Querying RDF Data with Text Annotated Graphs

Lushan Hantt Tim Finint

1000 Hilltop Circle
Baltimore, MD 21250, USA

{lushan1, finin, joshi}@umbc.edu

ABSTRACT

Scientists and casual users need better ways to query RDF
databases or Linked Open Data. Using the SPARQL query
language requires not only mastering its syntax and seman-
tics but also understanding the RDF data model, the on-
tology used, and URIs for entities of interest. Natural lan-
guage query systems are a powerful approach, but current
techniques are brittle in addressing the ambiguity and com-
plexity of natural language and require expensive labor to
supply the extensive domain knowledge they need. We in-
troduce a compromise in which users give a graphical “skele-
ton” for a query and annotates it with freely chosen words,
phrases and entity names. We describe a framework for in-
terpreting these “schema-agnostic queries” over open domain
RDF data that automatically translates them to SPARQL
queries. The framework uses semantic textual similarity to
find mapping candidates and uses statistical approaches to
learn domain knowledge for disambiguation, thus avoiding
expensive human efforts required by natural language inter-
face systems. We demonstrate the feasibility of the approach
with an implementation that performs well in an evaluation
on DBpedia data.

1. INTRODUCTION

Increasing amounts of scientific data in relational databases
have been published on the Web as Linked Open Data (LOD)
in RDF to facilitaten data reusability and interoperability
[5]. The most common query language for RDF data is
SPARQL, an SQL-like query and update language speci-
fied by the W3C. However, there are still significant barriers
between scientists and RDF data because scientists often
need pose ad hoc queries against scientific RDF data but
they have difficulties in creating SPARQL queries, especially
when they need work on other people’s RDF data.

In fact, developing interfaces to enable casual, non-expert
users to query complex structured data has been the subject
of much research over the past forty years. A long stand-
ing goal has been to allow people to query a database or
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knowledge-base in natural language, an approach that has
seen much work since the 1970s [48] 20, (3] [14] [1]. More
recently there have been interests in developing natural lan-
guage interfaces (NLIs) for XML data [28] and collections of
general semantic data encoded in RDF [32][8,33][10].

However, there are two major obstacles for NLI systems
to be widely adopted. First, current NLP techniques are
still brittle in addressing the ambiguity and complexity of
natural language in general [1,[24]. Second, it requires ex-
tensive domain knowledge for interpreting natural language
questions. Domain knowledge typically consists of a lexi-
con, which maps a user’s vocabulary to an ontology vocab-
ulary or logical expressions in NLI systems, and a world
model, which specifies the relationships between the vocab-
ulary terms (e.g., subclass relationships) and the constraints
on the types of arguments of properties. Both can be expen-
sive in terms of human labor, especially when dealing with
data in broad domains or with heterogeneous schema, such
as LOD data [5].

Querying structured data with keywords and phrases is an
alternative approach that has gained popularity recently [21]
149, 45,[42]. Keyword query systems are more robust than
NLI systems because they typically employ a much simpler
mapping strategy: map the keywords to the set of elements
in the knowledge base that are structurally or associationally
close, such as the most specific sub-tree for XML databases
and the smallest sub-graph for RDF databases [45].
However, keyword queries have limited expressiveness and
inherit ambiguity from the natural language terms used as
keywords. For example, the keyword query “president chil-
dren spouse” can be interpreted either as “give me children
and spouses of presidents” or “who are the spouses of the
children of presidents”.

To precisely query structured data, we must be able to
specify the relational structure between the query’s key ele-
ments. While this can be done in natural language, process-
ing complex, unconstrained sentences is difficult and their
potential ambiguity makes choosing the intended interpre-
tation challenging. We introduce a compromise that we call
a Schema-Agnostic Query (SAQ) interface, in which users
specify a graphical “skeleton” for a query and annotate it
with freely chosen words, phrases and entity names. An
example is shown in Figure [1l By asking users to specify
the semantic relations between entities in a query, we avoid
the difficult problem of relation extraction from natural lan-
guage sentences. While the full expressive power of human
language is not supported, people are able to use familiar
vocabulary terms in composing a query.



7 ‘bornin * ‘author | The Adventures of Tom Sawyer
Book

Figure 1: A Schema-Agnostic Query for “Where was
the author of the Adventures of Tom Sawyer born?”.

We describe a framework for interpreting SAQs over broad
or open domain RDF semantic data and automatically trans-
lating them to SPARQL. Instead of using a manually main-
tained lexicon, we employ a computational semantic simi-
larity measure to locate candidate ontology terms for user
input terms. Semantic similarity metrics enable our system
to have a broader linguistic coverage than that offered by
synonym expansion by recognizing non-synonymous terms
with very similar meaning. For example, the property au-
thor of is a good candidate for the user term “wrote” and
college is a good candidate for “graduated from”. Seman-
tic similarity measures can be automatically learned from a
large domain-specific corpus.

We introduce an approach that automatically learns sta-
tistical domain knowledge from RDF data that is necessary
for disambiguation. This includes knowledge pertaining to
association strength between concepts and properties and
between concepts themselves. Such knowledge is essential
for human language understanding. For example, the term
‘Titanic’ in the query “Who are the actors of Titanic” could
refer to a ship or a film, but the latter is more likely be-
cause films commonly have actors but other potential types
(e.g., ship, book, game, place, album, etc.) do not. We
refer to this as Concept Association Knowledge (CAK). Do-
main and range definitions for properties in ontologies, ar-
gument constraint definitions of predicates in logic systems
and database schemata all belong to this knowledge. How-
ever, manually defining this knowledge for broad or open
domains is tedious and expensive.

With the automatically learned CAK and semantic simi-
larity measures, we present a straightforward but novel al-
gorithm that disambiguates a SAQ and constructs a corre-
sponding SPARQL query to produce an answer. Our algo-
rithm resolves mappings using only concept-level informa-
tion, i.e., at the schema level. This makes the approach
much more scalable than those that directly search into in-
stance data for possible matches since concept space is much
smaller than instance space. Our preliminary work has been
published in [17].

Our initial experiments were carried on DBpedia [2], which
represents Wikipedia data as RDF. DBPedia is the key com-
ponent of the Linked Open Data (LOD) and serves as a mi-
crocosm for larger, evolving LOD collections. It provides
a broad-based, open domain ontology containing hundreds
of classes and thousands of properties. Heterogeneity is
a problem of the DBpedia ontology because it supplants
the categories and attribute names of Wikipedia infoboxes,
which were independently designed by different communi-
ties. Terms having similar linguistic meanings are used for
different contexts. For example, the property locatedInArea
is for mountains and the property location is for companies.

Our current approach can be readily applied to any RDF
dataset as long as it holds the following properties: (i) class,
property and entity names are human-readable words or
short phrases; (ii) all relations are binary, (iii) there are no
blank nodes or auxiliary nodes; and (iv) only simple value

types like zsd:-integer or zsd:date are used. Property (i) can
be satisfied by properly naming the ontology terms. Prop-
erty (ii) has already been met by considerable existing RDF
data, such as DBPedia. For higher arity relations, one can
model them into binary relations by introducing auxiliary
nodes. For example, consider a 4-ary relation “a person
works at a organization with a title and salary”. We can
create an auxiliary node with the type JobPosition and then
link the person, organization, title and salary instances or
attributes to the central job poistion instance. However,
dealing with higher arity relations requires the ability of
querying through auxiliary nodes, or more generally, map-
ping user relations to RDF graph paths rather than single
properties. The approach in this paper does not provide
solution to this problem, but we are addressing it in our
ongoing research [16]. Supporting complex attribute types
also needs the ability to map single query relations to RDF
paths that contains the structure of the complex data types.

In the next four sections we present related work, query
interface, describe the automatic learning of concept asso-
ciation knowledge, detail the algorithm for interpreting an
SAQ and translating it into SPARQL and present our imple-
mentation of semantic similarity measures. An evaluation
of our prototype system on test questions from the 2011
QALD workshop is given in Section[7. We conclude our pa-
per by summarizing our contributions and ongoing work in

Section (8.

2. RELATED WORK

Natural Language Interface to Database (NLIDB) systems
have been extensively studied since the 1970s [1] and typ-
ically take NL sentences as queries and used syntactic, se-
mantic and pragmatic knowledge to produce corresponding
SQL queries. Early systems like LUNAR and LADDER
[20] were heavily customized to a particular application and
difficult to port to other application domains. Later systems,
including TEAM [14] and MASQUE [3], were designed to be
portable, allowing knowledge engineers to reconfigure the
system when moving to a new domain or letting end users
add unknown words through user interaction. A common
problem of the NLIDB systems in 70s and 80s is that they
had a restricted linguistic coverage since they depended on
manually-coded semantics. The domain-specific parsers and
the semantic rules can fail to tolerate even a slight change
in the wording of a question.

Starting this century, a number of portable NLI systems
have been developed for databases [35], XML databases [2§]
and ontologies [32, 8] [10]. PRECISE [35] reduced question
interpretation to a maximum bipartite matching problem
between the tokens in an NL query and database elements.
NaLIX [28] translates NL questions to XML queries by map-
ping the adjacent NL tokens in the parse tree to the neigh-
boring XML elements in the database. ORAKEL con-
structs a logical lambda-calculus query from a NL question
using a recursive computation guided by the question’s syn-
tactic structure. ORAKEL provides a graphical frontend
to help domain experts to generate domain-specific lexicon.
FREyA [10] generates a parse tree, maps linguistic terms
in the tree to ontology concepts, and formulates a SPARQL
query from them by exploiting their associated domain and
range restrictions. FREyA uses dialogs to interact with the
user, where the user can specify the mappings from linguis-
tic terms to ontology concepts. Aqualog translates the



NL query to linguistic or query triples and then lexically
match these to RDF triples. These systems either assume
there is no vocabulary mismatch problem or use manually
crafted domain knowledge to address the problem.

More recently, there is a growing interest in open do-
main NLI systems, such as True Knowledge [47] and Pow-
erAqua [33]. Both systems choose pragmatic approaches to
turn NL questions into relations. True Knowledge creates
1,200 translation templates to match NL questions. Power-
Aqua first performs shallow parsing to obtain tokens, POS
tags and chunks from NL questions and then use a set of
manually-made pattern rules to generate question types and
relations. True Knowledge supports user interaction and
exploits a repository storing user rephrasing of the ques-
tions it cannot understand. PowerAqua extended Aqualog
by adding components for merging facts from different on-
tologies and ranking the results using confidence measures.
PowerAqua runs a potentially expensive graph matching al-
gorithm comparing the query graph to the RDF graph at
both data and metadata levels.

Substantial research has been done on applying keyword
search on structured data, including relational database [21],
XML [49, 42] and RDF [45]. Such keyword-based approaches
cannot express complex queries and often mix textual con-
tent from meta-data and data. A few approaches [9]
extend keyword queries with limited structure information,
allowing users to specify entity types and attribute-value
pairs. However, they are still unable to support querying
complex semantics.

Schema-Free XQuery and Schema-Free SQL [27] are
systems that enable users to query databases using relaxed
or under-specified formal queries. Although they are called
”Schema-Free”, users are still required to remember, if not
exactly, table and column names or XML element names as
the systems only use surface similarity or string similarity
to match terms. Furthermore, users are still not released
from the burden of knowing the syntax of a (relaxed) formal
query language in order to query databases.

Our work is related to Query By Example (QBE) [51],
which also provides a graphical interface for users to enter
queries but in visual tables. It allows users to select tables
and columns rather than type their names. However, the
manually selecting cost increases rapidly as the number of
tables and/or columns grows, especially when users are not
familiar with the tables. Moreover, users need to understand
the concept of joining tables using key fields over multiple
tables, which are not intuitive to non-experts. In the con-
text of querying LOD RDF data, manually selecting classes
or properties become even more difficult due to their big
numbers.

There are some works on graphical query languages or
tools that allow users to visually compose SPARQL queries
by navigating, selecting and linking ontology terms repre-
sented as graphical elements [15, 41, [22]. While their sys-
tems and our system all use a graphical interface, our system
is conceptually different from theirs. The input to our sys-
tem is schema-agnostic queries, which are automatically dis-
ambiguated and translated into SPARQL queries. Their sys-
tems are essentially graphical interfaces to structured text
SPARQL query, which are more like QBE in database area.
Users still need to understand what graphical ontology el-
ements represent and how to use the tools, which involves
significant learning curve.
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Figure 2: Two examples of default relation.

QODI is an automatic ontology-based data integra-
tion system, which describes an approach to map a query
graph into a source ontology. However, since their match-
ing candidates are generated from all possible paths of the
graphs, their approach is limited to only narrow domain on-
tologies due to computation complexity. Another key differ-
ence is that QODI relies on path label/string similarity and
ontology structures to perform mapping while our system
uses semantic similarity measures and statistical properties
of the datasets.

3. SCHEMA-AGNOSTIC QUERY INTERFACE

In our approach, a schema-agnostic query (SAQ) is repre-
sented as a graph with nodes denoting entities and links
representing semantic relations between them. Each entity
is described by two unrestricted terms: its name or value and
its concept (i.e., class or type). Figure[llshows an example of
a SAQ with three entities (a place, person and book) linked
by two relations (born in and author). Users flag entities
they want to see in the results with a ‘?’ and flag those they
do not with a “*’. Terms for concepts can be nouns (book) or
simple noun phrases (soccer club) and relations can be verbs
(wrote), prepositions (in), nouns (author), or simple phrases
(born in). Users are free to reference concepts and relations
in their own words as in composing a NL question.

We currently require concept names from users, enabling
our system to resolve mappings in concept space rather than
instance space. The requirement stems from the observation
that people find it easy to explicitly tag the types but it is
much harder for machines to infer them since it adds an
additional layer of entity recognition and disambiguation.
However, we are developing techniques to relax this, as de-
scribed in the Section [8.

Relation names can be omitted when there is a single “ap-
parent” relation between two concepts that corresponds to
the user’s intended one. The “apparent” relation, which we
call the default relation, is typically a has-relation or in-
relation, as shown in the examples in Figure[2. In the first
example, a has- or in-relation exists between City and Coun-
try and in the second, a has-relation also exists between
Author and Book. Our system uses a stop word list for fil-
tering relation names with words like in, has, from, belong,
of and locate. In this way, a has- or in-relation is automati-
cally turned into a default relation. The second example in
Figure [2 differs from the first in that it can be represented
without using a default relation. An author is a person who
writes. Since the relation information is implicit in one of
the two connected concepts, it need not be explicitly men-
tioned.

Like a typical database query language, SAQ can express
factual queries but not why or how questions. We currently
support neither numerical restrictions on entity value nor
aggregation functions working on the entity in question. We
plan to implement these features using form-based fields and
pull-down menus just beside the graphical area for drawing
SAQ and the detail designs can borrow many existing ideas



from modern QBE systems.

By using SAQ interface, we circumvent the yet unsolved
problem of relation extraction from NL sentences [6)
140, [4]. This is challenging because it has to confront hard
linguistic problems such as modifier attachment, anaphora
and fine-grained named entity recognition. Extracting rela-
tions requires information not only from syntactic level but
also from semantic level (e.g., understanding the meaning of
the word “same”). Sometimes it also needs common sense
knowledge to resolve ambiguity. While modern dependency
parsers [30, 11] can achieve about 90% term-wise precision
and 80% term-wise recall, what they generate are grammat-
ical relations between individual words rather than semantic
relations between entities. The best systems often rely on
machine learning models to extract relations and use depen-
dency parsers to produce features [6, 23], but their perfor-
mance is still far from reliable.

4. AUTOMATIC CAK LEARNING

We learn Concept-level Association Knowledge statistically
from instance data (the “ABOX” of RDF triples) and thus
avoid expensive human labor in building the knowledge man-
ually. However, instead of producing “tight” assertions such
as those used in RDF property domain and range constraints,
we generate the degree of associations. Classical logics that
make either true or false assertions are less suited in an
open-domain scenario, especially those created from hetero-
geneous data sources. For example, what is the range of
the property author in DBpedia? Both Writer and Artist
are not appropriate because the object of author could be
something other than Writer or Artist, for example Scien-
tist. Having Person as the range would be too general to
be useful for disambiguation. Thus in our case there is no a
fixed range for the property author but different classes do
have varied association strengths of being the type of the
object of author.

Computing statistical association requires counting the
number of occurrences of single terms and co-occurrences
of multiple terms in the ABOX. DBpedia’s ABOX is repre-
sented by two datasets: Ontology Infobox Properties, which
contains RDF triples for all relations between instances, and
Ontology Infobox Types, which provides all type definitions
for the instances.

Figure [3 shows how we count term occurrences and co-
occurrences for one relation. On left side of the figure is an
RDF triple describing a relation and the type definitions for
its subject and object. On right side of the figure are the
resulting occurrences and co-occurrences of terms'. We con-
sider direction in counting co-occurrences between classes
and properties. The directed co-occurrences are indicated
by an arrow between two terms, for example Book— author.
The occurrences of directed classes (e.g. Book—) are counted
separately from the occurrences of undirected classes (e.g.
Book).

Because an instance can have multiple types, the fact that
Mark_Twain is the object of the property dbo:authof re-
sults in four directed co-occurrences between the property
dbo:author and each of the types of Mark_Twain. Similarly,

!Co-occurrences of three terms are maintained for com-
puting conditional probability of properties connecting two
given classes, which we will use in the next section.

2dbo is the RDF namespace prefix for the DBpedia ontology

(Co-)occurrences

i
One Relation
'
: One Term Two Terms Three Terms
i
Types: ! Thing> +1 | | Thing>author +1 | | Thing—Thing—author +1
:The_Adventures_ 1. dbo:Thing ! Work>  +1 Work > author +1 | | Thing—Person—author +1
2. dbo:Work | Book> +1 Book > author  +1 Thing—Artist—author  +1
3. dbo:Book H SThing  +1 author>Thing +1 | | Thing—Writer—author +1
i SPerson +1 | | author>Person +1 | | Work—Thing—author +1
i SArtist  +1 | | author>Artist +1| | Work—Person—author +1
dbo:author L > Writer +1 author > Writer +1 | | Work—Artist—author  +1
author  +7 | | Thing—Thing  +1 | | Work—Writer—author +1
i Thing  +7 | | Thing—Person  +1| | Book—Thing—author +1
Types: H Work +4 | | Thing—Artist  +1 | | Book—Person—author +1
1.dbo:Thing i Book +4 Thing—Writer  +1 Book—Artist—author ~ +1
2.dbo:Person ' Person +3 Work—Thing +1 Book—Writer—author +1
3. dbo:Artist i Artist 43 Wmtf"erson +1
Wi ! Writer  +3 | | Work—Artist  +1
[ 4-doowriter | Work—Writer  +1
i Book~—Thing +1
! Book—Person  +1
1 Book—Artist +1
i Book—Writer  +1
]

Figure 3: This example shows how we count term
occurrences and co-occurrences in an RDF.

that The_Adventures_of Tom_Sawyer and Mark_Twain are
the subject and object of a relation produces twelve pair-
wise undirected co-occurrences between their types.

After both occurrence and co-occurrence counts are avail-
able, we employ the Pointwise Mutual Information (PMI)
(18] statistical measure to compute two types of associations:
(i) directed association between classes and properties and
(ii) undirected association between two classes.

We use the direction-sensitive PMI to denote, the associ-
ation between a class ¢ and a property p. PMI(c,p) mea-
sures the association degree between c as subject and p as
predicate whereas M(p, ¢) measures the one between p as
predicate and c as object. m is computed the same way as
PMI except that its class term is directed, as shown below.

PMi(c, p) = PMI(c —, p) (1)
PMi(p, ¢) = PMI(p, — c) (2)

Our CAK for the DBpedia ontology is stored as two sparse
matrices of PMI values between classes and properties and
between classes themselves. Figurel4/shows examples of top-
25 lists of most associated properties/classes for five terms
along with their PMI values. Examples 1 to 4 present, in or-
der, outgoing and incoming properties for two classes Writer
and Book. Note that datatype properties are indicated by
an initial @ character to distinguish them from object prop-
erties. Example 5 shows the classes that could be in domain
or range of the property author. Terms ending and starting
with — are potential domain and range classes, respectively.

In the first four examples, the top properties are the most
informative, such as @pseudonym and notable Work for Writer
and @isbn and @numberOfPages for Book. Lower ranked
properties tend to be less related to the classes. Example
two shows that both author and writer can be incoming
properties of Writer, though author is more related. On the
other hand, the third example shows that only author, not
writer, can describe Book. In the DBpedia ontology, author
and writer are used for different contexts with author used
for books. The class Writer has both author and writer as
incoming properties because writers can write things other
than books (e.g., films, songs). Example five illustrates the
heterogeneity of DBpedia’s ontology via the property au-
thor, which carries multiple senses (e.g., book author, Web
site creator). Noisy data in DBpedia can result in some ab-




1) Writer—: @pseudonym 6.0, notableWork 6.0, influencedBy 5.7,
skos:subject 5.7, influenced 5.5, movement 5.1, ethnicity 4.3, @birthName
4.3, @QdeathDate 4.2, relative 4.1, occupation 4.0, @birthDate 3.8, na-
tionality 3.4, education 3.4, child 3.3, award 3.2, deathPlace 3.2, Qac-
tiveYearsStartYear 3.2, partner 3.2, @QactiveYearsEndYear 3.1, genre 3.1,
spouse 3.0, birthPlace 3.0, citizenship 2.9, foaf:homepage 2.8

2) —Writer: author 6.8, influencedBy 6.4, influenced 6.1, basedOn 5.3,
illustrator 5.1, writer 5.1, creator 5.1, coverArtist 4.4, executiveProducer
4.4, relative 4.2, translator 4.1, lyrics 4.0, previousEditor 3.9, editor 3.6,
spouse 3.5, child 3.4, nobelLaureates 3.3, designer 3.2, partner 3.2, associ-
ateEditor 3.2, director 3.0, narrator 3.0, chiefEditor 2.9, storyEditor 2.8,
person 2.7

3) Book—: @isbn 5.8, @numberOfPages 5.8, @oclc 5.6, mediaType 5.6,
@lcc 5.6, literaryGenre 5.6, @Qdcc 5.5, author 5.4, coverArtist 5.2, @Qpubli-
cationDate 5.1, nonFictionSubject 5.1, illustrator 5.1, translator 4.9, pub-
lisher 4.9, series 4.5, language 4.0, subsequentWork 3.3, previousWork 3.2,
country 1.7, designer -1.9, @meaning -1.9, @formerCallsign -2.1, Qreview
-2.4, QcallsignMeaning -2.5, programmeFormat -2.6

4) —Book: notableWork 6.8, firstAppearance 6.4, basedOn 6.1, lastAp-
pearance 5.9, previousWork 5.8, subsequentWork 5.8, series 4.8, knownFor
3.8, notableldea 3.1, portrayer 2.6, currentProduction 2.3, related 1.9, au-
thor 1.7, nonFictionSubject 1.7, writer 1.4, translator 1.1, influencedBy
1.1, significantProject 1.1, award 0.9, coverArtist 0.8, relative 0.5, move-
ment 0.5, associatedMusicalArtist 0.5, associatedBand 0.4, illustrator 0.3

5) author: —Writer 6.8, Musical— 6.1, Play— 5.4, Book— 5.4, Website—
5.4, WrittenWork— 5.1, —Journalist 5.0, —Philosopher 4.9, — Website
4.8, —Artist 4.5, —Comedian 4.1, —Person 3.9, —ComicsCreator
3.8, —Scientist 3.6, TelevisionShow— 3.4, Work— 3.3, —Senator 3.2,
—FictionalCharacter 2.8, —PeriodicalLiterature 2.7, —Governor 2.4,
— Wrestler 2.3, —MemberOfParliament 2.3, —OfficeHolder 2.3, —Cleric
2.2, —MilitaryPerson 2.2

Figure 4: Examples of the top-25 most associated
properties/classes from DBpedia’s CAK

normal associations, as shown in the fourth example, where
author can be an incoming property of Book. Fortunately,
their association strength is typically low.

S. TRANSLATION

We start by laying out the three-step algorithm that maps
terms in a SAQ to terms in a target ontology, in this case
the DBpedia ontology. The algorithm focuses on vocabulary
or schema mapping, which is done without directly involv-
ing the instance data. We then discuss how to generate
SPARQL queries given the term mappings.

5.1 Mapping Algorithm

5.1.1 Step One: Candidate Generation

For each concept or relation in a SAQ, we generate a list of
the & most semantically similar candidate ontology classes
or properties. (See Section|6]for semantic similarity compu-
tation). A minimum similarity threshold, currently exper-
imentally set at 0.1, guarantees that all the terms have at
least some similarity. For a default relation, we generate the
g ontology properties most semantically similar to each of
its connected concepts because the semantics of a default re-
lation is often conveyed in one of its connected concepts. We
also generate % ontology properties that are most semanti-
cally similar to the words locate and own on the behalf of “in”
and “has”, respectively. Finally we assemble these into a list
of %k ontology properties. The value for k is a compromise
between the translation performance and the allowed com-
putation time and depends on the degree of heterogeneity
in the underlying ontologies and the fitness of the seman-
tic similarity measure. We currently use an experimentally
determined value of 20.

Figure [5] shows the candidate lists generated for the five
user terms in the query, with candidates ranked by their
similarity score. We use the Stanford part of speech (POS)

—_—

—
Place Author Book

TV | S VR | S

1. Place1.00 1. @cylinderBore 0.81 1. Writer1.00 1. author1.00 1. Book1.00

2. PopulatedPlace 081 | |2. producer0.34 2. #Writer0.75 2. writer 0.63 2. Work0.57

3. NaturalPlace 0.81 3. @production 0.34 3. Book0.54 3. editor 0.50 3. WrittenWork 0.55

4. HistoricPlace 0.80 4. custodian 0.32 4. WrittenWork 044 | |4. publisher0.45 4. Writer 0.49

5. #Location 0 46 5 @birthName 0.31 5. Joumnalist0.37 5. storyEditor 0 44 5. MusicalWork 0.44

6. City037 6. torchBearer0.29 6. #Publisher0.33 | |6. managingEditor0.43 6. #Publisher0.44

7. #Address 0.31 7. @birthDate 0.29 7. Work0.30 7. @editorTitle 0.43 7. #Work 043

8 Event030 8 curentProduction028 | |8 Artist029 8 artist043 8 #Author 0.40

9. #City0.27 9 flagBearer0.28 9. Philosopher0.28 | |9 producer0.40 9. #Witer 0.37

10.#Point 0. 26 10. birthPlace 0.28 10 Person 024 10. associateEditor 0. 40 10 Film0.36

11 025 11 027 | |11. Politician 0.24 11. chiefEditor 0.39 11. Magazine 0.28

12 WorldHeritageSite 0.24 | |12 @birthYear 027 12 MusicalWork 024 | |12. previousEditor 0.39 12 #Series 024

13. OfficeHolder 0.24 13. wineProduced 0.27 13. Actor 0.24 13. composer 0.38 13. Newspaper 0.23

restlingEvent 0.23 14 Date 0.26/ |14, 023 |14 3714.Te 2 022

5 23 15 ate 0.26 | |15. Scientist0.23 15. @publicationDate 0.36 15. PeriodicalLiterature 0.2
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Figure 5: A ranked list of terms from the target
ontology is generated for each term in the SAQ,
“Who wrote the book Tom Sawyer and where was
he born?”.

tagger and morphology package [44] to get word lemmas
with their POS and then compute their semantic similarity.
While our similarity measure is effective and works well,
it is not perfect. For example, “born in” is mistaken as
highly similar to “@cylinderBore” and relatively dissimilar
to “birthPlace”.

Classes starting with # are virtual classes that are au-
tomatically derived from the object properties in the tar-
get ontology, DBpedia in this case. Many property names
are nouns, which can be used to infer the type of the ob-
ject instance. For example, the object of the director prop-
erty should be a director. Many of these generated types
are not included in the native classes but they could nev-
ertheless be entered by users as concepts in a SAQ. Some
other examples include #Chairman, #Religion, and #Ad-
dress. Adding them as auxiliary classes facilitates the map-
ping. However, unlike the specifically defined native classes,
the virtual classes can be ambiguous. Therefore, we assign
them three fourths similarity to make them subordinate to
native classes.

5.1.2  Step Two: Disambiguation

Each combination of ontology terms, with one term coming
from each candidate list, is a potential query interpretation,
but some are reasonable and others not. Disambiguation
here means choosing the most reasonable interpretations
from a set of candidates.

An intuitive measure of reasonableness for a given inter-
pretation is the degree to which its ontology terms associate
in the way that their corresponding user terms connect in
the SAQ. For example, since “Place” is connected by “born
in” in Figure[5, their corresponding ontology terms can be
expected to have good association. Therefore, the combi-
nation of Place and birthPlace makes much more sense than
that of Place and @cylinderBore or that of Place and @birth-
Date because the CAK tells us that a strong association
holds between Place and birthPlace but not @cylinderBore
or @birthDate. Thus the degree of association from CAK is
used as a measure of reasonableness. For another example,
CAK data shows that both the combinations of Writer and
writer and of Writer and author are reasonable interpreta-
tions to the SAQ connection “Author — wrote”. However,
since only author not writer has a strong association with
the class Book, the combination of Writer, author and Book



produces a much better interpretation than that of Writer,
writer and Book for the joint connection “Author — wrote
— Book” in the SAQ.

We use two types of connections in a SAQ when com-
puting the overall association of an interpretation: connec-
tions between concepts and their relations (e.g., “Author”
and “wrote”) and between direct connected concepts (e.g.,
“Author” and “Book”). We exclude indirect connections
(e.g., between “Book” and “born in” or between “Book” and
“Place”) because they do not necessarily entail good asso-
ciations. This distinguishes from the coarse-grained disam-
biguation methods [50] where context is a simple a bag of
words without compositional structure.

If candidate ontology terms ideally contained all the sub-
stitutable terms, we could rely solely on their associations
for disambiguation. However, in practice many other related
terms are also included and therefore the similarity of the
candidate ontology terms to the user’s terms is important
in identifying the best interpretations. We experimentally
found that weighting their associations by their similarities
produced a better disambiguation algorithm.

To formalize our approach, suppose the query graph G,
has m edges and n nodes. Each concept or relation x; in
G4 has a corresponding set of candidate ontology terms Y;.
Our interpretation space H is the Cartesian product over

the sets Y1, ..., Yintn.

H=Y1 X ... XYyuin={(y1, s Ymtn) : i €Yi}

Each interpretation h € H also describes a function h(x)
that maps z; to y; for i € {1,...,m + n}.

Let us define a fitness function @(h,G) that returns the
fitness score of an interpretation h on a query graph or sub-
graph G. We seek the interpretation h* € H that maximizes
the fitness on the query graph Gy, which is computed as the
summation of the fitness on each link L; in Gy, ¢ from 1 to
m. More specifically,

h* = argmaz ®(h,G,) (3)
heH

= ®(h, L; 4

argg}iawz (b, Ls) (4)

i=1

where link L; is a tuple with three elements: subject concept
s;, relation 7; and object concept o;. Formula [4] achieves
joint disambiguation because the joint concepts of different
links should be mapped to the same ontology class.

Before computing the fitness of link L;, we first resolve
the direction of the ontology property h(r;) because h(r;)
is semantically similar to r; but they may have opposite
directions. For example, the relation wrote in Figure [5]is
semantically similar to the property author which, however,
connects from Book to Author. Whether the direction of
h(r;) should be inverse to the one of r; is decided in For-
mula 5.

—_—

= PMI(h(s:), h(r:)) + PMI(h(r:), h(0:))

0:), h(r:)) + PMI(h(r:), h(s:))

0iy 8i), ifA—A>a

si, 01), ifA'—A<« (%)

The association terms A and A’ measure the degrees of rea-
sonableness for the original and inverse directions, respec-

tively. If the inverse direction is significantly more reason-
able than the original, we reverse the direction by switching
the classes that h(r;) connects; otherwise we respect the
original direction. Currently, the reverse threshold « is 2.0,
based on experimental evidence. The hypothesis behind For-
mula[5 is that if the two classes are different (e.g., Author,
Book), the properties connecting them tend to go with one
direction only (e.g., wrote); if the two classes are the same
or similar (e.g., Actor, Person) their connecting properties
can go with both directions (e.g., spouse) but we observed
no large differences between the degrees of reasonableness of
two directions. Formula [5] works very well empirically. As
Section[7]shows, none of incorrect translations of the evalu-
ation queries were caused by mis-resolved directions.

Finally, the fitness on link L; is the sum of three pair-
wise associations: the directed association from subject class
h($;) to property h(r;), the directed association from prop-
erty h(r;) to object class h(d;), and the undirected associa-
tion between subject class h($;) and object class h(d;), all
weighted by semantic similarities between ontology terms
and their corresponding user terms. More specially,

&(h, L) :m(h(s}), h(r:)) - sim($i, h($:)) - sim(rs, h(r;

)
+P—1\/H>(h(ri), h(63)) - sim(6s, h(6:)) - sim(ri, h(rs))
+2:-PMI(h(;), h(6;)) - sim($s, h($s)) - sim(6s, h(6;))

We use a weight of two for the undirected association term
since there are two directed association terms. Moreover,
the higher weight for undirected association terms helps in
the situations where the corresponding property fails to be
in the candidate list of length k. The higher weight gives
us a better chance to map the concepts to the correspond-
ing classes via the undirected association term. To facilitate
this, we also impose a lower bound of zero on the two di-
rected association terms to deal with cases where the prop-
erty h(r;) fits too poorly with its two classes (their values can
be —o00). In these situations the fitness is solely determined
by the undirected association term.

Our algorithm can successfully find the correct mappings
(marked as bold) for the SAQ in Figures[5| It can also handle
more complicated cases such as the one in Figure[6. Some
of the mappings are ranked at only 10th and 14th places.
The example in Figure[6 is a demonstration of joint disam-
biguation, which requires taking the context as a whole. The
reason #Chairman is selected, instead of President, is that
President only means the president of a country in the DB-
pedia ontology and SoccerClub has much higher association
with #Chairman than with President. However, if we take
the single link “President — born in — Place” out of the
context, President will then be preferred over #Chairman
because almost all presidents are described with their birth
places in Wikipedia but not true for “chairmen”.

If each candidate list contains k semantically similar terms,
the complexity of a straightforward disambiguation algo-
rithm is O(k™ ™) simply because the total number of inter-
pretations is k"T™. We can significantly reduce this com-
plexity by exploiting locality. The optimal mapping choice
of a property can be determined locally when the two classes
it links are fixed. So, we only iterate on all k" combinations
of classes. Moreover, we can iterate in a way such that the
next combination differs from current combination only on
one class with others remaining unchanged. This means we
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Figure 6: A joint disambiguation example

need only re-compute the links involving the changed class.
The average number of links in which a class participates is
QTm. On the other hand, finding the property that maximizes
the fitness of a link requires going through all £ choices in
the candidate list, resulting in O(k) running time. Put them
together, the total computational complexity is reduced to

Although the running time is still exponential in the num-
ber of concepts in Gy, it is not a serious issue in practical
applications for three reasons. First, we expect that short
queries with a small number of entities will dominate. Sec-
ond, we can do a much better job in concept mapping than
in relation mapping so a small k£ can be used for producing
candidates of concepts and a large k for relations. Finally,
we can achieve further improvement by decomposing the
graph into subgraphs and/or exploiting parallel computing.

5.1.3 Step Three: Refinement

The best interpretation typically gives us the most appropri-
ate classes and properties for the user terms. For properties,
however, two cases that require additional work. The first
arises when two connected concepts in G4 are mapped to the
correct classes but we are unable to find a reasonable map-
ping for the relation connecting them. The second occurs
when the property being mapped to is an appropriate one
but it is not a major property used in the context. Because
the two connected concepts are already disambiguated, we
use these as the context and consider all of the properties
that can connect instances of their corresponding classes.

For a missing property, we map the relation to its most
semantically similar property among all connecting proper-
ties. In the case of a minor property, our goal is to find the
major properties in the context, which may be less similar
to the user relation than the minor property but have much
higher conditional probabilities. Thus, we use the formula
in Equation |7 to identify major properties from all connect-
ing properties. This formula simply trades similarity for
popularity. The logarithmic scale is used so that a large dif-
ference on popularity can count for only a small difference
on similarity. § (currently 0.8) is a coefficient that balances
precision and recall.

log(

) . ﬂ > Simmino’r (7)

Simmajor

Probmajor
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5.2 SPARQL Generation

PREFIX dbo: <http://dbpedia.org/ontology/>
SELECT DISTINCT ?x, ?y WHERE {

70 a dbo:Book .

7?0 rdfs:label 7labelO .

?labelO bif:contains ’"Tom Sawyer"’

?x a dbo:Writer .

7y a dbo:Place .

{70 dbo:author ?x)

{?x dbo:birthPlace 7y} .

Figure 7: This SPARQL query was automatically
generated from the SAQ in Figure [56, “Who wrote
the book Tom Sawyer and where was he born?”.

After user terms are disambiguated and mapped to appro-
priate ontology terms, translating a SAQ to SPARQL is
straightforward. Figure [7 shows the SPARQL query pro-
duced from the SAQ in Figure[5. Classes are used to type
the instances, such as ?z a dbo: Writer, and properties used
to connect instances as in 20 dbo:author ?x. The bif:contains
property is a Virtuoso [12] built-in text search function which
finds literals containing specified text. The named entities
in the SAQ can be disambiguated by the constraints in the
SPARQL query. In this example, Tom Sawyer has two con-
straints: it is in the label of some book and it is written by
some writer.

We also generate a concise SPARQL query which is pro-
duced from the regular one by removing unnecessary class
conditions. Removing them compensates for a deficiency in
DBpedia: many instances do not have all of the appropriate
type assertions. For example, Bill Clinton is not asserted
to be of type President. To address this, we compute the
semantic similarity between properties and classes qualify-
ing the same instance. If they are very similar, we drop
the class conditions. For example, in the SPARQL query
in Figure [7, ?z has an incoming property author which is
semantically similar to its class Writer. In this case, we
remove the statement ?z a dbo: Writer because it could be
inferred from the property author.

6. SEMANTIC SIMILARITY

We need to compute semantic similarity between concepts
in the form of noun phrases (e.g., City and Soccer Club) and
between relations in the form of short phrases (e.g., crosses
and birth date). One way is distributional similarity [19],
a statistical approach using a term’s collective context in-
formation drawn from a large text corpus to represent the
meaning of the term. Distributional similarity is usually ap-
plied to words but it can be generalized to phrases [31]. How-
ever, the large number of potential input phrases precludes
precomputing and storing distributional similarity data and
computing it dynamically as needed would take too long.
Thus, we assume the semantics of a phrase is compositional
on its component words and apply an algorithm to compute
similarity between two phrases using word similarity.

For two given phrases P; and P», we pair the words in
P1 to the words in P» in a way that it maximizes the sum
of word similarities of the resulting word-pairs. The maxi-
mized sum of word similarities is further normalized by the
number of word-pairs. The same process is repeated for the
other direction, i.e., from P> to Pi. The scores from both



directions are then combined using average. The specific
metric is shown in Formula[8. Our metric follows the one
proposed by Mihalcea [34], but with some variations (e.g.
we do not use tf-idf weighting and we allow pairing words
with different parts-of-speech).
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Computing semantic similarity between noun phrases re-
quires additional work. Before running algorithm on two
noun phrases, we compute the semantic similarity of their
head nouns. If it exceeds an experimentally determined
threshold we apply the above metric but with their head
nouns being prior-paired and if not, the phrases have simi-
larity of zero. Thus we know that dog house is not similar
to house dog.

Our word similarity measure is based on distributional
similarity and latent semantic analysis, which is further en-
hanced using information from WordNet. Our distributional
similarity approach is based on [39], which yielded the best
performance on the TOEFL synonym test [25] when we de-
veloped our system. By using a simple context of bag of
words, the similarity between words even with different parts
of speech can also be computed.

Although distributional similarity has an advantage that
it can compute similarity between words that are not strictly
synonyms, the human judgments of synonymy found in Word-
Net are more reliable. Therefore, we give higher similarity to
word pairs which are in the same WordNet synset or one of
which is the immediate hypernym of the other by adding 0.5
and 0.2 to their distributional similarities, respectively. We
also boost similarity between a word and its derivationally
related forms by increasing their distributional similarity by
0.3. We do so because a word can often represent the same
relation as its derivationally related forms in our context.
As examples, “writer” work as the almost same relation to
“write” and so does “produce” to “product”, because “writer”
means the subject that writes and “product” means the thing
being produced.

In our case, the lexical categories of words are not impor-
tant; only their semantics matters. However, the value of
distributional similarity of words is lowered if they are not in
the same lexical category. To counteract this drawback, we
put words into the same lexical category using their deriva-
tional forms and compute distributional similarity between
their aligned forms. Then we compare this value with their
original similarity and use the larger one as their similarity.

7. EVALUATION

Dataset. We evaluated our system using a dataset devel-
oped for the 2011 Workshop on Question Answering over
Linked Data (QALD) [38]. This dataset was designed to
evaluate ontology-based question answering (QA) systems
and includes 100 natural language (NL) questions (50 train-
ing and 50 test) over DBpedia (version 3.6) along with their
ground truth answers.

We selected 33 of the 50 test questions (see Table [1)
that could be answered using only the DBpedia ontology,

i.e., without the additional assertions in the YAGO ontol-
ogy. Eight of these were slightly modified and their IDs are
tagged with a *. Q10, 14, 24, 30, 35, 44 and 45 required
modification because they needed operations currently un-
supported by our prototype system: aggregation functions
(Which locations have more than two caves?) and Boolean
answers (Was U.S. President Jackson involved in a war?).
Our changes included removing the unsupported operations
or changing the answer type but preserving the relations.
For example, the above two questions were changed to Give
me the location of Ape Cave and What wars were U.S. Pres-
ident Jackson involved in?. Although we introduce an aux-
iliary entity Ape Cave for the first question, the entity name
does not affect the mapping process since it is done at the
schema level and the entity names are not used. In Q37, we
substituted “Richard Nixon” for “Bill Clinton” because the
original question cannot be answered using the DBpedia on-
tology only but an entity name change makes it answerable.

Among the 33 questions, six contain two relations (Q2,
3, 29, 35, 37 and 42, marked as italic in Table [1) and the
rest only one. In fact, all of the QALD questions have the
following patterns that are customized for ontology-based
NLI systems: (i) most contain one relation and no more
than two; (ii) single answer type or variable; and (iii) no
anaphora used. They pose less challenge to NLP parsers
but do not fully explore the advantages of graph query.

Our system took as input two datasets from DBpedia 3.6:
Ontology Infoboxr Properties and Ontology Infobox Types.
These contain all of the “ABOX” data in the DBpedia on-
tology. As described in Section [4, we statistically learned
Concept-level Association Knowledge from the two datasets
and did not use the DBpedia Ontology dataset that spec-
ifies human-crafted class hierarchy and domain and range
definitions for properties.

Methods and Results. Our system ran on a computer
with a 2.33GHz Intel Core2 CPU and 8GB memory. We
translated some of the 50 training questions to SAQs and
used them to tune our system, including setting various
thresholds and coefficients.

Three computer science graduate students who were unfa-
miliar with DBpedia and its ontology independently trans-
lated the 33 test questions into SAQs. We first familiarized
the subjects with the SAQ concept and its rules as specified
in Section[3]and then trained them with ten questions from
the training dataset. We asked them to first identify the en-
tities in a natural language query and their types and then
link the entities with the relations given by the query. We
also gave them a few simple constraints, e.g., if the entity
value is a number, use “Number” as the type of the entity.
However, the major force of learning to create the structural
queries is by examples. The subjects quickly learned from
the ten examples and found the concepts intuitive and easy
to understand. The entire learning process took less than
half an hour. Finally, we asked each subject to create SAQs
for the 33 test questions. Because our graphical web inter-
face was under development, the users drew the queries on
paper. None of the subjects had difficulty in constructing
the SAQs and all finished within half an hour.

Three versions of the 33 SAQs were given to our sys-
tem which automatically translated them into four SPARQL
queries which are the regular and concise queries obtained
from the best interpretation with and without step three in
the translation process. Table[1 shows the average time to



D query reg., w/o step 3 | con., w/o step 3 | reg., w/ step 3 | con., w/ step 3 time non-empty
prec. recall prec. recall prec. recall prec. recall | (sec.) prec. recall
1 Which companies are in the computer software industry? 1 0.998 1 0.998 1 0.998 1 0.998 | 2.667 1 0.998
2 Which tel ations or tions are located in Belgium? 0.681 0.852 0.681 0.852 0.681 0.852 0.681 0.852 | 3.845 0.681 0.852
3 Give me the official websites of actors of the television show Charmed. 0.667 0.667 0.667 0.667 1 1 1 1 3.928 1 1
5 ‘What are the official languages of the Philippines? 1 1 1 1 1 1 1 1 1.902 1 1
6 ‘Who is the mayor of New York City? 0 0 0 0 0.125 1 0.125 1 1.730 0.125 1
7 Where did Abraham Lincoln die? 0.667 1 0.556 1 0.667 1 0.556 1| 2.101 0.556 1
8 When was the Battle of Gettysburg? 0.667 0.667 | 0.667 0.667 | 0.667 0.667 | 0.667 0.667 | 1.886 1 1
10* | What is the wife of President Obama called? 0 0 0 0 0 0 0 0| 2.311 0.667 0.667
11 What is the area code of Berlin? 0.250 1 0.250 1 0.250 1 0.250 1| 2.155 0.250 1
13 In which country is the Limerick Lake? 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 1.994 0.333 0.333
14* | What wars was U.S. President Jackson involved in? 0 0 0 0| 0.667 0.389 | 0.667 0.389 | 1.637 1 0.583
16 Who is the owner of Universal Studios? 0 0 0 0 0 0 0 0| 1.729 0 0
19 What is the currency of the Czech Republic? 1 1 1 1 1 1 1 1| 2.247 1 1
24* | What mountains are in Germany? 1 1 1 1 1 1 1 1 2.214 1 1
25 Give me the homepage of Forbes. 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 1.735 0.333 0.333
26 Give me all soccer clubs in Spain. 0 0 0 0 1 1 1 1| 2.018 1 1
27 What is the revenue of IBM? 0.250 1| 0.250 1| 0.250 1| 0.250 1| 2.069 0.250 1
29 In which films directed by Garry Marshall was Julia Roberts starring? 1 1 1 1 1 1 1 1 2.762 1 1
30* | Give me all proteins. 1 1 1 1 1 1 1 1| 0.567 1 1
32 ‘Which television shows were created by Walt Disney? 1 0.069 1 0.069 1 0.201 1 0.201 1.716 1 0.201
34 Through which countries does the Yenisei river flow? 0 0 0 0 1 0.500 | 0.500 0.500 | 2.022 0.500  0.500
35% | What city is Egypt’s largest city and also its capital? 0 0 1 1 0 0 1 1| 1.887 1 1
37* | Who is the daughter of Richard Nizon married to? 1 1 1 1 1 1 1 1| 2.464 1 1
40 ‘Who is the author of WikiLeaks? 1 1 1 1 1 1 1 1 2.589 1 1
41 ‘Who designed the Brooklyn Bridge? 0 0 0 0 0 0 0 0 1.734 1 1
42 Which bridges are of the same type as the Manhattan Bridge? 0 0 0 0 0 0 0 0| 2.099 0 0
43 ‘Which river does the Brooklyn Bridge cross? 1 1 1 1 1 1 1 1 1.644 1 1
44* | Give me the location of Ape Cave. 1 1 1 1 1 1 1 1 1.717 1 1
45* | What is the height of the mountain Annapurna? 0.500 1 0.500 1 0.500 1 0.500 1 1.564 0.500 1
46 ‘What is the highest place of Karakoram? 0.672 1 0.672 1 0.672 1 0.672 1 1.456 0.672 1
47 ‘What did Bruce Carver die from? 1 1 1 1 1 1 1 1 1.721 1 1
49 How tall is Claudia Schiffer? 1 1 1 1 1 1 1 1 1.744 1 1
50 In which country does the Nile start? 0 0 0 0 1 1 1 1 1.693 1 1
Average on 33 queries 0.546 0.604 | 0.573 0.634 | 0.671 0.736 | 0.683 0.766 | 2.047 | 0.754 0.832

Table 1: Average precision, recall and translation time for SPARQL queries generated from 33 questions.

translate a SAQ to the four SPARQL queries, measured in
seconds. The queries were then run on public SPARQL end-
points loaded with DBpedia 3.6 to produce answers, which
took a few seconds per query. The answers were evalu-
ated for precision and recall, averaging on three versions,
as shown in Table [Il The concise queries performed bet-
ter than regular ones and step three improved performance
significantly.

We also evaluated the strategy of issuing multiple queries
sequentially until non-empty results are returned. If the
concise query generated from the best interpretation with
step three gives empty result, we remove the link which has
the lowest fitness value and send the modified query again.
This process is repeated until no link remains in the query.
If no result was obtained, we accepted for the second best
interpretation and so on. The performance of this non-empty
strategy is also shown in Table[1!

Discussion. Relation mapping is more challenging than
concept mapping in translating the SAQs to SPARQL be-
cause equivalent relations can go beyond synonyms, they
can be context-dependent, and many of them involve de-
fault relations. Examples include mapping “actor” to star-
ring, “marry” to spouse, “die from” to deathCause, “mayor”
to leaderName, “tall” to height, “start” to source Country and
“involved” to commander. Thanks to the semantic similar-
ity measure, we are still able to recognize them. Some of
them are not similar enough to enter the candidate lists so
that they cannot be found at step two. At step three, with
context information provided by the disambiguated concepts
we then could locate them. For example, in Q50 when we

narrow down to the properties occurring between the two
classes River and Country, sourceCountry then becomes the
most similar to “start”. This explains why the performance
of Q6, 14, 26, 34 and 50 was improved by step three.

Structural mismatches between the SAQ and the DBpe-
dia ontology resulted in problems that our current approach
has not addressed. We identified two structure mismatch
categories: indirect properties and nominal compounds [13].

Wikipedia infoboxes and DBpedia describe the most rele-
vant attributes or relations of concepts, which we call direct
property. Examples include population, area and the capital
of a country, the actors of a film and the maker of a product.
Indirect properties are the composition of direct properties.
For example, acted under between an actor and a director is
the composition of two direct properties (starring and direc-
tor) joined by a film. As long as the user intentionally uses
direct properties to compose a SAQ, we expect this kind of
structure mismatch would occur infrequently. As for the 33
NL questions, only Q42 contains one indirect property.

We observed that our users differed in whether a nomi-
nal compound should be entered as a phase or decomposed,
leading to another category of structure mismatch. For
example, two subjects kept the noun phrase “U.S. Presi-
dent” as a single unit while the other decomposed it into
two units President and Country which are linked by the
relation in. In the DBpedia ontology, however, there are
no links between U.S. Presidents and the country United
Stated?. Therefore, the SPARQL query translated from the

3The term “President of United States” appears as the value



decomposed noun phrase yields an empty result. Q2 and
14 fall in this category. We will present future work dealing
with structure mismatch in the last section.

The missing DBpedia class typeﬂ caused empty results
in two queries. In Q10 the entity Obama lacks the type
President and in Q41 the true answer lacks either Archi-
tect or Person type in the DBpedia Ontology. In their sec-
ond best interpretations “President” is mapped to the virtual
class #President and the answer type in Q41 is mapped to
Thing. Their corresponding SPARQL queries can then pro-
duce answers. The missing City type for Egypt also resulted
in worse performance of regular queries than concise queries
in Q35.

The low precision of several queries (Q6, 7, 11, 27 and 45)
is caused by entity ambiguity. Q7, for example, might rea-
sonably be interpreted to be about the death of the 16th US
president. However, DBpedia includes information on three
people with this name, the 16th US president, his grand-
father and grandson. Instead of choosing the most notable
one, our system generated all. From user’s perspective, it
may be best to show a table of all answers along with their
URIs and let the user to discriminate herself.

User interpretation of a question can influence its result.
In Q7, one subject used the concept President for Abraham
Lincoln, enabling our system to produces the correct an-
swer only. In Q16 all of three subjects interpret “Who” as
a Person type. However, the type that leads to the correct
answer is Organization. In Q42 all the subjects decomposed
the relation “the same type as” to two relations linking to the
same “Type” entity. However, their queries still cannot be
translated because the target property, architecturalBureau,
was not semantically similar to “Type”.

Our disambiguation algorithm sometimes fails due to the
flexibility of human expressions. For example, one sub-
ject translated Q8 into a “Battle” entity and a “Year” en-
tity which are connected by the relation “took place”. Our
system was misled by “took place” because it is much more
similar to the property place than to date. Hence, it mapped
“Battle”, “Year” and “took place” to #Commande, FEvent
and inversed place respectively, as the best interpretation.

Comparison. The QALD 2011 report [37] showed results
of two systems, FREyA and PowerAqua, on the 50 test
questions. Both systems modified or reformulated some of
the questions that their NLP parsers have difficulties in un-
derstanding. We compared our system with them using 30
questions in Table[1l Q24, 44 and 45 were excluded because
they had been simplified by removing aggregation opera-
tions. Among the 30 questions, FREyA modified four ques-
tion (Q1, 2, 37 and 50) and PowerAqua eight (Q1, 8, 10, 14,
34, 41, 46 and 50). Average precision and recall of the three
systems over the 30 questions is shown in Table 3] We also
present their performance on the six questions consisting of
two relations. FREyA performs best but it is an interac-
tive system incorporating dialogs to disambiguate questions
[10]. This means FREyA sometimes needs users to manu-
ally specify the mappings between user terms and ontology
terms. PowerAqua’s performance dropped dramatically on

of a string property of U.S. Presidents, however DBpedia
currently does not extract relations from strings

4Some of them have been resolved in DBpedia 3.7.
SMany #Commander instances are countries, resulting in
good association between — #Commander and place

the six two-relation questions while FREyA and our system
remained the same.

30 questions 6 two-relations

Prec. | Recall | Prec. Recall

FREyA 0.829 0.849 0.855 0.789
PowerAqua 0.698 0.757 0.167 0.167
Our system con., w/ step 3 | 0.668 0.742 0.780 0.809
non-empty 0.746 0.816 0.780 0.809

Table 2: Comparison on 30 test questions

Table 3: Compare our system on 30 test questions
with FREyA and PowerAqua systems that both re-
quire human-crafted domain knowledge. FREyA
system even requires user dialog interaction to re-
solve ambiguity.

There are several reasons why our system yields the same
performance on six two-relation queries as on other single
relation queries. First, we relied on humans to create the
relational structure of the queries but Power Aqua uses NLP
techniques. Second, two-relation queries give more informa-
tion and therefore have less ambiguity than single relation
queries. The good performance also has something to do
with the nature of six two-relation queries. They are fact
questions with almost all direct properties. However, the
more relations a query has, the more likely structural mis-
matches will occur in the mapping. So in general, we would
expect performance degrade of our system when working
with queries composed of multiple relations but it would
still be much better than systems using NLP techniques to
understand them.

We also evaluated all 33 test questions on two online sys-
tems, PowerAqua [36] and True Knowledge [46] (now called
Evi). Both include DBpedia as part of their knowledge
bases. The true answers of most of the test questions are
complete but some are not, which means that PowerAqua
and True Knowledge can return correct answers that are
not in the true answers of some questions. For these cases,
we manually checked the results to identify all correct an-
swers in computing precision. PowerAqua shows the dataset
used to derive answers, allowing us to use answers only from
DBpedia and ignored others. The results are presented in
Table[4]

33 questions 6 two-relations
Prec. Recall | Prec. Recall

True Knowledge 0.469 0.535 0.0 0.0
PowerAqua 0.372 0.483 0.168 0.278
Our system con., w/ step 3 | 0.683 0.766 0.780 0.809
non-empty 0.754 0.832 0.780 0.809

Table 4: Comparison to two online systems.

Ontology-based open domain QA is a new research area
and the QALD workshop is the first known to us to provide
an evaluation dataset. A direct comparison of our system
against others is difficult due to different settings. Systems
in the comparisons used slightly different query sets and
ran on datasets not completely the same. The two online
systems have not been tuned using QALD training ques-
tions. Moreover, our user interface differs from these sys-
tems. Some people may think either NLI or SAQ interface is
just a means to allowing users to describe their information
needs and we can directly compare their results. Others may



believe the comparison is biased because our system benefits
from user interpretation of NL questions.

Nevertheless, the comparisons with top systems show our
approach works well. Our system also has three desirable
features that others lack. First, our approach saves ex-
pensive human effort in crafting schema of data and the
mapping lexicon. True Knowledge, FREyA and PowerAqua
all depend on such knowledge in performing disambigua-
tion and addressing vocabulary mismatch problem that can-
not be solved by synonym expansion [47} 10} 33]. Second,
our system has the advantage over automatic NLI systems
in answering questions containing two or more relations.
It can even handle more complicated queries, such as the
ones in Figures[5/and[6, while their corresponding NL ques-
tions would inevitably involve multiple answer types and
anaphora. Third, our system is fast. FREyA reported 36
seconds on average in answering a question [10]. PowerAqua
did not report execution time on QALD questions but our
experiment of testing 33 questions on its website showed an
average of 143.7 seconds. In comparison, our system only
took a few seconds on average.

8.  CONCLUSION AND FUTURE WORK

Large collections of structured semantic data like DBpe-
dia provide essential knowledge for many applications and
potentially for scientists and other users, but are difficult
for non-experts to query and explore. The schema-agnostic
query approach allows people to query RDF datasets with-
out mastering SPARQL or acquiring detailed knowledge of
the classes, properties and individuals in the underlying on-
tologies and the URIs that denote them. Our system uses
statistical data about lexical semantics and the target RDF
datasets to generate plausible SPARQL queries from a user’s
intuitive query. We obtained a promising results in an eval-
uation on DBpedia with users who sought answers for 33
QALD test questions: precision of 0.754 and recall of 0.832.

Currently, we are working on three extensions. The first
extension makes entering terms for concepts optional. Con-
sider the SAQ in Figure [5] where the user might omit the
concept name for the named entity “Tom Sawyer”. Our so-
lution is to find all possible types of entities lexically match-
ing “Tom Sawyer”, put the classes into the candidate list
of Tom Sawyer and run the same algorithm to identify the
right class.

The second extension handles some mismatches between a
user’s conceptualization of the domain and the target ontol-
ogy’s structure, e.g., a user imagines a acted under relation
from actors to directors which is absent in the ontology. To
support indirect properties, we can define the probability of
observing a schema path on the schema network and com-
pute indirect association degree between two classes. Once
the correct classes for the concepts are located, we narrow to
their context and find the path matching the indirect prop-
erty. For nominal compounds, we decompose the nouns into
two entities linked by a default relation and compute the nor-
malized fitness score (divided by the number of links) for the
decomposed query, comparing it with the old score to decide
if the noun-noun phrase should be broken.

The last extension incorporates user interaction to give
more credibility to answers and improve their accuracy. In-
stead of directly returning answers we can turn the schema-
agnostic query into several “schema-based” queries by re-
placing terms using the mappings in the top interpretations.

Since the user can handle the schema-agnostic query she
should be able to understand the “schema-based” queries
and choose the most reasonable one or further edit the query.
Moreover, information in CAK can be used for creating sug-
gestions that helps users explore the concepts in the domain.
Users can also help improve or refine the underlying hetero-
geneous ontology by identifying semantically same classes
and properties and giving feedbacks of merging them.
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