
Attribute-based Fine Grained
Access Control for Triple Stores

Ankur Padia, Tim Finin, and Anupam Joshi

University of Maryland, Baltimore County, Baltimore, MD 21250, USA
padiaankur@gmail.com, {finin, joshi}@umbc.edu

Abstract. The maturation of semantic web standards and associated
web-based data representations like schema.org have made RDF a pop-
ular model for representing graph data and semi-structured knowledge.
However, most existing SPARQL endpoint supports simple access control
mechanism preventing its use for many applications. To protect the data
stored in RDF stores, we describe a framework to support attribute-based
fine grained access control and explore its feasibility. We implemented a
prototype of the system and used it to carry out an initial analysis on
the relation between access control policies, query execution time, and
size of the RDF dataset.

Keywords: RDF triple store, attribute-based access control, informa-
tion assurance, security

1 Introduction

The maturation of Semantic Web standards and associated web-based data rep-
resentations like schema.org have made RDF a popular model for representing
graph data and semi-structured knowledge. Triple stores are used to hold and
query an RDF dataset and often expose a SPARQL endpoint service on the Web
for public access. Most existing SPARQL endpoints support very simple access
control mechanisms, if any at all, preventing their use for many applications
where fine-grained privacy or data security is important.

Considerable research has been done to provide security to semantic data [1–
6] - data represented using semantic web standard like RDF, RDFS and OWL.
The work can be classified into four categories: Rule based, Named Graph or
View based, Description Logic (DL) based and triple pattern based. There are
also some standard frameworks such as Web Access Control [7] that can provide
access control for semantic data. However, each of the approaches has shortcom-
ings, especially when granularity of access control and the open environment
of the web are considered. The enforcement of fine-grained policies on complex
queries can require significant processing. An open environment allows users
to submit ad hoc queries, preventing a system from pre-processing queries and
storing the results for later use.



We present an approach to provide fine-grained attribute-based access control
for triple stores to facilitate privacy and security. Our approach has the advan-
tage of being a ”pluggable” filter for generic SPARQL endpoints and thereby
protecting a triple store that allows users to submit SPARQL queries.

The paper is organized as follows. After reviewing related literature in Sec-
tion 2, we explain our framework to support attribute-based fine grained access
control in Section 3 with an example to show representation of access policies in
triple-based pattern and a mechanism to enforce access policies on user’s query.
In Section 4, we demonstrate the feasibility and present an initial analysis on
the relation between access control policies, query execution time, and size of
the RDF dataset. In Section 5 we summarize our work and briefly describe our
plans for future work.

2 Literature review

The problem of enhancing the security and privacy of RDF data with access con-
trol policies has been studied for many years. Research works on access control
for RDF data can be categorized based on the techniques employed [8] as (1)
Named Graph or view, (2) Rule, (3) Description Logic and (4) Triple pattern.
Each approach aims to provide security at a different level of granularity, either
fine-grained or course-grained. In case of fine-grained access controls, policies
are defined on a triple’s subject, object or predicate, an RDF statement, or on
a set of RDF statements based on some regular expression. On the other hand,
policies for course-grained access controls are defined on a materialized named
graph, or on a triple store.

Rule based approaches make use of rule languages like SWRL1 or n3 2 to rep-
resent access control policies. Rule based policies can provide fine grained access
control [2], as well as course grained access control [9, 10]. However, depending
on granularity level, there can be high redundancy among the policies as the set
of conditions used among the policies are same [3].

Approaches based on Named Graphs [11] combine multiple RDF graphs in a
single document or repository and name each with an URI. Based on the access
control policy, each user of the system is associated with corresponding set of
named graphs [3]. The use of named graphs can simplify the process of provid-
ing access control, but the creation and materialization of the additional named
graphs needed for access control requires considerable effort. Materializing the
named graphs also comes with an expense of storage space and multiple simulta-
neous updates [12]. Moreover, named graphs can introduce redundancy for triple
stores containing multiple cycles and multiple paths from a fixed source class to
a fixed destination class.

In description logic (DL) [13] based policy representations, validity of the
access control is determined using off-the-shelf reasoners. There are several ad-
vantages of DL based approach [4] over other approaches. First, policies can be

1 http://www.w3.org/Submission/SWRL/
2 http://www.w3.org/TeamSubmission/n3/



more expressive since they can rely on DL reasoning. Second, policies can be eas-
ily analyzed for consistency, comparison, verification and querying using off-the-
shelf reasoners. Third, other security standards, like XACML3, can be modeled
in OWL-DL [14, 15]. However, since the policies are defined on T–Box entities
and access control is determined using subsumption reasoning, the approach is
typically limited to be all or none with respect to the instances present in the
A–Box. To best of our knowledge, only [16] tried to provide fined grained access
control by labeling axioms present in knowledge base. However, such an approach
require a lattice structure, with respect to subsumption operator, among axioms
present in the T–Box. Most of the time, such a requirement is difficult to meet,
as their might not be any specific schema representing underlying RDF data.
Moreover, data stored in a triple store might follow RDF semantic standards
but might not adhere any DL profile.

Triple pattern based approaches like [17] provide fine grained access con-
trol by annotating each triple either as accessible or inaccessible for an user,
and hence converting a triple store to a quad store. However, as the triple is
marked for an user, such an approach makes it difficult to determine the acces-
sibility of the same triple for multiple users. Approaches like [5] uses SWRL and
the Lightweight Access Control Schema (LACS) vocabulary to authenticate and
provides fine-grained access control by predefining a set of SPARQL queries and
associating them with the users of the system. Such an approach provides the
flexibility to associate the same triple with multiple users but cannot answer user
queries that require a combination of two or more predefined SPARQL queries.

Approaches like [18] provide fine-grained access control by masking, to hide
details, the entities present in a triple and thereby distributing the materialized
copy of a triple store. As distribution is materialized, [18] is more effective for
triple stores with a small number of triple count. Our approach differs from
[19] by giving importance to the user attributes. Also, the use of the FILTER
operator to restrict access can produce empty query result. For example consider
an taxonomy with Animal, SocialAnimal, and WildAnimal as classes and Animal
as the superclass of the remaining classes. A user’s query to find all instances
of SocialAnimal will be rewritten as all instances of SocialAnimal and FILTER
all instances of Animal [20], which ends up being empty [21]. An attribute-
based fine-grained approach [22] make use of the SeRQL query language but
lacks some of the operators that are present in SPARQL [23, 24]. [25, 26] provide
access control but does not support attribute-based access.

With respect to above approaches, we provide an initial attribute-based
framework to (1) authenticate users, (2) associate the same triple to multiple
users, (3) avoid redundancy and (4) demonstrate feasibility and present an initial
analysis of the approach.

3 https://www.oasis-open.org/committees/xacml/



3 Framework

In this section, we briefly describe our framework for attribute-based fine-grained
access control. The framework is built on the notion of access control represented
in form of triple patterns, such that it can be added directly or can be used to
modify user’s SPARQL query. As shown in Figure 1, the framework is divided
into six different modules (1) user data, (2) authentication, (3) background data,
(4) triple-based access policies, (5) triple policy enforcement and (6) triple store.
We briefly describe each of the modules below.

Fig. 1. Framework to provide attribute-based fine grained access control.

I. User data: User data is a set of attributes of the user, and are submitted
with user’s SPARQL query.

II. Authentication: The authentication module is used to verify the iden-
tity of the user.

III. Background data: Background data is used to provide additional in-
formation beside the details supplied by the user. Background data can either
be context information or some other knowledge sources which can facilitate in
enforcing policies.

IV. Triple-based access policies: Triple-based access polices is a set of
rules used to restrict the scope of submitted user queries, and are represented in
form of triple patterns.

V. Triple policy enforcement: Triple policy enforcement applies access
policies on submitted user query, such that only authenticated set of triples are
accessed by the user.

VI. Triple store: Triple store is used to store information in form of triples.



As shown in Figure 1, a user submits a query along with corresponding set
of attributes. The system, on receiving the query and attributes, authenticates
the user and forwards the query to the triple policy enforcement module. This
module uses access policies to restrict the scope of the query to form a restricted
query which accesses only triples which are allowed to be accessed. The restricted
query is sent to the triple store for execution and the result is offered back to
the user without modification. Rewriting the user query before execution helps
to hide triples which violates the policy. Such scenarios happen when there are
multiple paths from a source node to a destination node of same length with
one path begin accessible to the user while the other path is restricted. Due
to inference, other triple may be accessible to form the result and the system
may make the mistake of considering them as the triples accessible to the user.
Also, rewriting provides an opportunity to optimize the query. We describe each
module in more detail in the subsections below.

3.1 Authentication

In general, authentication can be performed by any of different approaches,
including OAuth4, WebID5 and OpenID6, each of which aims to support sharing
of data across different web sites. In addition, [27] uses SPARQL ASK queries
with a set of user attributes to authenticate a user. However, a SPARQL ASK
based verification introduces some delay in the over all query execution time
[10]. OWL based authentication, like ROWLBAC [28], can be used to determine
authentication of the user with special requirements like dynamic and static
separation of duty. The choice of an authentication mechanism varies depending
on application requirements.

3.2 Policy Representation and Enforcement

In this section we represent and describe access control policies, and an algo-
rithm to enforce access policies to restrict scope of submitted user query. Each
access control policy has four components: (1) attributes, (2) actions, (3) re-
quested triple patterns and (4) preconditions. The first component, “attributes
(Attrib)”, describes the set of attributes required to determine if a policy can be
applied to a given user query, and thereby helps to filter out policies from a given
set of policies. The second component, “action (Act)”, is used to compare the
operation requested by the user and the operation permitted to be performed by
the user. The third component, “requested triple Pattern (ReqTrpPtrn)”, is used
to match filtered policies with the triple patterns present in the user query. The
final component, “precondition (PreCond)”, is a set of one or more conditions
that must be satisfied in order to access the triple pattern present in “ReqTrpP-
trn”.

4 http://oauth.net/2/
5 http://www.w3.org/wiki/WebID
6 http://openid.net/



I. Motivating example: To better understand the representation of a policy,
consider an example of a scenario based on collaboration and review.

“A lab member can either be a primary author or a co-author of research
papers. Each research paper can be categorized as (1) a submitted pa-
per, (2) a published paper or (3) an ongoing paper. Ongoing papers are
subject to proofreading and can receive comments from the co-authors
as part of multiple proofreading. Submitted papers are reviewed by re-
viewers, and reviewers provide their reviews. Reviews are read by the
primary author of the paper.”

An RDFS diagram for such a scenario with possible classes and properties
is shown in Figure 2. For each directed edge, the source is the domain and
destination is the range of the relation represented by the label. For simplicity,
consider the system to have users as lab members, and their designation in the
lab as their attribute. With respect to the scenario mentioned above, a few of
the access control requirements can be as follows.

1. Allow a lab members to list her submitted papers on which she is the primary
author or a co-author (Policies 1 and 2).

2. Everyone is allowed to see the list of lab members who are either a primary
author or a co-author of a published papers (Policies 3 and 4).

3. Allow a lab member to list all her ongoing papers on which she is either the
primary author or a co-author (Policies 5 and 6).

4. Allow a lab member to read reviews of a submitted paper if she is its primary
author (represented Policy 7).

5. Allow lab members to list the comments on an ongoing papers for which
they are the primary author (Policy 8).

Figure 3, shows the representation of each of these policies. Here “Attrib:ALL”
indicate that the policy can be enforced on all the queries. For simplicity reasons,
we chose above mentioned policy representation and plan to compare different
policy representation language as a part of our future work.

II. Access Policies Enforcement: The Access Policy Enforcement module
restricts the scope of a submitted user query by rewriting the user query such
that only authorized triples are accessed. Algorithm 1 shows the procedure to
enforce access policies. In order to restrict the scope, applicable policies are
selected from the set of policies by matching user attributes with the attributes
mentioned in the policies. Each of the selected policies is used to establish a
match between the triple patterns present in the user query and the requested
triple pattern of the policy. A match exists if the value (blank node, literal or
URI) for each of the entity (subject, predicate, object) present in the user triple
pattern is same as the value in the requested triple pattern or if there exists a
variable in requested triple pattern at the same position as that of the entity in
triple pattern of the user query.

This mapping aligns variable to variable and value to either variable or value.
For every match, a restricted triple pattern is generated, in which the values



Fig. 2. An RDFS graph of a triple store representing collaboration and review scenario.

present in the user triple pattern are “placed” in the requested triple pattern of
the policy, and similar changes are made to the triples present in the precondition
of the policy. The restricted triple pattern along with the modified preconditions
are combined to form a group pattern and is used to replace the triple pattern
present in the user query. The process is repeated for each triple pattern present
in the user query. By default, the access is restricted when no matching triple
pattern is found from the set of all applicable policies.

3.3 Effect of query rewriting

Since Algorithm 1 restricts the scope of the query on-the-fly, it provides the
capability to support an open environment where users are allowed to submit ad
hoc queries. However, the execution of a restricted query can be computationally
expensive depending on the number of triple patterns and size of the triple store.
For example, the restricted form of a query with a triple pattern {?s ?p ?o}
will be a set of all possible policies as subqueries combined in a group pattern
with “UNION” keyword. Such query rewriting may raise serious issues on the
scalability of the approach and would tempt the practitioners to choose Named
Graph [11] based approaches to provide access control. However, answering a user
query using named graph based approaches requires materialized named graphs,
which comes with the cost of simultaneous updates and storage space[12], and
it becomes difficult to apply the approach for large triple stores.

On the other hand, using a non-materialized named graph as opposed to
materialized one in answering a user query requires a mapping, unfolding and
combining of the triple patterns from all the applicable named graphs [12], mak-
ing it equally computationally expensive. Moreover, the named graph based
techniques can introduce redundancies among named graphs as the same set of
triple patterns may be used to form the named graphs. For example, a named



Fig. 3. Policies defined using the RDFS graph shown in Figure 2

graph for a person’s friend-of-a-friend may contain the conditions of the named
graph for its friend [12]. Such redundancies are removed by defining a policy on
each edge and rewriting queries before executing them.



Data: userQuery, accessPolicies, userAttribute
Result: Restricted user query
begin

triplePattern←− EXTRACT TRIPLES(userQuery);
rstTriplePatterns←− ∅;
for triple ∈ triplePattern do

for policy ∈ accessPolicies do
if policy.attribute == userAttribute OR policy.attribute == ALL
then

allowedTriple←− policy.Triple;
if MATCH(triple, allowedTriple) then

rstSub←− triple.Subject;
rstPred←− triple.Predicate;
rstObj ←− triple.Object;
rstTriple←− rstSub + rstPred + rstObj
preCond←− policy.pre condition;
rstPreCond←−
replaceEntity(preCond, rstSub, rstPred, rstObj);

end
rstTrpP trn←− createGroupPattern(rstTriple, rstPreCond)
rstTriplePatterns.add(rstTrpP trn)

end

end

end
if rstTriplePatterns == ∅ then

return AccessRestricted.
end
return createGroupPattern(rstTriplePatterns)

end
Algorithm 1: Policy enforcement algorithm

4 Experiments and Evaluation

In this section, we explore the feasibility and behavior of our approach for queries
with one or more triple patterns. All experiments were performed on a computer
running Fedora 17 with a swap memory of 1028 MB on 4GB RAM with i5-2430M
CPU of 2.40 GHz and two cores. The Apache Jena framework was used to store
data and process user queries7. For all the experiments we used the default
Fuseki server settings.

4.1 Dataset

In order to determine the feasibility and overall effect of our approach on query
execution time, we generated (i) RDF datasets, (ii) access control policies and
(3) query datasets.

7 http://apache.mirrors.lucidnetworks.net/jena/binaries/

apache-jena-fuseki-2.0.0.zip



RDF dataset generation involved two steps. First, one large dataset was gen-
erated using a LUBM [29] script with default value for seed and index. Secondly,
smaller datasets were generated in incremental manner from the larger one,
such that the smaller ones are included in all the other bigger datasets. This
approach to data generation simplifies the query generation process, as the an-
swers to a query generated from smallest dataset will guarantee answers for all
other dataset. For access control policies, we listed 24 empirical policies and pro-
duced them in the format shown in Section 3.2, based on the schema of LUBM
generated dataset. For queries, two sets of 50 queries each were created. One
set had one triple pattern chosen at random and the other set had queries with
two triple patterns, both randomly chosen in a manner ensuring that the query
remained connected. Both query datasets where generated independently, such
that no query is associated with any other query. The smallest dataset used to
generate queries had 100,545 triples. Algorithm 2 was used to generated query
dataset.

The query generation algorithm produces an exact number of SPARQL queries
with exact number of triple patterns for any triple store. In order to generate
a query, a pattern template is first chosen at random. Each template has three
character each representing subject, predicate and object, with the character
‘I’ and ‘V’ representing an instance and variable, respectively. The decision of
filling the position with instance or variable is made at random. Each position
is checked for instance from subject to object. If an instance is found at the
subject position, a query is crafted by augmenting an additional pattern that
has variables in all three positions with previously chosen old triple patterns and
the query is executed on the server. An instance is picked at random from the
result sent by the server. If no instance was available, then another pattern was
chosen at random and the process repeated until an instance is obtained to fill
the template. However, if a variable is found in the subject position, it is left
unchanged. Similarly the values for the predicate and object are filled whenever
an instance is encountered at those positions.

For the queries with more than one triple pattern, the first triple pattern was
formed by the procedure described above. For additional triples, a pattern tem-
plate was selected at random. If “I” was found in subject position, a triple with
all three variable is formed and value was filled at random. If “V” is encountered
in subject position then either previous subject or object variables were used to
fill the position. Depending on the value of subject, the same triple pattern is
augmented with the previous triple pattern to form a query and is used to fill
predicate and object, if not filled with variable. For example, say the first filled
template for triple pattern is “?var1 worksFor ?var2” and second templates
selected was “I V V” then to fill the subject of second template, a query with fol-
lowing where clause “{ ?var1 worksFor ?var2. ?var2 ?var3 ?var4}”
is created and executed on the server to pick the value from the result obtained.
To keep query connected, the choice of the variable at subject and object posi-
tion for pattern other than first pattern is determined at random from previously



Data: numQueries, trpPtrnCount
Result: SPARQL query
begin

query ←− ∅;
oldTriplePattern←− ∅;
newTrpPattern←− ∅;
ptrnTemplates←− {IIV, IV I, IV V, V II, V IV, V V I};
i←− 0;
varCount←− 0;
for i < trpP trnCount do

rndPattern←− getRndPtrn(ptrnTemplates);
if rndPattern.position[0] == ‘I’ then

oldTrpPattern←− oldTrpPattern.add({?S?P?O});
subInstQuery ←− generate SPARQLQuery(oldTrpPattern);
result←− EXECUTE QUERY (subInstQuery);
sub←− pickRndInstance(result);
oldTrpPattern←− oldTrpPattern.remove({?S ?P ?O});

end
else

sub←− pickRndV ar(oldTrpPattern);
varCount←− varCount + 1;

end
if rndPattern.position[1] == ‘I’ then

oldTrpPattern←− oldTrpPattern.add({sub ?P ?O});
predInstQuery ←− generate SPARQLQuery(oldTrpPattern);
result←− EXECUTE QUERY (subInstQuery);
pred←− pickRndInstance(result);
oldTrpPattern.remove({rndSub ?P ?O});

end
else

pred←− pickRndV ar(oldTrpPattern)
varCount←− varCount + 1;

end
if rndPattern.position[2] == ‘I’ then

oldTrpPattern←− oldTrpPattern.add({sub pred ?O});
objInstQuery ←− generate SPARQLQuery(oldTrpPattern);
result←− EXECUTE QUERY (subInstQuery);
obj ←− pickRndInstance(result);
oldTrpPattern←− oldTrpPattern.remove({sub pred ?O});

end
else

obj ←− pickRndV ar(oldTrpPattern);
varCount←− varCount + 1;

end
oldTrpPattern←− oldTrpPattern.add({sub pred obj});
i←− i + 1

end
return generate SPARQLQuery(oldTrpPattern)

end
Algorithm 2: Query generation algorithm. Position 0,1 and 2 indicate subject,
predicate and object, respectively.



filled triples (like ?var2). Such filled templates are combined to form one query
and the same process is repeated until desired number of queries are generated.

4.2 Results

We had two goals in the experiment: (1) to understand the behavior of our
approach for a variety of single triple patterns and (2) to understand the behavior
with random queries of varying number of triple patterns. Each of the queries
were restricted using a set of access control policies with same set of attributes.
A total of 20 out of 24 policies were matched based on the set of attribute used
for the experiment.

To characterize the behavior of our approach for a single triple pattern, we
executed queries with one triple pattern, such that it can hold at least one vari-
able and combinations of the triple patterns are covered. The average execution
time of each triple pattern is shown in Table 1. As evident from Table 1, the
pattern with all three variables took the most time to be executed followed by
the pattern with an instance at subject and predicate position followed by a
variable at object position. For patterns like “I I V”, the execution time for
few triple patterns can be significantly effected for a particular dataset, as it
depends on the random data generated by the script, the internal indexing of
Fuseki server, and the policy representation. Figure 4 represents the comparison
when the query was executed with and without access policies, receptively.

I I V I V I I V V V I I V I V V V I V V V

With RST 0.2725 0.0081 0.0110 0.0040 0.0665 0.0089 6.9128

Without RST 0.0201 0.0003 0.0263 0.0029 0.0345 0.0178 4.3929

Table 1. The average execution time of each triple pattern for five datasets, where
“RST” is the restriction applied to the query.

In order to understand the behavior with the queries of varying number of
triple patterns, we generated two datasets, TP1 and TP2, which are sets of
queries with one and two triple patterns, respectively. We cleared cache memory
to release pages, dentries and inodes before each query was executed8. As shown
in Figure 5 and 6, the execution time of the queries increases with the size of
the dataset. The non-uniform increase from first dataset to other datasets is
dependent on randomly generated data, internal indexing of Fuseki server and
representation pattern of access control policies. However such an effect is not
visible when queries with two triple patterns are executed. There is a remarkable
increase in the overall execution time for the queries with two triple patterns
because of empty subqueries, which are formed when policies are applied to the

8 Command to clear cache was “sync; echo3|sudotee/proc/sys/vm/drop caches”



Fig. 4. Average execution time of each query pattern executed over five dataset.

query. Hence with the increase in the number of policies and the number of triple
patterns in query, execution time of the query will increase significantly. As the
part of our future work we plan to explore optimization techniques to reduce
overall execution time.

Fig. 5. Average execution time of 50
queries with one triple executed over
the datasets with increasing number of
triples.

Fig. 6. Average execution time of 50
queries with two triples executed over
the datasets with increasing number of
triples.

5 Conclusion and Future Work

We described a framework to provide attribute-based fine-grained access control
by representing the policies in a triple-based format and enforcing the access poli-
cies by rewriting a user’s query. We demonstrated the feasibility of our approach



and the effect of enforcing access control polices on five datasets of different size
by executing queries of varying number of triple patterns. As a part of initial
analysis with a constant set of attributes and policies we found that (1) query
execution time increases with increase in the size of the triple store and (2) query
execution time significantly increases with the number of triple pattern.

For future work, we plan to extend our approach to work for scenarios with
a reasonably large number of user attributes and policies. We also plan to ex-
plore the possibilities of optimizing the overall query execution time, since our
approach selects applicable policies and create subqueries to restrict the scope
of a user query. The number of such subqueries is significantly effected by num-
ber of policies present to provide access control. In addition, we will provide
a formalization of our approach to demonstrate the completeness of the policy
enforcement algorithm. Moreover, as each of the approaches based on named
graph, description logic, rule and triple pattern provide different level of secu-
rity and privacy, we plan to compare such techniques with potential merit and
demerit and its effect on overall query execution time.

Acknowledgement. This work was supported by award #1228198 from the
U.S. National Science Foundation.

References

1. Kagal, L., Finin, T., Joshi, A.: A policy based approach to security for the semantic
web. In: 2nd Int. Semantic Web Conf. Volume 2870., Springer (2003) 402–418

2. Reddivari, P., Finin, T., Joshi, A.: Policy-Based Access Control for an RDF Store.
In: IJCAI Workshop on Semantic Web for Collaborative Knowledge Acquisition.
(January 2007)

3. Gabillon, A., Letouzey, L.: A view based access control model for sparql. In:
Network and System Security (NSS), 2010 4th International Conference on, IEEE
(2010) 105–112

4. Kolovski, V., Hendler, J., Parsia, B.: Analyzing web access control policies. In:
16th Int. Conf. on World Wide Web, ACM (2007) 677–686

5. Dietzold, S., Auer, S.: Access control on rdf triple stores from a semantic wiki per-
spective. In: Workshop on Scripting for the Semantic Web, 3rd European Semantic
Web Conf. (2006)

6. Kirrane, S., Abdelrahman, A., Mileo, A., Decker, S.: Secure manipulation of linked
data. In: 12th Int. Semantic Web Conf. Springer (2013) 248–263

7. W3C: Web access control. http://www.w3.org/wiki/WebAccessControl
8. Kirrane, S.: Linked Data with Access Control. PhD thesis, National University of

Ireland, Galway (2015)
9. Muhleisen, H., Kost, M., Freytag, J.C.: Swrl-based access policies for linked data.

Procs of SPOT (2010) 80
10. Costabello, L., Villata, S., Rocha, O.R., Gandon, F.: Access control for http oper-

ations on linked data. In: The Semantic Web: Semantics and Big Data. Springer
(2013) 185–199

11. Carroll, J.J., Bizer, C., Hayes, P., Stickler, P.: Named graphs, provenance and
trust. In: Proceedings of the 14th international conference on World Wide Web,
ACM (2005) 613–622



12. Le, W., Duan, S., Kementsietsidis, A., Li, F., Wang, M.: Rewriting queries on
sparql views. In: 20th Int. Conf. on World wide web, ACM (2011) 655–664

13. Baader, F.: The description logic handbook: theory, implementation, and applica-
tions. Cambridge university press (2003)

14. Priebe, T., Dobmeier, W., Kamprath, N.: Supporting attribute-based access con-
trol with ontologies. In: First Int. Conf on Availability, Reliability and Security,
IEEE (2006) 8–pp

15. Priebe, T., Dobmeier, W., Schläger, C., Kamprath, N.: Supporting attribute-based
access control in authorization and authentication infrastructures with ontologies.
Journal of Software 2(1) (2007) 27–38

16. Knechtel, M., Stuckenschmidt, H.: Query-based access control for ontologies. In:
Web Reasoning and Rule Systems. Springer (2010) 73–87

17. Flouris, G., Fundulaki, I., Michou, M., Antoniou, G.: Controlling access to rdf
graphs. In: Future Internet-FIS 2010. Springer (2010) 107–117

18. Rachapalli, J., Khadilkar, V., Kantarcioglu, M., Thuraisingham, B.: Redact: a
framework for sanitizing rdf data. In: 22nd Int. Conf. on World Wide Web com-
panion. (2013) 157–158

19. Abel, F., De Coi, J.L., Henze, N., Koesling, A.W., Krause, D., Olmedilla, D.:
Enabling advanced and context-dependent access control in RDF stores. Springer
(2007)

20. Chen, W., Stuckenschmidt, H.: A model-driven approach to enable access control
for ontologies. In: Wirtschaftsinformatik (1). (2009) 663–672

21. Knechtel, M., Stuckenschmidt, H.: Query-based access control for ontologies. In:
Web Reasoning and Rule Systems. Springer (2010) 73–87

22. Franzoni, S., Mazzoleni, P., Valtolina, S., Bertino, E.: Towards a fine-grained
access control model and mechanisms for semantic databases. In: Web Services,
2007. ICWS 2007. IEEE International Conference on, IEEE (2007) 993–1000

23. Haase, P., Broekstra, J., Eberhart, A., Volz, R.: A comparison of rdf query lan-
guages. In: The Semantic Web–ISWC 2004. Springer (2004) 502–517

24. Hutt, K.: A comparison of rdf query languages. In: Proc. of 21th Computer Science
Seminar, Hartfort, Connecticut. (2005) 1–7

25. Oulmakhzoune, S., Cuppens-Boulahia, N., Cuppens, F., Morucci, S.: fquery: Sparql
query rewriting to enforce data confidentiality. In: Data and Applications Security
and Privacy XXIV. Springer (2010) 146–161

26. Li, J., Cheung, W.K.: Query rewriting for access control on semantic web. In:
Secure Data Management. Springer (2008) 151–168

27. Costabello, L., Villata, S., Delaforge, N., Gandon, F.: Ubiquitous access control
for SPARQL endpoints: Lessons learned and future challenges. In: 21st Int. Conf.
companion on World Wide Web, ACM (2012) 487–488

28. Finin, T., Joshi, A., Kagal, L., Niu, J., Sandhu, R., Winsborough, W., Thuraising-
ham, B.: Rowlbac: Representing role based access control in owl. In: 13th ACM
Symposium on Access Control Models and Technologies. (2008) 73–82

29. Guo, Y., Pan, Z., Heflin, J.: Lubm: A benchmark for owl knowledge base systems.
Web Semantics: Science, Services and Agents on the World Wide Web 3(2) (2005)
158–182


