
adfa, p. 1, 2011. 

© Springer-Verlag Berlin Heidelberg 2011 

UMBC_Ebiquity-SFQ: Schema Free Querying System 

Zareen Syed
1
, Lushan Han

1
, Muhammad Rahman

1
, 

Tim Finin
1
, James Kukla

2
, Jeehye Yun

2
  

1University of Maryland Baltimore County 

1000 Hilltop Circle, MD, USA 21250 

zsyed@umbc.edu, lushan1@umbc.edu, mrahman1@umbc.edu, 

finin@cs.umbc.edu 

 
2RedShred 

5520 Research Park Drive, Suite 100 

Baltimore, MD 21228 

jkukla@redshred.net, jyun@redshred.net 

Abstract. Users need better ways to explore large complex linked data re-

sources. Using SPARQL requires not only mastering its syntax and semantics 

but also understanding the RDF data model, the ontology and URIs for entities 

of interest. Natural language question answering systems solve the problem, but 

these are still subjects of research. The Schema agnostic SPARQL queries task 

defined in SAQ-2015 challenge consists of schema-agnostic queries following 

the syntax of the SPARQL standard, where the syntax and semantics of opera-

tors are maintained, while users are free to choose words, phrases and entity 

names irrespective of the underlying schema or ontology. This combination of 

query skeleton with keywords helps to remove some of the ambiguity. We de-

scribe our framework for handling schema agnostic or schema free queries and 

discuss enhancements to handle the SAQ-2015 challenge queries. The key con-

tributions are the robust methods that combine statistical association and se-

mantic similarity to map user terms to the most appropriate classes and proper-

ties used in the underlying ontology and type inference for user input concepts 

based on concept linking. 

 

Keywords: Information Storage and Retrieval, User Interfaces, Semantic web 

1 Introduction 

Developing interfaces to enable casual, non-expert users to query complex structured 

data has been the subject of much research over the past forty years. Since such inter-

faces allow users to freely query data without understanding its schema, knowing how 

to refer to objects, or mastering the appropriate formal query language, we call them 

as schema-free or schema-agnostic query interfaces. Schema-agnostic query interface 

systems address a fundamental problem in NLP, Database and AI: bridging the gap 

between a user’s conceptual model of the world and the machine’s representation.  



Schema-agnostic query interface systems are challenged by three hard problems. 

First, we still lack practical interfaces. Unrestricted natural language interfaces (NLIs) 

are easy for people to use but hard for machines to process accurately. Today’s NLP 

technology is still not reliable enough to extract the relational structure from natural 

language questions with high accuracy. Keyword-based query interfaces, on the other 

hand, are easy to use but have limited expressiveness and still suffer from the ambigu-

ity inherent in the natural language terms used as keywords. 

A second problem is that people have many different ways to express the same 

meaning, which can result in vocabulary and structure mismatches between the user's 

query and the machine's representation. This is often referred to as the semantic het-

erogeneity problem. Today we still heavily rely on ad hoc and labor-intensive ap-

proaches to deal with the semantic heterogeneity problem. 

Third, the Web has seen increasing amounts of open-domain semantic data with 

heterogeneous or unknown schemas.  Processing such data presents challenges to 

traditional NLI systems, which typically require  well-defined schemas. 

In this paper, we present our system to address these problems. We introduce a 

new schema-free query interface that we call the SFQ interface, in which the user 

explicitly specifies the relational structure of the query as a graphical “skeleton” and 

annotates it with freely chosen words, phrases and entity names. By using SFQ inter-

face, we work around the unreliable step of extracting complete relations from natural 

language queries. 

One motivation for our work is an enhancement to a system we are developing 

with RedShred, LLC that will help people identify and analyze business documents 

that include RFPs, RFQ, calls for proposals, BAAs, solicitations and similar business 

documents.  Our prototype uses document analysis, information retrieval, NLP infor-

mation extraction and question answering techniques and is largely domain independ-

ent.  It understands general RFP-related concepts (e.g., proposal deadlines, duration, 

deliverables, security requirements, points of contacts, etc.) and can extract and or-

ganize information to help someone quickly evaluate opportunities. However, it does 

not have built-in knowledge of any particular domain, such as software development 

or material science, and is thus unable to address potentially critical characteristics 

involving them.  For RFPs about software development, for example, we may need to 

know if the work requires a particular programming language (e.g., Java), is targeted 

for a given system or architecture (e.g., iOS), or has special requirements (e.g., 3DES 

encryption). 

Given the breadth and variety of domains of interest, manually developing and 

maintaining custom ontologies, language models and systems for each is not viable.  

We are currently working on a system for automatic discovery of slots and fillers 

from RFP documents similar to infoboxes in Wikipedia and that are linked to DBpe-

dia ontology. We plan to build on the results of this work to be able to provide sche-

ma free query support over extracted slots and fillers from RFP documents. 

Our framework makes three main contributions.  It uses robust methods that com-

bine statistical association and semantic similarity to map user terms to the most ap-

propriate classes and properties used in the underlying ontology.  Second, it uses a 

novel type inference approach based on concept linking for predicting classes for 



subjects and objects in the query. Third, it implements a general property mapping 

algorithm based on concept linking and semantic text similarity. 

The remainder of the paper proceeds as follows. Section two describes our word 

similarity model. Sections three and four give an overview of our concept level asso-

ciation model trained on DBpedia and our query mapping approach. Sections five and 

six describe our enhancements to support the challenge queries and generating final 

SPARQL queries and in section seven we present the conclusions. 

2 Semantic Similarity Component 

We need to compute semantic similarity between concepts in the form of noun 

phrases, such as City and Soccer Club, and between relations in the form of short 

phrases, such as crosses and birth date. A common approach is using distributional 

similarity [HA68], which is a statistical approach that uses a term’s collective context 

information drawn from a large text corpus to represent the meaning of the term. Dis-

tributional similarity is usually applied to words but it can be generalized to phrases 

[LI01]. However, the large number of potential input phrases precludes pre-

computing and storing distributional similarity data and computing it dynamically as 

needed would take too long. Thus, we assume that the semantic of a phrase is compo-

sitional on its component words and we apply an algorithm to compute semantic simi-

larity between two phrases using word similarity. 

We pair words from two phrases in a way such that it maximizes the sum of word 

similarities of the resulting word-pairs, similar to [MI06]. The maximized sum of 

word similarities is further normalized by the number of word-pairs. Computing se-

mantic similarity between noun phrases requires additional work. Before running 

algorithm on two noun phrases, we compute the semantic similarity of their head 

nouns. If it exceeds an experimentally determined threshold we run the algorithm and 

if not, the phrases have similarity of zero. Thus we know that dog house is not similar 

to house dog. 

Our word similarity measure is based on distributional similarity and latent seman-

tic analysis, which is further enhanced using human crafted information from Word-

Net. Our distributional similarity approach, based on [RA03], yields a correctness of 

92% on TOEFL synonym test, which is the best performance to date. By using a sim-

ple context of bag of words, the similarity between words even with different parts of 

speech can also be computed. 

Although distributional similarity has an advantage that it can compute similarity 

between words that are not strictly synonyms, the human judgments of synonymy 

found in WordNet are more reliable. Therefore, we give higher similarity to word 

pairs which are in the same WordNet synset or one of which is a near hypernym of 

the other by adding 0.5 and 0.2 to their distributional similarities, respectively. We 

also boost similarity between a word and its derivationally related forms by increasing 

their distributional similarity by 0.3. We do so because a word can often represent the 

same relation as its derivationally related forms in our context. As examples, “writer” 

work as the almost same relation to “write” and so does “produce” to “product” be-



cause “writer” means the subject that writes and “product” means the thing being 

produced. 

In our case, the lexical categories of words are not important and only their seman-

tics matters. However, the value of distributional similarity of words is significantly 

lowered if they are not in the same lexical category. To counteract this drawback, we 

put words into the same lexical category using their derivational forms and compute 

distributional similarity between their aligned forms. Then we compare this value 

with their original similarity and use the larger one as their similarity. 

The DBpedia ontology is a shallow ontology and many subclasses of Person class 

are not included. Consequently, it is possible that some person subtypes appearing in 

the user query have no similarity to any existing person class in the DBpedia ontolo-

gy. To address this problem, we enforce a lower bound similarity, 0.25, between per-

son and any person subtype so that these subtypes can at least be mapped to the 

DBpedia Person class. 

We use WordNet to find whether a concept in the semantic graph is a person sub-

type or not. An ideal semantic similarity measure in our scenario should give high 

similarity to the terms that can work as synonymous substitution and low similarity to 

those not. The order of terms with high similarity score is not critical because statisti-

cal association can discriminate them and find the most reasonable one. Our imple-

mentation has been developed using this strategy. Semantic similarity is an active 

research field in natural language processing community and has been improved 

steadily over the years [LI98, HA13]. This component can be enhanced further to 

benefit from recent progress in this field. 

3 Concept level Association Knowledge Model (CAK Model) 

We use fully automatic approaches to obtain necessary domain knowledge for inter-

preting SFQs. Instead of a manually maintained lexicon, we employ a computational 

semantic similarity measure for the purpose of locating candidate ontology terms for 

user input terms. Semantic similarity measures enable our system to have a broader 

linguistic coverage than that offered by synonym expansion by recognizing non-

synonymous terms that have very similar meaning. For example, the properties author 

of and college are good candidates for the user terms “wrote” and “graduated from”, 

respectively. Semantic similarity measures can be learned from a domain-dependent 

large corpus. 

We know birds can fly but trees cannot and that a database table is not kitchen ta-

ble. Such knowledge is essential for human language understanding. We refer to this 

as Concept level Association Knowledge (CAK). Domain and range definitions for 

properties in ontologies, argument constraint definitions of predicates in logic systems 

and schemata in databases all belong to this knowledge. However, manually defining 

this knowledge for broad or open domains is a tedious task at best. We therefore, 

learn Concept-level Association Knowledge statistically from instance data (the 

“ABOX” of RDF triples) and compute degree of associations between concepts based 

on co-occurrences. We count co-occurrences between schema terms indirectly from 



co-occurrences between entities because entities are associated with types. We then 

apply a statistical measure, Pointwise Mutual Information (PMI) [CI07, DR10], to 

compute degree of associations between classes and properties and between two clas-

ses. The detailed approach is available in [HA12]. 

We used the learned CAK and semantic similarity measures for mapping a user 

query to a corresponding SPARQL query which we discuss in the next section. 

4 Query Interpretation 

In this section, we present the main steps in mapping terms in a SFQ to DBpedia on-

tology terms. The approach focuses on vocabulary or schema mapping, which is done 

without involving entities.  

For each SFQ concept or relation, we generate a list of the k most semantically 

similar candidate ontology classes or properties. In the example in Figure 1, candidate 

lists are generated for the five user terms in the SFQ, which asks Which author wrote 

the book Tom Sawyer and where was he born?. Candidate terms are ranked by their 

similarity scores, which are displayed to the right of the terms. 

 

 

Fig. 1. A ranked list of candidate ontology terms 

Each combination of ontology terms, with one term coming from each candidate list, 

is a potential query interpretation, but some are reasonable and others not. Disambig-

uation here means choosing the most reasonable interpretations from a set of candi-

dates. An intuitive measure of reasonableness for an interpretation is the degree to 

which its ontology terms associate in the way that their corresponding user terms 

connect in the SFQ. 



For example, since “Place” is connected by “born in” in Figure 1, their correspond-

ing ontology terms can be expected to have good association. Therefore, the combina-

tion of Place and birthPlace makes much more sense than that of Place and 

@cylinderBore because CAK tells us that a strong association holds between Place 

and birthPlace but not @cylinderBore. 

As you can see, we use the degree of association from CAK to measure reasona-

bleness. As another example, CAK data shows that both the combinations of Writer + 

writer and Writer + author are reasonable interpretations of the SFQ connection “Au-

thor → wrote”. However, since only author not writer has a strong association with 

the class Book, the combination of Writer, author and Book produces a much better 

interpretation than that of Writer, writer and Book for the joint SFQ connection “Au-

thor → wrote → Book”. 

We select two types of connections in a SFQ for computing the overall association 

of an interpretation. They are the connections between concepts and their relations 

(e.g., “Author” and “wrote”) and the connections between direct connected concepts 

(e.g., “Author” and “Book”). We exclude indirect connections (e.g., between “Book” 

and “born in” or between “Book” and “Place”) because they do not necessarily entail 

good associations. 

If candidate ontology terms contained all the substitutable terms, we could rely 

solely on their associations for disambiguation. However, in practice many other re-

lated terms are also included and therefore the similarity of candidate ontology terms 

to the user terms is an important feature to identify correct interpretations. We exper-

imentally found that by simply weighting their associations by their similarities we 

obtained a better disambiguation algorithm. 

We use a linear combination of three pairwise associations to rank interpretations.  

The three are (i) the directed association from subject class to property (ii) the di-

rected association from property to object class and (iii) the undirected association 

between subject class and object class, all weighted by semantic similarities between 

ontology terms and their corresponding user terms.  

Our approach has a unique feature that it resolves mappings only using information 

in concept space, i.e., at the schema level. This makes it much more scalable than 

those that directly search into both instance and concept space for possible matches 

since concept space is much smaller than instance space. 

5 Type Inference and Property Mapping 

The SFQ system requires users to provide types or classes for subjects and objects in 

the query triples, however, this information is not available in many challenge que-

ries. To bridge the gap we added a module for type inference for the challenge que-

ries. The type inference is based on linking subject and object in the triple to Wikipe-

dia concepts and retrieving the associated DBpedia ontology classes.  

We use entity linking approach based on Wikitology [SY11] to link any named en-

tities to concepts in Wikitology. We further enhanced Wikitology’s entity linking 

system with gazetteers of named entities. For linking other topical concepts and key-



words we used Wikipedia Miner service [MI08]. Wikipedia Miner also links named 

entities, however when we tested with few examples we found Wikitology’s named 

entity linking relatively more accurate and therefore we used Wikitology for named 

entity linking and Wikipedia Miner for linking other types of concepts. For Wikipedia 

Miner we used a probability threshold of 0.4. We tested with a lower threshold to 

improve recall but observed decrease in accuracy. For example, for the question 

“Which river does the Brooklyn Bridge cross?”, the service predicted a link for 

“cross” to “http://en.wikipedia.org/wiki/Cross” which was not relevant. A threshold 

of 0.4 worked much better. 

After linking the subject and object to concepts in Wikipedia we retrieve the asso-

ciated DBpedia ontology classes. For named entities we detect the main type of 

named entity i.e. Person, Place or Organization based on associated DBpedia classes 

or mapped Schema.org classes. For example, for “Prince William, Duke of Cam-

bridge” the associated type in DBpedia ontology is “BritishRoyalty” which is a sub-

class of “Royalty” which in turn is a subclass of “Person”. We restricted to detecting 

main named entity types instead of fine-grained entity types as many entities in Wik-

ipedia do not have a fine grained entity type associated with them. For other topical 

concepts we selected the most generalized class below the “Thing” class. For cases 

where the property values are literals, we fetch the matching property from DBpedia 

ontology and fetch the xsd type for the range of the property and map all numeric 

types such as integer, float etc. to “Number” type which is accepted by the SFQ sys-

tem.  

Table 1. Type Inference for Challenge Queries 

Triples in Query 
Triples input to SFQ system 

(after type inference) 

?uri type Person . 

?uri dbo:birthPlace res:Vienna . 

?uri dbo:deathPlace res:Berlin . 

?uri/Person, bornIn, Vienna/Place 

?uri/Person, diedIn, Berlin/Place 

?uri locatedOn Earth . 

?uri type Mountain . 

?uri height ?height . 

?uri/Mountain, locatedOn, Earth/CelestialBody 

?uri/Mountain, height, ?height/Number 

Jane_Fonda marriedTo ?uri . Jane_Fonda/Person spouse ?uri . 

 

In additional to type inference we also try to map the user input property to DBpe-

dia property based on linked concept. After linking the subject or the object to Wik-

ipedia, we retrieve all associated DBpedia properties for that concept and compute 

similarity with the property input by the user based on the semantic text similarity 

module. For higher accuracy we only consider matching the property if the similarity 

score is at least 0.7.   Table 1 shows examples of type inference and property map-

ping. The first example shows type inference for Vienna and Berlin to “Place”. The 



second example shows numeric type inference of height to “Number”. The third ex-

ample shows property mapping from “marriedTo” to “spouse” using concept linking 

to Jane_Fonda and then retrieving the most similar property to the given property 

using semantic similarity. 

6 SPARQL Query Generation and Selection 

After user terms are disambiguated and mapped to appropriate ontology terms, trans-

lating a SFQ to SPARQL is straightforward. Figure 2 shows a sample SPARQL query 

produced by the system. Classes are used to type the instances, such as ?x a 

dbo:Writer, and properties used to connect instances as in ?0 dbo:author ?x. The 

bif:contains property is a built-in text search function which find literals containing 

specified text. The named entities in the SFQ can often be disambiguated by the con-

straints in the SPARQL query. In this example, Tom Sawyer has two constraints: it is 

in the label of some book and is written by some writer. For the challenge queries 

there were cases of aggregates, filtering and ordering. For such queries we explicitly 

appended the respective clauses to the SPARQL produced by the system before que-

rying DBpedia. 

 

PREFIX dbo:<http://dbpedia.org/ontology/> 

SELECT DISTINCT ?x, ?y WHERE { 

    ?0 a dbo:Book . 

    ?0 rdfs:label ?label0 . 

    ?label0 bif:contains ’"Tom Sawyer"’ . 

    ?x a dbo:Writer . 

    ?y a dbo:Place . 

    {?0 dbo:author ?x} . 

    {?x dbo:birthPlace ?y} . 

} 

Fig. 2. SPARQL Query generated by the system 

Our Schema Free Querying system generates a ranked list of SPARQL queries. Some 

of the queries may not return results as the corresponding DBpedia instance may not 

have a property with the same name. For example, “mayor” is a valid property in 

DBpedia but for the case of Berlin, the property used is “leader”. In such cases the top 

ranked query may not return any results. Therefore, we iterate over ranked queries 

until we find a query that returns results from DBpedia. 

7 Conclusions 

The schema-free structured query approach allows people to query the DBpedia da-

taset without mastering SPARQL or acquiring detailed knowledge of the classes, 



properties and individuals in the underlying ontologies and the URIs that denote them. 

Our system uses statistical data about lexical semantics and RDF datasets to generate 

plausible SPARQL queries that are semantically close to schema-free queries. We 

described our framework for handling schema agnostic or schema free queries and 

discussed enhancements to handle SAQ-2015 challenge queries. The key contribu-

tions of our approach are the robust methods that combine statistical association and 

semantic similarity to map user terms to the most appropriate classes and properties 

used in the underlying ontology and type inference for user input concepts based on 

concept linking. 

8 References 

[CI07] Philipp Cimiano, Peter Haase, and Jörg Heizmann. Porting Natural Language 

Interfaces between Domains: an Experimental User Study with the ORAKEL 

System. Proc. 12th Int. Conf. on Intelligent User Interfaces, pp. 180–189. 

ACM, 2007. 

[DR10] Mark Dredze, Paul McNamee, Delip Rao, Adam Gerber, and Tim Finin. 

Entity Disambiguation for Knowledge Base Population, Proc. 23rd Int. Conf. 

on Computational Linguistics, August 2010. 

[HA12] Lushan Han, Tim Finin, and Anupam Joshi, Schema-free Structured Query-

ing of DBpedia Data, In Proc. 21st ACM International Conference on Infor-

mation and Knowledge Management, pp. 2090-2093. ACM, 2012. 

[HA13] Lushan Han, Tim Finin, Paul McNamee, Anupam Joshi and Yelena Yesha, 

Improving Word Similarity by Augmenting PMI with Estimates of Word 

Polysemy, IEEE Transactions on Knowledge and Data Engineering, IEEE 

Computer Society, v25n6, pp. 1307-1322, 2013. 

[HA14] Lushan  Han, Schema Free Querying of Semantic Data, Ph.D. Dissertation, 

University of Maryland, Baltimore County, August 2014. 

[HA68] Zellig Sabbettai Harris. Mathematical Structures of Language. Wiley, New 

York, 1968. 

 [KA14] Abhay Kashyap, Lushan Han, Roberto Yus, Jennifer Sleeman, Taneeya 

Satyapanich, Sunil Gandhi and Tim Finin, Meerkat Mafia: Multilingual and 

Cross-Level Semantic Textual Similarity systems, Proc. 8th Int. Workshop 

on Semantic Evaluation, August 2014 

[LI01]  Dekang Lin and Patrick Pantel, Discovery of inference rules for question 

answering, Natural Language Engineering, 7(4):343–360, 2001. 

[LI98]  Dekang Lin. Automatic retrieval and clustering of similar words, Proc. 17th 

Int. Conf. on Computational Linguistics, pp. 768–774, Montreal, CN, 1998. 



[MI06]  Mihalcea, Rada, Courtney Corley, and Carlo Strapparava. Corpus-based and 

Knowledge-based Measures of Text Semantic Similarity. In Proc. 21st Na-

tional Conf. on Artificial Intelligence, pages 775–780, 2006. 

[MI08] David Milne and Ian H. Witten. "Learning to Link with Wikipedia." In Pro-

ceedings of the 17th ACM conference on Information and knowledge man-

agement, pp. 509-518. ACM, 2008. 

[RA03] Reinhard Rapp, Word sense discovery based on sense descriptor dissimilari-

ty, Proc. 9th Machine Translation Summit, pp. 315–322, 2003. 

[SY11] Zareen Syed and Tim Finin, Creating and Exploiting a Hybrid Knowledge 

Base for Linked Data, in Agents and Artificial Intelligence, Revised Selected 

Papers Series: Communications in Computer and Information Science, v129, 

Springer, April 2011. 

 


