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ABSTRACT

Title of Thesis: Semantic Interpretation of Structured Log Files

Piyush Nimbalkar, MS Computer Science, 2015

Thesis Directed by: Dr. Anupam Joshi, Professor
Department of Computer Science
and Electrical Engineering

Log files comprise a record of different events happening in various applications,

operating systems and even in network devices. Originally they were used to record in-

formation for diagnostic and debugging purposes. Nowadays, logs are also used to track

events which can be used in auditing and forensics in case of malicious activities or sys-

tems attacks. Various softwares like intrusion detection systems, webservers, anti-virus and

anti-malware systems, firewalls and network devices generate logs with useful information,

that can be used to protect against such system attacks. Analyzing log files can help in pro-

actively avoiding attacks against the systems. While there are existing tools that do a good

job when the format of log files is known, the challenge lies in cases where log files are

from unknown devices and of unknown formats.

We propose a framework that takes any log file and automatically gives out a seman-

tic interpretation as a set of RDF Linked Data triples. The framework splits a log file into

columns using regular expression-based or dictionary-based classifiers. Leveraging and

modifying our existing work on inferring the semantics of tables, we identify every col-

umn from a log file and map it to concepts either from a general purpose KB like DBpedia

or domain specific ontologies such as IDS. We also identify relationships between vari-

ous columns in such log files. Converting large and verbose log files into such semantic

representations will help in better search, integration and rich reasoning over the data.
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Chapter 1

INTRODUCTION

The advancement of software has led to creation of huge amount of data. One such

kind of data that is generated behind almost every system today, is logs. Every single

thing we do on a software system results in triggering various pieces of software, and in

turn creating several lines of logs. Log data is no longer just a tool for diagnostics and

debugging software. It is increasingly used in cybersecurity, forensics, and for auditing

purposes, due to the amount of vital information it holds. Recognizing the importance of

logs, enterprises have started spending a lot of money to generate and store huge amount

of log daily. Also, special emphasis is given to ensure creation of auditing information, so

that it becomes easy to track user activities.

Log files give vital information about systems and the activities that are occurring. As

such they present a valuable insight into the state of the system. Looking at the log file, not

only do we understand the event, but can also trace its origin by audit trails and forensics.

For instance, database logs can help trace the modifications on data, while web server log

files speak a lot about the resources accessed from the web. On one hand, operating system

logs help us figure out what is happening at the system level, on the other, firewall logs

1
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help record malicious activities at the network level. Thus, log files form a vital tool in the

cybersecurity. Using the information from log files we can pro-actively defend our systems

against potential malicious activities and attacks.

Log file analysis is useful not only in defensive roles, but can also prove useful in the

offensive approach to cybersecurity. Although offensive security techniques have ethical,

legal, technical and practical considerations, it can be certainly useful in mitigating cyber

threats [1]. There can be intrusive malware to track and observe the activities of targeted

suspicious actors. This malware could be an intelligent log analyzer, trying to decode

information from logs collected via various sources. Such a knowledge can help us secure

our systems against zero day attacks.

1.1 Motivation

Huge amount of data generated in the form of logs is descriptive in nature because

that was the primary purpose of logs. Now-a-days, people have started giving emphasis

on structured log data. This eases the understanding and management of the logs. Today,

a large amount of log files have a structure, which include the textual descriptions at the

end. The structured log files also convey more information with less verbosity. Log formats

are also being standardized, so that every vendor follows a format for certain set of tools

or softwares. For instance, such recommendations provided in “Guide to Computer Secu-

rity Log Management”, published by the National Institute of Standards and Technology

(NIST) [2], indicate the growing importance of standardizing and analyzing log files.

It is important to know the structure of the log files to extract more and precise infor-

mation. The difficulties in finding the exact structure of a log file are described by Kimball
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and Merz [3]. They include multiple file formats, incomplete, inconsistent and irrelevant

data, and dispersed information. There are even log files which have multi-line log entries.

There have been various attempts to tackle these problems with log files [4]. There

are tools that parse specific log files and extract information from them [5]. However, this

is not a scalable approach as it requires us to know the file format of a log file before

analyzing it. Also, there are text processing techniques which extract information from

log files as they would do from a normal chunk of text [6]. This information is used by

Intrusion Detection and Prevention systems to detect malicious behavior. However, if we

can leverage the structure of log files, we can clearly understand events in the log files and

get more information from them. Most log files have distinct columns that do not seem to

be related to each other and have a similar set of values. For instance, in apache access log

file, we have content length which is a numeric column and a request path which are file

paths. If we know the meaning of the columns in the log file, we can easily say that the

request on the request path gave a response of size equal to the content length. Often, there

are semantic relations between various columns of log files. These may be documented

somewhere but it is difficult for an autonomous system to understand the relations as a

human would.

Apart from text processing systems, there are enterprise tools like Splunk 1, Sumo-

logic 2, etc. These tools primarily focus on log management and analytics. Splunk does

detect various fields in the log file but it does not always separate it out in proper columns.

This happens particularly when it does not know the structure or source of the log file be-

fore hand. Thus, such enterprise tools have serious limitations in predicting the structure

of unknown log files and further do not deal with finding semantic connections between

1http://www.splunk.com/
2https://www.sumologic.com/
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various columns of the log file.

1.2 Contribution

To solve these problems we have built a framework that takes a log file as input and

gives out its semantic interpretation as Linked Open Data expressed in RDF (Resource Data

Framework) [7]. Our framework works for any random log file that has structured columns.

We split the log file into identifiable columns and then predict classes for them. Using these

columns we generate a list of candidate relations between those columns whose classes we

have predicted, which are given out into a RDF file. We have extended the IDSOntology 3 to

help identify the relationships between various column classes. Moreover, other ontologies

can also be used. We test the system against log files with different structure and unknown

sources. We also test the system against a dataset of randomly generated synthetic log files.

3http://ebiquity.umbc.edu/ontologies/cybersecurity/ids/v2.3/IDSOntology.owl



Chapter 2

OVERVIEW AND RELATED WORK

2.1 Overview

Log file analysis has been an interesting area in the cybersecurity domain. By ana-

lyzing log files we can help prevent our system from malicious activities. Predicting the

structure and the semantic meaning for a log file with unknown source or format definitely

possess an advantage. Every year, large number of tools and devices are added to the

current software world. A security specialist or system administrator would not want to

manually analyze every new log file and then feed it into their system.

The proposed framework works well with structured log files, where we can separate

them into distinct columns and then predict the possible relations between those. The

part of predicting the semantic relations between various columns in the log file is our

novel contribution to the world of log file analysis. Finding relations definitely benefits in

understanding semantics of the log files. Having internal relations can help make the log

files less verbose, by preventing the need to explain every detail. As the size increases,

the cost to maintain the huge amount of log data increases. That is why, we find log files

5
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with concise columns. We see columns like IP addresses, timestamps, email addresses,

urls etc. Most of the columns in the log files have inherent connections to each other.

These are not visible by looking at the log file and are documented somewhere else. For

example let us consider, sendmail log file, which is a tool for email routing. Table 2.1

shows a sample sendmail log file with selected columns. Looking at the log file we see

timestamps, random server names and email addresses. If an automated system can figure

out the relationship between these fields then we can say that user with email address in the

third column is sending an email to the address in fourth column via server mentioned in

the second column at timestamp in the first.

Table 2.1. Sample sendmail log file with selected columns

Mar 23 03:12:21 mail server 1 from=<user1@sender.com> rcpt=<shanon@umbc.edu>

Mar 23 03:12:21 mail server 2 from=<user2@sender.com> rcpt=<george@umbc.edu>

Mar 23 03:12:21 mail server 1 from=<user3@sender.com> rcpt=<david@umbc.edu>

Mar 23 03:12:21 mail server 2 from=<user4@sender.com> rcpt=<chris@umbc.edu>

The framework is also crucial in Security Information and Event Management (SIEM)

systems, to detect anomalous behavior in the system. If the SIEM, is able to know the struc-

ture of any random log file in the infrastructure, it can autonomously detect threats. We can

defend out systems against unknown attacks before hand. For instance, an apache access

log files has columns like IP address, resource path and user-agent, out of the many. The IP
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address is the address of the machine requesting the resource accessed by the resource path.

User-agent is the software which can request the resource for the user of the IP address.

This can be anything from a browser to a command line tool. Knowing about the log file,

now we can have relations like ‘Resource Path requestedUsing User-agent’ or ‘IP Address

requestedResource Resource Path’. With this knowledge SIEMs can detect threats like an

IP address is accessing unauthorized resources or if it is accessing using suspicious user-

agents. This becomes easy on knowing the semantic information about the log file.

The world of Semantic Web has huge amount of data and is still growing. There are

knowledge bases or ontologies which already have many classes and properties that are

found in the columns of log files. If this data is extended to support different kinds of data

found in log files, we will have a huge collection of semantic log file data. This can be used

to process and smartly analyze generic log files.

2.2 Background

The details of how the framework is implemented will be discussed in the Chapter 3.

Before that we will briefly introduce some concepts and terminologies used in this thesis

for better understanding.

2.2.1 Linked Data

Before knowing more about Linked Data, we will briefly talk about Semantic Web.

Semantic Web is a way of linking or correlating data between entities that allows for rich

interrelations of the data available across the world on Web. Most of the data we see

on the Web is in the forms of HTML pages which are linked with each other through
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hyperlinks. Though the pages are linked, there is no linking between the data within the

Web pages. This makes it difficult for computer systems to make sense of the plain Web

pages. Semantic Web technologies have encouraged people to create open data stores on

the Web, add their own vocabularies and rules to handle this data.

To create a semantic web of data, it is important to make the huge amount of data

available in a standardized format. Apart from the data, we also need to maintain the

relationships among the data. The collection of this data which is related with each other is

known as Linked Data. DBPedia 1 is one such example of a large dataset of Linked Data.

2.2.2 Resource Description Framework (RDF)

The Resource Description Framework (RDF) is a set of specifications, designed to

model the Linked Data discussed in the previous section. It acts as a metadata model.

Using certain syntax, rules and serialization formats, it helps in representing knowledge

bases in a generic way which can be used by semantic tools and applications. RDF data

internally forms a directed multi-graph. RDF expressions resemble the class diagrams or

entity-relationship models. They are usually expressed in the form of triples. For instance,

to represent the fact “London is the capital of United Kingdom”, the RDF triple will have:

the subject as ‘London’, the predicate would be ‘is capital of’ and the object as ‘United

Kingdom’.

1http://dbpedia.org/
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2.2.3 Web Ontology Language (OWL)

OWL, the Web Ontology Language is designed by the W3C Web Ontology Working

Group. It is set of formal language to represent the structure of knowledge bases also known

as ontologies. Ontologies are a flexible way to describe structure of information from the

Internet which accommodates heterogeneous data sources. OWL which is written in XML,

has formal semantics and build upon the standards of Resource Description Framework

(RDF).

2.2.4 Specialist Framework

The specialist framework was built by Puranik [8]. This is an approach to classify

a given input column using a set of specialists. These specialists are basically experts to

identify a particular class of columns. The framework runs the column through all the

specialists and gives a ranked list for it. The framework was designed to classify tables

found on the web and create knowledge repositories from them.

2.2.5 RDFlib

RDFLib 2 is a pure python package created to work with RDF and other semantic data

formats. It provides a rich set of parsers and serializers for RDF/XML, N3, NTriples, N-

Quads, Turtle, RDFa and Mircodata. Apart from the parsers, it provides a Graph interface

which allows us to store the relational data in a graph, keeping the semantic structure of the

data. RDFLib also provides SPARQL implementation. SPARQL (SPARQL Protocol and

2https://rdflib.readthedocs.org/
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RDF Query Language) is a query language for RDF datastores.

RDFLib facilitates adding plugins for parsers, serializers, data stores and to handle

query results. We are currently using the OWL ontology to detect the relationships between

various classes. RDFLib supports the parsing of OWL ontologies using the OWL-RL pack-

age developed on top of it.

2.3 Related Work

Nascimento et al. [9] tried using ontologies to analyze security logs. They used the

ModSecurity logs to create an ontology model to test the usage of ontologies in log analysis.

They tested the system to prove that it was easier to interpret and find co-relations of events

by modeling logs as ontologies. It was found that use of ontologies helped in classification

of terms, inferences and relationships. It also proved useful in filters for searches using

SPARQL on the ontology.

Joshi et al. [10] describe an automatic framework that generates and publishes a

RDF linked data representation of cybersecurity concepts and vulnerability descriptions

extracted from various vulnerability databases. This cybersecurity linked data collection

was intended for vulnerability identification and to support mitigation efforts. The prime

idea was to use the unstructured cybersecurity related data as linked data and leverage rea-

soning of security concepts, which can help detect and prevent zero day attacks.

Mulwad et al. [11] describe a framework to detect and extract information about at-

tacks and vulnerabilities from Web text. They used Wikitology, a knowledge base derived

from Wikipedia, to extract concepts related to vulnerabilities. On mapping these concepts

to related concepts in DBPedia, they generated machine understandable relations. The de-
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scribed framework was meant to extract information from any Web texts like chat rooms

or social media feeds and is useful in detecting existing attacks as well as potential new

attacks.

Splunk [12] is a log analysis and management tool developed to ease searching and

diagnosing problems. It analyzes structured and unstructured log files and tries to identify

the fields from the log files. It works well with the log files whose structure it already

knows. For unknown sources of log files, it fails to identify the columns, but tries to spit

out the set of fields from the log files. Splunk is an enterprise tool meant not just for log

file analysis, but for also for searching, management, storage and visualization. It can help

people to identify security issues in a faster and more affordable way.



Chapter 3

SYSTEM DESIGN

3.1 Architecture Overview

The architecture of the system comprises of several modules that process a given

input log file, and an RDF (Resource Description Framework) file describing columns and

relations is given as the output. The modular nature of the architecture allows us to add

more specialists to the existing framework. Figure 3.1 shows the block diagram of the

system architecture. It begins with Tabulate module, where the input log file is parsed to

detect its structure. Once the structure is detected the structured log file is separated into

columns. These columns are then passed to the Decode stage. In the Decode module the

columns are checked against various classifiers to find a match. After checking against

different classifiers, the columns are given a score against every classifier in the system.

The scores form a ranked list of probable classes for the columns in the log file. This

ranked list is used in the Relationship Generator to identify the relations between various

columns in the log file. Once the columns are identified and the relationships have been

detected, the Generate RDF module will produce a set of RDF triples to represent the

inferred semantics. The four major modules have been described in detail in rest of the

12
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section.

FIG. 3.1. System Architecture

3.1.1 Tabulate

The Tabulate module takes the structured log file as input and gives out a table with

possible set of columns to the Decode module for classification. The input log file can

have any structure and the module will try to detect columns in it. The log file undergoes

multiple iterations for the following reasons:

• To split the log file based on delimiters
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• To detect consistent number of columns throughout the log file

• To detect and separate sub-columns

In the first iteration of the Tabulate module, we split the log files using generic de-

limiters like space, square braces, round braces, single and double quotes. For braces and

quotes we consider only those that are in pairs. Every row is thus separated in varied

number of columns that may or may not be consistent.

Although most of the lines in a structured log file have fixed number of columns, it

is not necessary that after separating on the above delimiters we will get a table with same

number of columns. Also, some log entries can be outliers due to consistency in the way the

logs are generated. But in most of the cases, there is a textual description at the end of the

log entry which does not have a fixed number of words. If the description is not enclosed

in a brace or quote, then it will be divided into several different columns. Considering this

fact, we dynamically decide the number of columns that are to be extracted. For this, we put

a threshold on the percentage of rows that will be considered in the system. We select rows

starting with the ones that have the highest number of columns. We then select the next

set of rows that have the second highest number of columns. We continue this process till

we reach the threshold number of rows. At this moment we record the number of columns

of the current set of rows. This is the number of columns that we choose to output from

the system. All the rows having columns less than the selected number of columns are

discarded. We keep the threshold pretty high (above 70 %), so as to collect more number

of rows. We also tried keeping the rows that have columns less than the selected number

of columns and utilize them in the Decode module. It was observed if a large percent

of log entries have consistent columns, then the remaining smaller percent usually forms

abnormal entries. Thus they create noise in the Decode module when trying to detect the
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class of the column.

In the third iteration, we loop through the columns that are already separated in the

previous iterations. In this iteration, we check the columns to detect sub-columns. We use

the same set of delimiters to split the columns further. If all the elements in a particular

columns are separable, then we split the column into multiple sub-columns. Before sep-

aration, we run that complete column through the Decode module to check if the whole

column matches any of the known classes. If there is a match found, then there is no need

of splitting the column, as we can use the column as a whole.

3.1.2 Decode

The Decode module does the work of assigning classes to the columns given by the

Tabulate module. For the classification of columns we created an extension of the special-

ists approach implemented by Puranik [8]. Puranik defines a specialist as “an entity that has

expertise in the domain for which it is a specialist”. The mentioned specialists system was

created for generic table data found on the Internet like SSN, phone numbers, addresses,

etc. We extend this system to classify specific fields that are usually found in log files viz.,

timestamps, IP addresses, URLs, etc.

Every column is passed through the specialists in the system. All the specialists give

their score to the column based on how well the column matches the class of the specialist.

We normalize this score to form a ranked list to predict the class of the system. If there is

no match to any of the specialists then the columns is classified as ‘NA’ (No Annotation).

The normalized scores can also be considered as the confidence with which the specialists

classifies a particular column into its respective class.
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Specialists can be of different types like regular expression based specialists, dictio-

nary based specialists and classifier based specialists. Currently we are using only regular

expression based and dictionary based specialists. But we can further extend it to use clas-

sifier based specialists as well. Following is the list of specialists present in the current

system:

1. Timestamp Specialist

The Timestamp specialist is a regular expression based specialist, which handles a lot

of timestamp formats which are used in various systems for logging. This could also

be implemented as a classifier based specialist using the Date specialist implemented

by Puranik [8].

2. IP Address Specialist

The IP Address specialist is a regular expression based specialist. It checks for valid

IP address formats and also makes sure that they are in a valid range.

3. Port Number Specialist

The Port number specialist is a regular expression based specialist. It checks for valid

port numbers, that is, those that are in the range of 0 to 65535.

4. URL Specialist

The URL specialist is a regular expression based specialist, which looks for various

URL formats viz., HTTP, HTTPS, FTP, FTPS. It also detects URL having basic

authentication.

5. Filepath Specialist

The Filepath specialist is also a regular expression based specialist. It looks for

filepaths irrespective of the underlying system.
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6. Email Specialist

The Email specialist is a regular expression based specialist, that looks for valid

email formats in the given column. This follows the Internet standards to detect a

valid email.

7. HTTP Status Code Specialist

The HTTP Status Code specialist is dictionary based specialist. It looks for the HTTP

status code values provided by the W3 standards. These HTTP status codes are

integer values.

8. HTTP Method Specialist

The HTTP Method specialist is a dictionary based specialist. It looks for the known

HTTP verbs / methods like GET, PUT, POST, DELETE, etc.

9. HTTP Protocol Version Specialist

The HTTP Protocol Version specialist is a dictionary based specialist, which looks

for the known HTTP protocol versions. The HTTP protocol versions are in a string

format.

10. Log Level Specialist

The Log level specialist is a dictionary based specialist, which looks for the generally

recommended log levels keywords. The log levels are in string format and contains

log levels like Info, Debug, Error, Warn, etc.

We can easily extend the system to add more specialist to detect other fields in the

log files. These specialists can be regular expression based or dictionary based specialists.

For instance, if a system administrator decides to have a specialist for server names, then

they can have a dictionary based specialist. They will keep a dictionary with all the server
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names. In future, if our system comes across a log file with server name as the column, it

will detect and classify the column precisely.

3.1.3 Relationship Generator

The Decode module gives out a ranked list of class labels for every column in the table,

which is further used to predict the relations between various pairs of columns. We consider

the topmost ranked prediction as the class label for that particular column. Considering a

pair of columns at a time, we search the Knowledge Base to find relationship between them.

Every column is checked against all other predicted columns in the table. For now, we do

not consider the columns that are not annotated by the Decode module.

In the current experiments we have used the IDS Ontology1 as our knowledge base.

This OWL ontology which was created at University of Maryland, Baltimore County, was

developed for Intrusions Detection Systems. We extended this ontology to add certain

classes and relations that were found in log files that we collected.

We use RDFLib, a python library to parse the ontology so that it becomes easy to

search it. Using the SPARQL plugin in the RDFLib, we search for classes that act as

domain and/or range for properties. For instance, when we are given a pair of columns, we

find all the properties where one class is domain and the other is range or vice versa. This

way we extensively search for all combinations of columns in the ontology.

We give multiple relationships if there are multiple finds for a particular pair of

columns. In case of log files, we do not have the instances of columns in knowledge

base. If there were instances present, then using an approach similar to that developed by

1http://ebiquity.umbc.edu/ontologies/cybersecurity/ids/v2.3/IDSOntology.owl
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Mulwad [13], we could have ranked the relations.

3.1.4 Generate RDF

The Relationship Generator module gives a list of triples: subject, object and the

relation. We serialize these triples using the RDFLib library to create an RDF file. This

RDF file with triples can be used by systems like SIEMs or Intrusion Detection Systems

to feed into their system. Using this information these systems will now know the possible

columns and relations in any given log file and will not need human intervention to interpret

the log files.



Chapter 4

EXPERIMENTS AND RESULTS

In this chapter we discuss the datasets used and the experimental setup to test the col-

umn separation, column annotations and relation predictions. We also evaluate the frame-

work as we explain the results from the various experiments performed on the datasets.

4.1 Data Setup

We use different sets of log files to test the framework. Primarily, we use two datasets

viz., original log files and synthetically generated log files. Table 4.1 gives a general statis-

tic about the log files in each dataset, total columns, average columns and relations per table

in all the log files of the dataset.

The Original dataset contains actual log files as obtained from various tools and ser-

vices running in an operating system. This includes Linux system services like syslog,

kern, auth, etc. We also have log files from commonly used services like apache2, mon-

godb, sendmail, printers, etc.

20
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Table 4.1. Number of log files, total columns present, average columns and relations per

table in each dataset

Dataset Tables Columns
Average Columns/

Table

Average Relations/

Table

Original 11 78 7 3

Synthetic 20 150 8 5

The Synthetic dataset has a set of artificially generated log files using some known

columns. These columns are generally seen in log files like those present in the Original

dataset. The synthetic log files were generated to test the framework against log files with

unknown source and format.

To create these synthetic log files, we randomized the whole process. The number of

columns in every log file was randomly chosen. Later, we arbitrarily selected the type of

columns from the manually prepared superset of columns. While generating the columns

we probabilistically added different column values to the selected columns. This noise

was added to simulate unpredictable nature of log files. Also, all the values added in the

columns for a particular type were generated at random to ensure variation in length and

other properties of the column.
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4.2 Tabulation

In this experiment we tested the precision with which the log files are converted into

tables with proper set of columns. The Tabulate module of the framework, splits the log

file to convert it into a table. This is a simple test where we have log files with separable

columns. We feed these log files to the Tabulate module and get an output table with certain

set of columns. We try and match all the output columns to the expected sample. Thus,

we not only check the number of columns separated we also check the exact boundaries of

separation.

FIG. 4.1. Precision and recall for column separation

As discussed in previous chapter, we separate the log files using standard delimiters.

Due to this, columns with multiple words but no surrounding characters, get separated as

multiple columns in our framework. It is observed, that in most of the cases such descriptive
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columns with multiple words are found at the tail of the log entry. Thus, most of the initial

columns are easily separated. Due to the said fact about log files, our framework can give

out more columns than the expected number of columns. We get a high recall as we do not

expect those columns to be separated. While the recall is high, we observe a low precision.

Due to the extraneous columns, which are not there in the original log files, we get a low

precision compared to the recall. In Figure 4.1 we see that for both the datasets, we get a

high recall and low precision.

FIG. 4.2. Precision and recall for column separation without trailing textual data

We repeat this experiment with the same log files, but now we strip out the trailing

textual part. In real life, we can find tools which can clean the log files and in this case strip

the unwanted text. Figure 4.2 shows the precision and recall with the modified log files.

Now, we see that both precision and recall are high for the datasets. The high precision in

the later case indicates that most of the log files have structured data at the beginning of the
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log entries and is followed by a more verbose message field.

Although the recall of both the datasets is almost similar, we see that it is slightly

better in the Original dataset (Figure 4.1). Some of the log files like apache access have

the textual part embedded in quotes. This makes it easier for the Tabulate module to sep-

arate the column as a whole. While in the Synthetic dataset, we have appended the text

without enclosing quotes. Hence, the recall is better in the Original dataset compared to

the Synthetic dataset.

4.3 Column Annotation

FIG. 4.3. Percentage of vital and okay classes at rank 1

In the Decode module we annotate the columns present in the table generated by

the Tabulate module. We gave columns from the log files to manual annotators. The
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annotations from the manual annotators form the ground truth for this module. The manual

annotators mark each class as vital, okay or incorrect, for every column in the table. This

is analogous to the strategy adopted by Venetis et al. [14]. For instance, an annotator

could mark, the URL class as vital, FilePath as okay and HTTPMethod as incorrect, for

the column URL. Each column may have multiple vital, okay or incorrect labels. This

task of manual annotation was given to three Graduate students in Computer Science at the

University of Maryland, Baltimore County.

The human annotators were given ten classes for every column. If they could not

match the column to any of the known ten classes, they would mark it as No Annotation

(N.A.). Even in our framework we marked N.A. for the columns that were not recognizable

by the system. We considered the column annotation to be accurate if both the human

annotator and the framework gave No Annotation.

FIG. 4.4. Percentage of vital and okay classes at rank 1
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In the Decode module, we get a ranked list of classes for every column in the table.

Figure 4.3, shows the percentage distribution of vital and okay classes found at rank 1. This

is an aggregate of all the columns in the datasets. In the Original dataset, 96.15% of the

top ranked class labels are marked as vital and 1.28% are marked as okay. While in the

Synthetic dataset, 91.08% of the top ranked class labels are marked as vital. There are no

top ranked class labels marked as okay. Thus, the distribution is highly inclined towards

vital for columns in both the datasets.

Figure 4.4 shows the zoomed out version of Figure 4.3. It is observed that there is not

much difference in the percentage of correctly predicted classes for both datasets. Overall

we see a good percentage of relevant class labels, i.e., either vital or okay, are found at rank

1. Thus, the system has a good accuracy for column prediction as most of the predicted

class labels are found at the topmost rank.

Figure 4.5 shows the distribution of relevant class labels at different ranks in the sys-

tem. As concluded from Figure 4.3, we can see that most of the relevant class labels are

found at rank 1. Very few relevant class labels are found at ranks 2 and 3. It is observed that

none of the lower ranks from 4 have the relevant class labels. Due to the almost structured

nature of the log file, we get a lot of rows with appropriate column values, leading to proper

annotation of the column.

Also, the relevant class labels for both the datasets are comparable. We see that per-

centage of relevant class labels at rank 1 are slightly less for Synthetic dataset. This is

because columns like URL are sometimes also classified as FilePath. This causes the URL

class label to be at rank 2. There are more such columns in the Synthetic dataset due to our

probabilistic approach of log file generation.
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FIG. 4.5. Percentage of relevant classes at ranks 1 to 4

4.4 Relation Annotation

Similar to the Decode module we annotate the relations between various columns

present in the table. These relations are predicted using the IDS Ontology. We gave tabu-

lated log files to human annotators, and they were asked to annotate the relation for a set of

column pairs in them. For every pair of columns they were given a set a relation labels. The

annotators marked each relation label as vital, okay or incorrect, for every pair of columns

given to them. This is again, similar to the strategy used by Venetis et al. [14]. The anno-

tators were allowed to mark multiple labels as vital, okay or incorrect. They were given

a choice to mark a relation as No Annotation (N.A.) if they did not find suitable relation

from the given set of relation labels.
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Figure 4.6 shows the precision and recall calculated for the relation prediction module.

It is observed that the recall for both datasets is very high. The relations that are predicted

by our framework come out to be accurate, and hence we get a very high recall. While

the precision of the Original dataset is very high, that of the Synthetic dataset comes out

quite less comparatively. Most of the relationships we have in the ontology are added by

observing the actual log files present in the Original dataset. That is why, our framework’s

predictions match quite well with the actual relations. On the other hand, in Synthetic

dataset, there are a lot of false positives. This means we are predicting relations that do

not exist in the human annotated source. Hence, we see a dip in the precision of relation

prediction for Synthetic dataset.

FIG. 4.6. Precision and recall for relation annotations

Figure 4.7 shows the percentage distribution of predicted relations that are marked as

vital and okay. Almost all of the relations predicted are annotated as vital by the human
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annotators. In the Original dataset all the predicted relations are annotated as vital. While

in Synthetic dataset, a small percentage i.e. 6.67% of predicted relations are marked as

okay and rest are vital. There are pairs of column like EmailAddress and Timestamp that

have multiple relations like sentAt and receivedAt amongst them. This causes some of

them to be marked as okay by human annotators. Such pairs occur more frequently in

the Synthetic dataset and hence it has higher percentage of okay labels compared to the

Original dataset. Figure 4.8 is a zoomed out version of Figure 4.7. It clearly shows that

there is not much difference in the distribution of vital and okay labels for both datasets.

Also, most of predicted relations are marked as vital.

FIG. 4.7. Percentage of vital and okay relation labels
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FIG. 4.8. Percentage of vital and okay relation labels



Chapter 5

CONCLUSION

In this thesis, we developed a framework which takes any log file with unknown

source and format, and automatically gives its semantic interpretation in the form of RDF

Linked Data. We were able to split the log files with a very good recall, which means we

got most of the columns that we were expecting. Also, we effectively predicted the class

labels of the columns in the log file. We can extend it to predict more classes of columns,

by adding different specialists for every new column found in other log files. For the re-

lation annotations, we were able to predict all possible relationships between the pairs of

columns, with a high accuracy. The system performed well for actual log files as well as

synthetically generated log files to simulate unknown source.

If we extend the ontology to have more classes and relations between the columns,

then we can get a good semantic interpretation of any log file. This information can be

used by tools to understand the log files more intelligently and help prevent our systems

against unknown threats and attacks.
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