevance

to the question. The tables themselves provide the raw study data that will eventually be

integrated. Inferring the semantics of tables and producing a linked data representation

delivers the data in a form that facilitates aggregation, mapping and integration.

5.2 Related Work

This section specifically focuses on related research in the space of evidence–based

medicine and the use of ontologies to model clinical trials and other medical research stud-

ies.

Recent research has focused on taking steps towards automating evidence–based

medicine and generating meta–analysis reports. Cohen et al. (Cohen et al. 2010) present a

design for end-to-end text-mining pipeline to automate the process of generating and updat-

ing meta–analysis reports. Their pipeline consists of searching, classifying, grouping and

ranking medical research papers to produce systematic reviews. ExaCT (Kiritchenko et al.

2010) is a information extraction system that searches and extracts sentences from clinical

trials and other related studies that best match the clinical trial characteristics provided by

the user. It aims to facilitate in the process of identifying relevant studies for producing

evidence reports.

Researchers have produced systems to create summaries of medical papers (Sarker,

63

Mollá, & Paris 2013) and also from medical paper abstracts (Summerscales et al. 2011)

to be used in meta–analysis studies. Others have applied machine learning techniques to

reduce the number of search query results a medical researcher must analyze to collect

relevant studies (Kilicoglu et al. 2009; Cohen, Ambert, & McDonagh 2009). However,

this entire body of work has focused on analyzing free text; to the best of our knowledge

no work has focused on analyzing and inferring information encoded in tables in medical

research literature. Our approach can not only find relevant studies, but can also extract

and integrate the data to produce meta–analysis reports.

Related work has also focused on using ontologies and other Semantic Web tech-

nologies in assisting clinical trial management. Frameworks such as the ObTiMA System

(Stenzhorn et al. 2010) and Epoch (Shankar et al. 2006) allow management of ongoing

clinical trial by providing tools to researchers to capture data and represent data as RDF.

Both provide ontologies useful for representing data of ongoing clinical trials. ORCe (Sim

et al. 2013) is a general purpose ontology allowing users to model various aspects related to

clinical trials such as study design, study protocol, statistical concepts related to the study

analysis. ADDIS (Van Valkenhoef et al. 2013) presents an ontology to ground various

clinical trials in a common data schema, facilitating search and integration. ADDIS further

provides users a semi-automatic decision support software that allows importing studies,

representing them in RDF and producing evidence reports. LinkedCT (Hassanzadeh et al.

2009) triplifies data sources such as ClinicalTrials.gov; Dameron et al. (Dameron et al.

2012) designed an ontology to model and reason about patient eligibility in clinical trials.

While existing work has covered the breadth in clinical trial management using Semantic

Web technologies, our Medical Tables ontology (section 5.3) focuses on a very specific

task – modeling and representing medical tables published in medical research papers.

64

5.3 Approach

5.3.1 Inferring the semantics of medical tables

We adapt TABEL to infer the semantics and generate a linked data representation of

medical tables. A table first goes through a pre-processing module Normalize, which han-

dles the idiomatic patterns typically found in medical tables. The Query and Rank (Q&R)

module generates candidate concepts for the header cells as described in section 3.2. We

also adapt Q&R to generate candidates from domain specific KBs, namely SNOMED CT

and UMLS. Header cells are mapped to the top ranked candidate returned by Q&R before

a final linked data representation is produced.

Normalization. Medical tables do not have the simple structure of most tables found on

the web (webtables), i.e., a rectangular array of data cells (with optional column headers)

where each cell holds a single value. Medical tables often exhibit of both column and row

headers, between whom the data is enclosed. Non-header cells are data cells that typically

represent values for the relationship between the respective column and row headers. For

example, the value 46 from the column of Patients With Spontaneous Thrombosis and row

header Hypertension in Figure 5.2 leads to the interpretation that 46 of the 153 patients

with spontaneous thrombosis also suffer from hypertension.

Typically, content in header and data cells in webtables is simple in nature; it either

consists of strings that can be directly mapped to a class or a entity or literal values such as

numbers that can be mapped as values of a property. However, the content found in header

and data cells in medical tables are represented using idiomatic patterns often encoding

additional metadata in header cells or representing the literals in data cells as “complex

objects”.

Consider the column header Patients With Spontaneous Thrombosis (N=153); not only

65

it represents a concept (Spontaneous Thrombosis), but also encodes additional metadata

(N=153) which is useful for interpreting the values in the column. Similar encoding can

be observed in row headers. Data cells are also complex objects. Consider the data cell 46

(30.1) from the row with header Hypertension in Figure 5.2; from the metadata in its row

header, one can interpret, 46 represents the raw number and 30 its percentage of the total.

Interpreting medical tables thus requires significant pre–processing in which the content

in the header cells have to be normalized to extract strings to be mapped to concepts and

decompose and interpret data cells to generate an accurate semantic representation.

The Normalize module first processes the header cells. The content in column and row

header cell can be parsed into two distinct parts: a query string denoting a concept such

as a disease, drug, or patient characteristic and metadata that describes how the data in the

column/row should be interpreted, e.g., giving units of measure (kg), statistical properties

(avg) or a schema for non-atomic values (no. (%)). For example, the fourth row header

Hypertension – no. (%) would produce the query string Hypertension and metadata no.

(%).

We develop a set of regular expression patterns that cover the most common cases

observed in published medical data tables to extract query string and metadata. In most

medical tables, the query string and metadata are either separated by a hyphen [query string

- metadata], a comma [query string , metadata] or the metadata follows the query string in

parenthesis [query string (metadata)]. Every column and row header is matched against

these three patterns to extract query string and metadata. If the header content does not

match any of the patterns, the content is treated as query string. In our current example,

the header Hypertension – no. (%) will match with [query string - metadata] extracting

Hypertension as query string and no. (%) as metadata.

The extracted metadata can require further processing as it encodes information re-

garding how values in the respective column or row should be interpreted. For example,

66

the metadata no. (%) conveys the message that values of the form a (b) in the given row

should be interpreted as a representing the raw number and b representing its percentage

of the total. While metadata in medical tables can encode vast variety of information, they

can be generalized to a limited set of common patterns such as generalizing no. (%) to a

(b). The Normalize module further processes metadata by mapping it to a pattern from a

set of generalized metadata patterns.

We identify a set of common metadata patterns which include: a (b) (c) (e.g. mean

(standard deviation) (range)); a (b) (e.g. no. (%)); a +/-b (e.g. mean standard +/- devia-

tion); a/b (e.g. Male/Female). Every metadata extracted from the content in header cells

is mapped against one of four metadata patterns. Thus, the extracted metadata from the

Hypertension row header, no. (%) is normalized as a (b). The generalized metadata pattern

is further used to interpret the values in the respective columns and rows. Header cells

representing patient groups used in the study, encode number of the patients in the group as

part of the header metadata. The Normalize module uses an additional rule n = x pattern,

where x represents the number of patients in respective patient group.

The content in data cells is processed by the Normalize module by using the gener-

alized header cell metadata patterns. The data cell content is also mapped against one of

the four metadata patterns. For example, the data cell content 46 (30.1) will get mapped

to the pattern a (b). Once the data cell is mapped, the Normalize module checks for the

same pattern in the respective column or row header. If the same pattern is discovered, it is

used to decompose the data cell content. Again, in the case of 46 (30.1), its pattern a (b)

will match with its row header pattern a (b) , which is used by the Normalize module to

decompose and interpret 46 as no. and 30.1 as %.

We also implement the Acronym and Abbreviation Detector (AAD) as described in

section 3.1. For every query string, AAD checks for a match in it’s dictionary. If a match

is found, the query string is replaced with its expanded version.

67

Query and Rank. The Query and Rank (Q&R) module generates a ranked list of candi-

date classes for every query string in row and column headers. We assess three different

knowledge bases (KBs), two domain specific ones, UMLS Metathesaurus (Schuyler et al.

1993) and SNOMED CT (Stearns et al. 2001), and one general purpose one, DBpedia

(Bizer et al. 2009). KBs in the health care domain are still maturing and our goal behind

assessing different KBs is to compare the coverage and strengths of each in the context of

medical tables.

A key challenge during Q&R in the case of medical tables is context. Consider the

data cell Baltimore from the table in Figure 1.2. Rich context is available in the form of

column header string City and rest of the values in the row MD, S.Dixon and 680,000 to

disambiguate Baltimore. Similar context is not available in medical tables since the values

in row and column headers are generally independent of each other and are not useful as

context to disambiguate during querying. While disambiguation can be a challenge, vo-

cabulary used in the medical domain is fairly controlled often leading to a exact match if

the terms used in medical tables and terms in a knowledge base or an ontology are the same.

SNOMED CT (Systematized Nomenclature of Medicine–Clinical Terms) is a clinical

terminology consisting of more than 311,000 medical concepts organized in a hierarchy

with more than 1,360,000 links or semantic relationships between them. For every column

and row header query string, the Q&R module first executes an exact match query against

all concepts and their synonyms in SNOMED CT. If no results are returned, Q&R executes

a free text search query over an index of SNOMED CT concepts. The order in which the

concepts are returned, both for exact match and free text search queries, is retained by Q&R

to rank the concepts. For example, the query string Age results in a direct match with two

concepts Age (qualifier value) and Current chronological age (observable entity) as results;

68

whereas the query string Diabetes leads to a text search query with Diabetic cataract as-

sociated with type I diabetes mellitus, Diabetic oculopathy associated with type I diabetes

mellitus, Diabetic retinopathy associated with type I diabetes mellitus, etc. as results.

UMLS Metathesaurus (Unified Medical Language System Metathesaurus) has of large

number of concepts related to clinical, health care, and biomedical domains assembled by

combining information from over 150 different clinical, biomedical, health care related

terminologies, vocabularies and code–sets, including SNOMED CT. Like SNOMED CT,

concepts within the UMLS Metathesaurus are connected via a set of relationships. We use

the UMLS API findConcept service to generate candidate concepts. For every query string,

Q&R module queries the API which returns a ranked list of concepts matching the query

string. For example, for the input query Hypertension, the API returns concepts such as

Hypertensive disease, Hypertension Adverse Event, No hypertension, Hypertension with

complications, etc. Q&R again retains the ranking order.

We also implement a Hybrid query model combining UMLS Metathesaurus and

SNOMED CT. Q&R first queries against UMLS Metathesaurus; if no results are returned

it further queries against SNOMED CT as described above. The UMLS api fails to return

results for certain query strings and Hybrid allows us to use SNOMED CT as a fall back

option for those cases.

Finally, we use DBpedia as a KB to generate candidates for header cells in medi-

cal tables. Unlike SNOMED CT and UMLS Metathesaurus, the row and column headers

from medical tables can be mapped to DBpedia instances rather than DBpedia classes.

Similar to the original strategy in section 3.2, Q&R generates a ranked list of candidate

instances by querying against Wikitology which is adapted to account for lack of context.

69

Q&R matches the query string against Wikipedia article’s title, redirects, first sentence and

contents(body). The query for Hypertension, for example, returns ranked list of instances

Idiopathic intracranial hypertension, Pulmonary hypertension and Hypertension. Q&R

module reranks the results returned by Wikitology using the entity ranker described in sec-

tion 3.2.

Joint Inference. The dependencies used to construct the graphical model in section 3.3 are

less common in medical tables. Row headers are fairly independent of each other leaving

little room to capture any correlation. Column headers in medical tables consists of patient

groups and statistical tests comparing the groups. Thus, if a header cell in a medical ta-

ble gets mapped to a statistical test, then it is likely that other headers are various patient

groups. This correlation can be captured by column header factor node ψ5. Row headers,

in certain cases, can be disambiguated with the help of values in the row. Consider the

values in the row Age: 67, 65.8, and 65.4. One can infer from the range of the values that

they represent age of a person. This is analogous to the correlation captured via the factor

node ψ3. However, such cases are less frequent and the problem of inferring and mapping

a set of numerical values to a concept remains an open problem. Thus, the joint inference

module is skipped and the top ranked concept returned by Q&R is considered as the final

assignment.

RDF Generation. Once data cells are normalized and interpreted, and the column and row

headers are mapped to appropriate concepts, the Generate RDF module generates a RDF

linked data representation of the table. Unlike webtables, medical tables have a complex

representation with the data cell values representing the relationship between the row and

column headers. We develop the MTO ontology (Medical Table Ontology 2014) (Figure

5.3) to model and represent information encoded in such medical tables. MTO can be used

70

FIG. 5.3. Core of the Medical Tables Ontology. The prefix ‘xsd’ is for XML schema and
‘owl’ is for the OWL Ontology.

in conjunction with the Tables ontology or can be used independently. We describe details

of MTO followed by its usage together with Tables and its independent usage.

A typical medical table represents information about a set of observations related to

the question analyzed in the study. A study of the correlation between Atherosclerosis

and Venous Thrombosis will include medical tables reporting on observations that helps

one analyze if the correlation exists or not. Each row in such a table can be interpreted

as representing one observation. We add a class Observation to represent every row in a

medical table. Every observation is typically associated with different aspects of the study

such as patient groups, characteristics associated with patients in such groups and statistical

analysis tests comparing the groups.

The characteristics associated with patients in the group can vary from information

about demographics and habits such as gender, age and smoking habits to information

about the diseases patients may or may not be suffering to data on vitals such as blood

pressure, sugar level and hemoglobin. We combine all of these into a single group and

71

refer to it as Variables associated with the observation. Typically, such variables appear

in the row headers of the table. The association between an observation and its variable is

captured by the hasVariable property.

Patient groups refer to group of individuals with different characteristics used for com-

parisons in the study. For example, a study comparing the correlation between venous

thrombosis and obesity will consist of group of individuals that suffer from both the dis-

eases and a control group which includes individuals that suffer only from obesity. Another

study might include patient groups, each on a different drug dosage to study the effect of

dosages on a particular disease. The relation between a observation and a patient group is

captured via the hasPatientGroupObservation property.

Finally, the table often reports statistical analysis performed to compare different

groups using tests such as Odds ratio, Hazard Ratio, and p-value. The correlation between

an observation and a statistical test is captured via the hasStatisticalTestObservation prop-

erty.

Instances of the class StatisticalTestObservation capture test information with two

key components: the type of statistical test (e.g., odds ratio, hazard ratio) via the prop-

erty hasStatisticalTest and an associated result or value via the hasObservationValue

property. The domain of the property hasObservationValue is StatisticalTestObservation or

PatientGroupObservation and its range is the class Value, whose instances are used to cap-

ture the normalized and decomposed content from data cells. The property hasRawValue

captures the actual value from the table cell and hasType captures its interpretation, with

both having domain Value and range string.

Similarly, instances of the class PatientGroupObservation are used to capture obser-

vation value associated with the patient group. We define a property hasPatientGroup to

associate patient group observation with a patient group; and use previously hasObserva-

tionValue to associate the actual observation value. The domain of hasPatientGroup is the

72

FIG. 5.4. Subset of RDF triples for data in Figure 5.2. The prefixes ‘mto’ is for our
Medical Tables Ontology; ’umls’ is for UMLS Metathesaurus and ‘xsd’ is for XML

schema.

class PatientGroupObservation and its range is the class PatientGroup. The class Patient-

Group is used to capture information related to the group. Depending upon the study, this

information can vary from a disease from which individuals suffer (e.g., Venous Throm-

bosis) to drugs that individuals are taking. We define the property hasGroupAttribute to

capture this information. The domain of this property is the class PatientGroup. Addi-

tional metadata related the group such as number of individuals in the group is also captured

via the instances of class PatientGroup. We define the property numberOfIndividuals to

capture this metadata, with domain PatientGroup and range xsd:integer.

Observation instances are associated with a Table through the property tableObser-

vation. Tables are linked to a study using the property hasTable. We also record additional

metadata associated with the study such as name of the study, publication information asso-

ciated with the study such as authors, date of publication and journal. We use the properties

73

FIG. 5.5. Subset of RDF triples for data in Figure 5.2 using the Tables and MTO
ontologies.

studyTitle, studyAuthor, publicationDate and publicationJournal.

The Generate RDF module uses the MTO ontology to represent inferred semantics

of medical tables as RDF linked data. A subset of RDF linked data generated from the

table in Figure 5.2 is shown in Figure 5.4. Every row in the table is represented as instance

of the Observation class. Linking the row header string Obesity to umls:Obesity provides

additional information that the header type is disease. Concepts such as diseases are often

characteristics or attributes of a patient group and are linked with a observation using the

hasVariable property. The identified patient groups in column headers are linked with the

observation using the hasPatientGroup property. Instances of the PatientGroup represent

additional information about the group. The data cells are linked with the observation using

hasPatientGroupObservation property. Every data cell is linked to the observation using

instances of the PatientGroupObservation. The normalized data cells are represented using

instances of the Value class and linked to patient group observations using hasObservation-

Value property.

74

Figure 5.5 represents the same data using both the MTO and Tables ontology. While

the Tables ontology captures the overall structure as well as semantics of the table, the

PatientGroup and Value classes from MTO are helpful in capturing fine grained semantics

of ‘complex’ header and data cells encountered in medical tables.

5.3.2 Find – Extract – Integrate

Once medical tables are represented as RDF linked data, we can execute SPARQL

queries to automate the process of discovery, extraction and integration of data from mul-

tiple studies to automatically produce meta–analysis reports. The first step in producing a

meta–analysis report is the discovery of relevant studies associated with the question under

consideration. For example, the meta–analysis for correlation between cardiovascular risk

factors and venous thrombosis would require all individual studies comparing the two.

Figure 5.6 presents the first screen (Discovery) in our proof of concept of a user in-

teractive system to produce meta–analysis reports. This screen allows researchers to define

parameters used to identify relevant studies. The two important criteria used in the dis-

covery process process include patient groups and characteristics associated with them. In

our example meta–analysis, patient groups include patients with Venous Thrombosis and

characteristics include cardiovascular risk factors and demographic information. Discovery

allows researchers to add multiple patient groups by defining an attribute associated with

it. This attribute could be different factors associated with the group such as disease, drug

dosage etc. Similarly, it allows the addition of multiple characteristics to be used during

search.

As researchers type in parameter values, Discovery will auto–complete and link them

to appropriate UMLS (or source ontology) concepts. The use of a ontology and KB allows

researchers to use higher level abstract concepts. For example, instead of listing multiple

cardiovascular risk factors such as Obesity, Diabetes, Hypertension individually, they can

75

FIG. 5.6. An interactive interface will allow users to define search criteria.

specify a general concept such as ‘Cardiovascular Risk Factors’. Facts such Obesity is a

type of Cardiovascular risk factor are encoded in KBs such as UMLS and SPARQL queries

use these associations during data retrieval.

Additional parameters can be added to further narrow the search results. Any patient

group characteristic with units of measurement can be used. For example, researchers can

specify that Age should be greater than 30; Body Mass Index greater than 28 and so on.

Such characteristics include (but are not limited to): Age, Blood Pressure, Sugar/Glucose

level, Triglyceride level, Body Mass Index. Similar filter can be applied on the size of the

patient group. Researchers can specify a range, minimum, or, a maximum value on these

attributes. Finally, filters can be applied on publication metadata such as publication date,

venue, author and so on.

SPARQL queries are automatically generated based on parameters defined on the Dis-

covery screen. Figure 5.7 (a) shows the SPARQL query generated for the parameters de-

76

(a) Find studies correlating venous thrombosis and obesity.

SELECT ?study ?table WHERE {
?patGroup mto:hasGroupAttribute

umls:Venous Thrombosis.
?patObsGroup mto:hasPatientGroup ?patGroup.
?obs mto:hasPatientGroupObservation ?patObsGroup;

mto:hasVariable umls:Cardio Vascular Risk Factors;
mto:observationInTable ?table.

?table mto:tableInStudy ?study.}

(b) Get all observations for a given table.

SELECT ?obs WHERE {
mto:table3 mto:tableObservation ?obs.}

FIG. 5.7. SPARQL query for parameters defined in Figure 5.6.

fined in Figure 5.6. This query identifies all studies with patient group attribute Venous

Thrombosis and a cardiovascular risk factor as a characteristic. Since both the query and

the tables are grounded in the same ontology, search becomes an efficient process.

The Extract screen (Figure 5.8) displays search results for the user query. This screen

allows researchers to evaluate the results and select the data to be included for the integra-

tion phase. Results are presented in the form of tables along with the studies they belong to.

Additional information can be obtained by clicking on the name of the study. Researchers

can either select an entire table or as often is the case select a subset of table to be included

for the next phase. Figure 5.7 (b) shows the SPARQL query used to extract the data once

the tables are selected. This query extracts all observations from a given table. Appropriate

SPARQL queries are generated to extract either all or subset of observations from a table.

Once the data is extracted, it can be integrated to produce results to be included in the

meta–analysis report.

77

FIG. 5.8. Users can select entire table or subset of the table to be integrated for the final
meta–analysis report.

5.4 Evaluation

We present an evaluation of how well TABEL performs in inferring the semantics of

medical tables and its utility in discovering relevant studies associated with a meta–analysis

report.

5.4.1 Semantics of Medical Tables

Dataset. We choose a meta–analysis report analyzing correlation between cardiovas-

cular risk factors and venous thromboembolism (Ageno et al. 2008) for our evaluation pur-

poses. We further obtain publicly available medical studies used to generate our selected

meta–analysis report and manually extract tables embedded in these documents. Figure

5.9 presents details about tables extracted from individual studies. We manually split every

header cell content into query string and metadata to evaluate the Normalize module. Simi-

78

Table # 1, 2 from González-Ordóñez et al.(González-Ordóñez et al. 2003)
Table # 1, 2 from Paganin et al.(Paganin et al. 2003)
Table # 1 from Prandoni et al.(Prandoni et al. 2003)

Table # 2 from Frederiksen et al.(Frederiksen et al. 2004)
Table # 1 from Deguchi et al.(Deguchi et al. 2005)

FIG. 5.9. Tables numbers extracted from each study.

larly, every header cell is also mapped to appropriate concepts from SNOMED CT, UMLS

Metathesaurus, and DBpedia to evaluate quality of header cell annotations.

Experimental Setup. The extracted medical tables go through the Normalize, Query

and Rank and Generate RDF modules finally leading to RDF linked data as output. In the

absence of the Joint Inference step, the top ranked class (or instance) from the ranked list

of candidates is assigned to the column and row headers. For each query string, a ranked

list of candidate concepts (or instances in case of DBpedia) are generated as described in

section 5.3. The size of candidate set is 25 for UMLS and 100 for DBpedia and SNOMED.

Each candidate set also includes an additional No–Annotation (N.A.) entity.

Evaluating Normalize. The Normalize module accurately splits the header cell con-

tent into query string and metadata for 109 out of 123 header cells (88.62%). The errors in

the remaining cases (14) were a result of choosing incorrect patterns in cases of multiple of

pattern matches.

Evaluating Header Cell Annotations. Figure 5.10 shows the distribution of the cor-

rect header cell concept at different ranks for 122 header cells across seven tables. UMLS

and Hybrid give the best performance with approximately 60% of the correct concepts at

rank 1. DBpedia and SNOMED CT perform poorly with only 53.28% and 44.27% of cor-

79

FIG. 5.10. Distribution of header cell concepts at different ranks.

rect concepts in the top ten ranks. UMLS outperforms SNOMED because of its larger cov-

erage of concepts; several expected concepts were absent in SNOMED CT. Since DBpedia

is a general purpose KB, its query results often include non medical concepts, leading to its

overall decline in performance. Improvements for DBpedia can be obtained by restricting

concepts from the medical domain.

Query string that consisted of a modifier (e.g., no diabetes, treatment with statins,

active cancer) posed a challenge across all knowledge sources. We also found evidence of

overlap between the terms used in sources such as SNOMED CT and terms used in medical

tables, with 35.24% of queries resulting in an exact query match. While the number of

concepts at rank 1 is nearly identical for UMLS and Hybrid, the number of times a concept

is not found in the candidate set is far lower for the latter (12.3%) as compared to former

(22.13%). Results suggest that a Hybrid strategy for Query and Rank would produce better

80

Risk Factor Associated Studies
Obesity Table 1 (Paganin et al. 2003), Table 1 (Prandoni et al. 2003)

Hypertension Table 1 (Prandoni et al. 2003), Table 2 (Frederiksen et al. 2004)
Diabetes Table 1 (Prandoni et al. 2003), Table 2 (Frederiksen et al. 2004)
Smoking Table 1 (Prandoni et al. 2003), Table 2 (Frederiksen et al. 2004)

FIG. 5.11. Table # and individual studies associated with each risk factor.

candidate sets.

5.4.2 Discovering Relevant Studies

Our selected meta–analysis (Ageno et al. 2008) analyzed the correlation between

seven different cardio vascular risk factors and venous thrombosis namely Obesity (Body

Mass Index > 30), Diabetes Mellitus, Smoking, Total Cholesterol, Triglycerides and LDL

& HDL Cholesterol. The correlation between each risk factor and venous thrombosis was

performed independently, each correlation using a separate set of individual studies. Figure

5.11 shows individual studies associated with four of the risk factor.

We begin by inferring the semantics and generating RDF Linked Data from the seven

tables listed in Figure 5.9. We execute a SPARQL query (Figure 5.7 (a)) to identify studies

analyzing correlation between Venous Thrombosis and the four risk factors listed in Figure

5.11. Since our current dataset includes studies only related to Venous Thrombosis, we

drop the clause associated with patient group attribute and only query using risk factors.

We compute precision and recall using the tables listed in Figure 5.11 as relevant tables

or ground truth for each query. We obtain an average precision of 0.79 of and recall of 0.75

of over the four queries. Errors in the retrieval process can be attributed to the incorrect

semantics inferred during header cell annotations. In the case of Diabetes and Smoking,

header cells in one of the expected tables were mapped to the concepts Smoker and Diabetes

respectively; whereas the concepts used in the SPARQL query were Diabetes Mellitus and

81

Smoking. The case of Smoker vs. Smoking is interesting: the latter is represented as an

individual behavior in UMLS whereas the former is represented as a finding. However

both concepts seem accurate to describe whether a person is a smoker. Similar ambiguity

arises in the cases like triglyceride: is the correct concept for triglyceride, Triglyceride –

Biologically Active Substance or Triglyceride level – finding. These challenges will have to

be either tackled in Query & Rank by disambiguating to similar type of entity (i.e., always

prefer type Finding) or in retrieval phase by executing multiple queries for related concepts.

Chapter 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

Generating an explicit representation of the meaning which is implicit in tabular data

will benefit several research areas and applications from multiple domains. In this thesis,

we presented TABEL – a domain independent and extensible framework to infer the seman-

tics of tables and make it explicit by representing them as RDF Linked Data. To the best of

our knowledge, we were the first to define and capture the semantics of a table by mapping

header cells to classes, data cells to entities and pair of columns to relations from a given

ontology and knowledgebase.

We demonstrate that it is possible to generate high quality linked data from tables by

jointly inferring the semantics of header and data cells using techniques from probabilistic

graphical models. We introduce a novel inference technique, Semantic Message Passing,

which incorporates semantics and background knowledge from Linked Data sources into

standard message passing techniques. We introduce techniques to infer the semantics and

generate candidate properties for literal values. We also demonstrate the extensibility and

domain independence of our techniques by developing an application of TABEL for the

healthcare domain. We adapt our framework to infer the semantics of tables found in

medical literature (medical tables) and develop a proof of concept for an application to

82

83

generate meta-analysis reports automatically, which is built on top of the semantics inferred

from medical tables. Finally, our work explores different models of user interaction with

TABEL and its impact on the quality of inferred semantics.

A thorough evaluation with experiments over dataset of web and medical tables

showed promising results. Our framework adopts a “data–driven” approach; first we gen-

erate candidates entities for data cell values and use them to generate candidate classes and

relations. The candidates entities are ranked and the top ranked ones are used as initial

assignments for variables in the graphical model. A large percentage of variable node as-

signments stabilize after the first iteration indicating the benefits of this approach. However,

our experiments with medical tables also highlight the challenges of such an approach. The

data cell values often represent counts of patients which are captured via a relationship be-

tween the column and row headers. Limited context in header cells made disambiguation

a challenge and the multi–dimensional nature of medical tables did not allow us to exploit

correlations (and hence joint inference) typically found in regular tables.

6.2 Future Work

6.2.1 Extending Semantic Message Passing

Our existing implementation of the Joint Inference module instantiates factor nodes

ψ3 and ψ4. The next step would be to instantiate the factor node ψ5 which would compute

agreement between the classes assigned to the column headers. The additional semantics

from ψ5 will improve the quality of inferred semantics, especially in tables like the ones

found in medical research papers in which data cells are not useful during the inference

process.

Semantic Message Passing allows data cell variables to exploit semantic messages to

update their assignments. Instantiating ψ5 would also allow the column header and relation

84

variables, both to receive and exploit these messages. Semantic Message Passing can be

further made robust if it is able to identify ‘problematic’ header and data cells and eliminate

them during inference. Problematic variables could constitute ones with low confidence

assignments or ones that keep changing their assignment in every iteration.

6.2.2 Literal Values

Our preliminary work on NumKB (Chapter 3.2.2) show encouraging results to build

upon. An immediate next step would be constructing NumKB for all datatype properties

from DBpedia (or a simialar KB) and providing support for properties with units. The chal-

lenge of units can be handled by either mapping literal values into the units of values as

represented in the kb or representing value distributions for each possible unit of properties

when the kb is generated. Our existing approach for generating NumKB assumes the prop-

erties values to belong to a normal distribution which always may not be true. An alternate

approach would be to experiment using non–parametric techniques such as Kernel Density

Estimation to estimate distribution of the property values.

6.2.3 Combine Schema and Instance approach

As pointed earlier, our current approach for generating candidates is a “data–driven”

technique; we first generate candidate entities, which are then used to generate candidate

classes and relations. Additional candidate classes can be independently generated using

column header strings. It is also possible to infer the semantics of header strings indepen-

dently of the data cells using schema based techniques such as the ones developed by Han

et al. (Han, Finin, & Joshi 2011). Combining both schema and data–driven approaches can

yield better results.

85

6.3 Concluding Remarks

This thesis presented an an domain independent and extensible framework which

demonstrated that it is possible to generate high quality linked data from tables by jointly

inferring the semantics of column headers, values (string and literal) in table cells, and re-

lations between columns augmented with background knowledge from open data sources

such as the Linked Open Data cloud.

REFERENCES

[1] Ageno, W.; Becattini, C.; Brighton, T.; Selby, R.; and Kamphuisen, P. W. 2008.

Cardiovascular risk factors and venous thromboembolism a meta-analysis. Circulation

117(1):93–102.

[2] Berners-Lee, T.; Hendler, J.; Lassila, O.; et al. 2001. The semantic web. Scientific

American 284(5):28–37.

[3] Berners-Lee, T. 2006. Linked data. http://www.w3.org/DesignIssues/LinkedData.html.

[4] Bizer, C.; Lehmann, J.; Kobilarov, G.; Auer, S.; Becker, C.; Cyganiak, R.; and Hell-

mann, S. 2009. Dbpedia - a crystallization point for the web of data. Journal of Web

Semantics 7(3):154–165.

[5] Cafarella, M. J.; Halevy, A. Y.; Wang, Z. D.; Wu, E.; and Zhang, Y. 2008. Webtables:

exploring the power of tables on the web. PVLDB 1(1):538–549.

[6] Cohen, A. M.; Ambert, K.; and McDonagh, M. 2009. Cross-topic learning for work

prioritization in systematic review creation and update. Journal of the American Medical

Informatics Association 16(5):690–704.

[7] Cohen, A.; Adams, C.; Davis, J.; Yu, C.; Yu, P.; Meng, W.; Duggan, L.; McDonagh,

M.; and Smalheiser, N. 2010. Evidence-based medicine, the essential role of systematic

reviews, and the need for automated text mining tools. In 1st Int. Health Informatics

Symposium, 376–380. ACM.

[8] Dameron, O.; Besana, P.; Zekri, O.; Bourdé, A.; Burgun, A.; Cuggia, M.; et al. 2012.

Owl model of clinical trial eligibility criteria compatible with partially-known informa-

tion. In SWAT4LS.

86

87

[9] Deguchi, H.; Pecheniuk, N. M.; Elias, D. J.; Averell, P. M.; and Griffin, J. H.

2005. High-density lipoprotein deficiency and dyslipoproteinemia associated with ve-

nous thrombosis in men. Circulation 112(6):893–899.

[10] Deng, D.; Jiang, Y.; Li, G.; Li, J.; and Yu, C. 2013. Scalable column concept

determination for web tables using large knowledge bases. Proceedings of the VLDB

Endowment 6(13):1606–1617.

[11] Ding, L.; DiFranzo, D.; Graves, A.; Michaelis, J. R.; Li, X.; McGuinness, D. L.; and

Hendler, J. A. 2010. TWC data-gov corpus: incrementally generating linked govern-

ment data from data.gov. In Proc 19th WWW, 1383–1386. ACM.

[12] Dredze, M.; McNamee, P.; Rao, D.; Gerber, A.; and Finin, T. 2010. Entity Disam-

biguation for Knowledge Base Population. In Proc. 23rd Int. Conf. on Computational

Linguistics.

[13] Embley, D. W.; Lopresti, D. P.; and Nagy, G. 2006. Notes on contemporary table

recognition. In Document Analysis Systems, 164–175.

[14] Ermilov, I.; Auer, S.; and Stadler, C. 2013. Crowd–sourcing the large-scale semantic

mapping of tabular data. ACM Web Science Conference.

[15] Frederiksen, J.; Juul, K.; Grande, P.; Jensen, G. B.; Schroeder, T. V.; Tybjærg-Hansen,

A.; and Nordestgaard, B. G. 2004. Methylenetetrahydrofolate reductase polymorphism

(c677t), hyperhomocysteinemia, and risk of ischemic cardiovascular disease and venous

thromboembolism: prospective and case-control studies from the copenhagen city heart

study. Blood 104(10):3046–3051.

[16] González-Ordóñez, A. J.; Fernández-Carreira, J. M.; Fernández-Alvarez, C. R.;

Obaya, R. V.; Macı́as-Robles, M. D.; González-Franco, A.; and Garcia, M. A. 2003. The

88

concentrations of soluble vascular cell adhesion molecule-1 and lipids are independently

associated with venous thromboembolism. haematologica 88(9):1035–1043.

[17] Han, L.; Finin, T.; Parr, C.; Sachs, J.; and Joshi, A. 2008. RDF123: from Spreadsheets

to RDF. In Proc. 7th Int. Semantic Web Conf. Springer.

[18] Han, L.; Finin, T.; and Joshi, A. 2011. GoRelations: An Intuitive Query System for

DBpedia. In Proc. Joint Int. Semantic Technology Conf., LNCS. Springer.

[19] Hassanzadeh, O.; Kementsietsidis, A.; Lim, L.; Miller, R. J.; and Wang, M. 2009.

Linkedct: A linked data space for clinical trials. arXiv preprint arXiv:0908.0567.

[20] Hurst, M. 2006. Towards a theory of tables. IJDAR 8(2-3):123–131.

[21] Kilicoglu, H.; Demner-Fushman, D.; Rindflesch, T. C.; Wilczynski, N. L.; and

Haynes, R. B. 2009. Towards automatic recognition of scientifically rigorous clinical

research evidence. Journal of the American Medical Informatics Association 16(1):25–

31.

[22] Kiritchenko, S.; de Bruijn, B.; Carini, S.; Martin, J.; and Sim, I. 2010. Exact:

automatic extraction of clinical trial characteristics from journal publications. BMC

medical informatics and decision making 10(1):56.

[23] Knoblock, C. A.; Szekely, P.; Ambite, J. L.; Gupta, S.; Goel, A.; Muslea, M.; Ler-

man, K.; Taheriyan, M.; and Mallick, P. 2012. Semi-automatically mapping structured

sources into the semantic web. In Proceedings of the Extended Semantic Web Confer-

ence.

[24] Knoblock, C. A.; Szekely, P.; Gupta, S.; Manglik, A.; Verborgh, R.; Yang, F.; and

de Walle, R. V. 2013. Publishing data from the smithsonian american art museum as

89

linked open data. In Proceedings of the ISWC 2013 Posters & Demonstrations Track,

129–132.

[25] Koller, D., and Friedman, N. 2009. Probabilistic Graphical Models: Principles and

Techniques. MIT Press.

[26] Langegger, A., and Wob, W. 2009. Xlwrap - querying and integrating arbitrary

spreadsheets with SPARQL. In Proc. 8th Int. Semantic Web Conf.

[27] Levenshtein, V. I. 1966. Binary codes capable of correcting deletions, insertions, and

reversals. Technical Report 8, Soviet Physics Doklady.

[28] Limaye, G.; Sarawagi, S.; and Chakrabarti, S. 2010. Annotating and searching web

tables using entities, types and relationships. In Proc. 36th VLDB.

[29] 2014. Medical Table Ontology. http://ebiquity.umbc.edu/ontology/mto/v1/.

[30] Mulwad, V.; Finin, T.; Syed, Z.; and Joshi, A. 2010. Using linked data to interpret

tables. In Proc. 1st Int. Workshop on Consuming Linked Data.

[31] Mulwad, V. 2010. T2LD - An automatic framework for extracting, interpreting and

representing tables as Linked Data. Master’s thesis, University of Maryland, Baltimore

County.

[32] Munoz, E.; Hogan, A.; and Mileo, A. 2013. Triplifying wikipedia’s tables. In 1st

International Workshop on Linked Data for Information Extraction.

[33] Muñoz, E.; Hogan, A.; and Mileo, A. 2014. Using linked data to mine rdf from

wikipedia’s tables. In 7th ACM International Conference on Web Search and Data

Mining, 533–542. ACM.

90

[34] Paganin, F.; Bourde, A.; Yvin, J.-L.; Genin, R.; Guijarro, J.-L.; Bourdin, A.; and

Lassalle, C. 2003. Venous thromboembolism in passengers following a 12-h flight: a

case-control study. Aviation, space, and environmental medicine 74(12):1277–1280.

[35] Polfliet, S., and Ichise, R. 2010. Automated mapping generation for converting

databases into linked data. In Proc. 9th Int. Semantic Web Conf.

[36] Prandoni, P.; Bilora, F.; Marchiori, A.; Bernardi, E.; Petrobelli, F.; Lensing, A. W.;

Prins, M. H.; and Girolami, A. 2003. An association between atherosclerosis and venous

thrombosis. New England Journal of Medicine 348(15):1435–1441.

[37] Puranik, N. 2012. A specialist approach for classification of column data. Master’s

thesis, University of Maryland, Baltimore County.

[38] Sackett, D.; Rosenberg, W.; Gray, J.; Haynes, R.; and Richardson, W. 1996. Evidence

based medicine: what it is and what it isn’t. Bmj 312(7023):71.

[39] Sahoo, S. S.; Halb, W.; Hellmann, S.; Idehen, K.; Thibodeau Jr, T.; Auer, S.; Sequeda,

J.; and Ezzat, A. 2009. A survey of current approaches for mapping of relational

databases to rdf. Technical report, W3C.

[40] Salton, G., and Mcgill, M. J. 1986. Introduction to Modern Information Retrieval.

New York, NY, USA: McGraw-Hill, Inc.

[41] Sarker, A.; Mollá, D.; and Paris, C. 2013. An approach for query-focused text sum-

marisation for evidence based medicine. In Artificial Intelligence in Medicine. Springer.

295–304.

[42] Schuyler, P. L.; Hole, W. T.; Tuttle, M. S.; and Sherertz, D. D. 1993. The UMLS

metathesaurus: representing different views of biomedical concepts. Bulletin of the

Medical Library Association 81(2):217.

91

[43] Shankar, R. D.; Martins, S. B.; O’Connor, M. J.; Parrish, D. B.; and Das, A. K. 2006.

Epoch: an ontological framework to support clinical trials management. In Proceedings

of the international workshop on Healthcare information and knowledge management,

25–32. ACM.

[44] Sim, I.; Tu, S. W.; Carini, S.; Lehmann, H. P.; Pollock, B. H.; Peleg, M.; and Wit-

tkowski, K. M. 2013. The ontology of clinical research (ocre): An informatics founda-

tion for the science of clinical research. Journal of biomedical informatics.

[45] Stearns, M. Q.; Price, C.; Spackman, K. A.; and Wang, A. Y. 2001. SNOMED clinical

terms: overview of the development process and project status. In AMIA Symposium,

662. AMIA.

[46] Stenzhorn, H.; Weiler, G.; Brochhausen, M.; Schera, F.; Kritsotakis, V.; Tsiknakis,

M.; Kiefer, S.; and Graf, N. 2010. The obtima system-ontology-based managing of

clinical trials. Stud Health Technol Inform 160(Pt 2):1090–1094.

[47] Suchanek, F. M.; Abiteboul, S.; and Senellart, P. 2011. PARIS: Probabilistic Align-

ment of Relations, Instances, and Schema. PVLDB 5(3):157–168.

[48] Suchanek, F. M.; Kasneci, G.; and Weikum, G. 2007. Yago: A Core of Semantic

Knowledge. In 16th International World Wide Web Conference. New York: ACM Press.

[49] Summerscales, R. L.; Argamon, S.; Bai, S.; Huperff, J.; and Schwartzff, A. 2011.

Automatic summarization of results from clinical trials. In International Conference on

Bioinformatics and Biomedicine, 372–377. IEEE.

[50] Syed, Z., and Finin, T. 2011. Creating and Exploiting a Hybrid Knowledge Base for

Linked Data. In Agents and Artificial Intelligence. Springer. 3–21.

92

[51] Syed, Z.; Finin, T.; Mulwad, V.; and Joshi, A. 2010. Exploiting a Web of Semantic

Data for Interpreting Tables. In Proceedings of the 2nd Web Science Conference.

[52] Szekely, P.; Knoblock, C. A.; Yang, F.; Zhu, X.; Fink, E.; Allen, R.; and Goodlander,

G. 2013. Connecting the Smithsonian American Art Museum to the Linked Data Cloud.

In Proceedings of the 10th Extended Semantic Web Conference. Awarded Best In-Use

Paper at ESWC 2013.

[53] Van Valkenhoef, G.; Tervonen, T.; Zwinkels, T.; De Brock, B.; and Hillege, H. 2013.

Addis: a decision support system for evidence-based medicine. Decision Support Sys-

tems 55(2):459–475.

[54] Vavliakis, K. N.; Grollios, T. K.; and Mitkas, P. A. 2010. RDOTE- transforming

relational databases into semantic web data. In 9th Int. Semantic Web Conf.

[55] Venetis, P.; Halevy, A.; Madhavan, J.; Pasca, M.; Shen, W.; Wu, F.; Miao, G.; and

Wu, C. 2011. Recovering semantics of tables on the web. In Proc. 37th VLDB.

[56] Wang, J.; Wang, H.; Wang, Z.; and Zhu, K. Q. 2012. Understanding tables on the

web. In Conceptual Modeling. Springer. 141–155.

[57] Wu, W.; Li, H.; Wang, H.; and Zhu, K. Q. 2012. Probase: A probabilistic taxon-

omy for text understanding. In Proceedings of the 2012 ACM SIGMOD International

Conference on Management of Data, 481–492. ACM.

[58] Zhang, Z. 2014a. Disambiguating web tables using partial data. In 13th International

Semantic Web Conference (Posters & Demos), 213–216. CEUR Workshop Proceedings.

[59] Zhang, Z. 2014b. Learning with partial data for semantic table interpretation. Knowl-

edge Engineering and Knowledge Management 607–618.

93

[60] Zhang, Z. 2014c. Towards efficient and effective semantic table interpretation. In 12th

International Semantic Web Conference, 487–502. Springer International Publishing.

[61] Zwicklbauer, S.; Einsiedler, C.; Granitzer, M.; and Seifert, C. 2013. Towards dis-

ambiguating web tables. In 12th International Semantic Web Conference (Posters &

Demos), 205–208. CEUR Workshop Proceedings.

