Bolt Beranek and Newman Inc. Report No. 4842

Translating KL-ONE from Interlisp to FranzLisp

Tim Finin

Franz KL-ONE translation project
University of Pennsylvania

(Presented during the main conference)

This section describes an effort to translate the Interlisp KL-ONE system
into Franzlisp to enable it to be run on a VAX. This effort has involved Tim
Finin, Richard Duncan and Hassan Ait-Kaci from the University of Pennsylvania,
Judy Weiner from Temple University, Jane Barnett from Computer Corporation of
America and Jim Schmolze from Bolt Beranek and Newman Inc.

The primary motivation for this project was to make a version of KL-ONE
available on a PDP 11/780 VAX. A VAX Interlisp is not yet available, although
one is being written and will soon be available. Currently, the only
substantial Lisp for a Vax is the Berkeley FranzLisp system. As a secondary
motivation, we are interested in making KL-ONE more available in general - on
a variety of Lisp dialects and machines.

When we began the effort (summer 1981) we first 1looked at several
existing inter-dialect Lisp translation systems (e.g., Interlisp's TRANSOR,
SRI's MaclLispify, the MIT MacLisp system developed to transport LUNAR to the
Lisp Machine, and several smaller systems). None of the systems quite fit our
criteria so we decided to create our own translation system. Our approach was
to first build a general purpose inter-dialect Lisp translation system that is
driven by transformation rules. We then developed a set of specific Interlisp
to FranzLisp translation rules and an appropriate run-time support system for
the resulting FranzlLisp version of KL-ONE.

The current status of the project is as follows. The basic translation

engine (Franzlator) has been implemented and is running smoothly. Our
collection of Interlisp to FranzLisp rules, which is tailored for translating
KL-ONE, numbers about forty. The run-time support environment (dubbed

InterFranz) contains about 250 functions, mostly macros. In addition, a
rudimentary DWIM-like facility has been developed to handle certain classes of
expressions which tend to slip through the translation process.

Building a general purpose inter-dialect 1lisp translation system is a
fairly large project in its own right and may seem to be an inefficient way to
transport KL-ONE from Interlisp to FranzLisp. We have chosen to do this for
several reasons. The chief ones are:

T. Finin 106 PRESENTED PAPERS

Report No. 4842 Bolt Beranek and Newman Inc.

o We want a FranzLisp version of KL-ONE which tracks the current
Interlisp version. Since the KL-ONE system is still evolving
rapidly, this will require periodic re-translationms. Thus effort
spent to mechanize the translation task will pay off in the long run.

o We anticipate a desire to transport KL-ONE to other Lisp dialects
such as LispMachine Lisp or Common Lisp. A properly designed inter-
dialect translator will minimize the future cost of this effort.

o We expect to use the translation system to import other Interlisp
systems into Franzlisp. Current candidates are RUS and PSI-KLONE.
We also expect to write other sets of translation rules to use the
translation system to import from other Lisp's and to export native
FranzLisp programs. Thus the cost of building a general purpose
translation system will be shared by other projects.

A. Translation versus Emulation

In undertaking to transport a large system such as KL-ONE from one
dialect of Lisp to another there are two basic approaches: translation and
emulation. Translation involves transforming the Lisp code from the initial
source-dialect to the desired target-dialect. The result is a program that
can be run directly in an unmodified interpreter for the target-dialect.
Emulation involves reconstructing the source-dialect's environment in the
target-Lisp's interpreter. Properly done, this enables the unaltered source-
code to run directly. These two approaches are, of course, poles on a
continuum which admit a wide range of hybrid systems.

The emulation approach, or a mixed system which is near to pure
emulation, is very attractive from several points of view. An emulator tends
to be easier to construct for many of the same reasons that interpreters are
typically easier to construct than compilers. The emulator's task is
intrinsically easier since all of the work takes place at the last moment (at
run time) when all of the information is available. Once we are successful in
emulating the environment, other packages of code from the source dialect can
be run directly without any additional work. Still another advantage is that
the source code which is run in the emulation environment is identical (more
or less) with the original code. This is in contrast to a translation system
which might transform readable source language code into executable, but
unreadable, target language code.

In spite of these apparent advantages, we have taken a translation
approach. The major reasons for this are:

0 Maintaining a FranzLisp environment.

T. Finin 107 PRESENTED PAPERS

Bolt Beranek and Newman Inc. Report No. 4842

We want to maintain an environment in which any native FranzLisp code
will run. Constructing a fairly complete Interlisp emulator would
entail fundamental changes in the environment.

0 Avoiding naming conflicts.

Many of the differences between Interlisp and Franz can be handled by
adding definitions for those built-in functions which Interlisp
provides but Franz does not (e.g. TCONC). In many cases, however,
Franz and Interlisp use the same name for different functions. One
common difference arises when the same symbol refers to two unrelated
functions. The function ¥, for example, is a comment introducing
function in Interlisp and multiplication in FranzLisp). A second
class of differences arises when there is variation in the "syntax"
of the function. The function MAPCAR, for example, takes it
arguments in a different order in Interlisp and Franzlisp. A third
class of differences involves the "semantics" of the function. An
example here is LISTP function which in Interlisp returns T only for
non-empty lists and in FranzLisp returns T for any list, including
NIL.

o To have a stable textual Franz Lisp version of KL-ONE.

The output of the translator is a set of files which comprise a
stable text-level representation of Franz Lisp KL-ONE. We believe
that this makes it easier to debug, maintain and modify a large
system like KL-ONE.

o Generality.

We believe that a translation approach will be easier to extend so
that we can eventually produce versions of KL-ONE for other Lisp
dialects. An emulation approach is more likely to depend on features
of the target language will may not be present in a new candidate
target language. Macros, for example, would typically be used in an
emulation approach whenever possible. Some Lisp systems, such as MTS
Lisp, do not support Macro functions.

ALthough we characterize Franzlator as a translation system, it is in
fact a mixed system which has a significant run-time component. Most of that
runtime component consists of definitions of functions which Interlisp
provides but FranzLisp does not. We have chosen to define these functions as
macros whenever appropriate (e.g., for simple functions 1like GEQ, which
compares two numbers for a "greater than or equal to" relation). This has the
effect of enabling us to vary the size of the run-time component by simply
including a translation rule which expands calls to macros at translation time
instead of run time or compile time.

T. Finin 108 PRESENTED PAPERS

Report No. 4842 Bolt Beranek and Newman Inc.

II. The Translation Process

Although we have written a translator in FranzLisp, the entire
translation process involves a total of four machines. The process begins on a
JERICHO where the Interlisp DWIMIFY function is used to translate all of the
CLISP code into standard Interlisp. The resulting dwimified files are then
transferred to the BBNG machine from which they are FTPed to WHARTON-10 and
finally transferred by a local networking facility to a VAX in Penn's CIS
department. There the files are passed through the FRANZLATOR system to
produce two sets of files. One set represents the FranzLisp version of KL-ONE
and the other a collection of notes about the translation process (e.g.
unrecognized functions, expressions which may require hand translation, etc.).

In translating KL-ONE, the FRANZLATOR system uses three major databases:

o A database of Interlisp to FranzLisp translation rules.

o A database containing information about the Interlisp system
functions (e.g., function type, number of arguments, special forms).

o A database describing functions in the InterLisp runtime environment
(InterFranz).

III. Organization of the Translator

The Translator is organized as a two-pass system which is applied to a
set of source-dialect files and produces a corresponding set of target-dialect
files. During the first pass all of the source files are scanned to build up
a database of information about the functions defined in the file. In the
second pass the expressions in the source files are translated and the results
written to the target files. The translation of an s-expression is driven by
transformation rules applied according to an "eval-order" schedule (i.e., the
arguments to a function call are translated before the call to the function
itself). 1In addition to the transformation rules, the translator is guided by
the data base of information about the functions, both the built in Interlisp
functions and the user-defined ones.

An additional pass, to be done initially, may be required to perform
certain character-level transformations. In translating KL-ONE from Interlisp
to FranzLisp, however, we found that all of the necessary character 1level
transformations could be done through the use of multiple readtables. The
readtable used when reading the original Interlisp files ,for example, treats
the character ";" as a normal alpha-numeric and "%" as an escape character.

T. Finin 109 PRESENTED PAPERS

Bolt Beranek and Newman Inc. Report No. 4842

A. The First Pass

During the first pass all of the source files are scanned to build up a
database of information about the functions defined in the file. 1In
particular, for each user-defined function we need to know how many arguments
it expects and whether or not it evaluates them. The translator must know how
many arguments each function expects in order to supply default values for
missing arguments or to remove any extra arguments. This is important since
Interlisp functions can take any number of arguments. Missing arguments are
supplied as NIL arguments and extra arguments are not passed to the function.
It is common practice for many Interlisp programmers to rely on this
convention, especially with regards to missing arguments. An example is to
write (CONS X) rather than (CONS X NIL).

The translator needs to know how each user-defined function evaluates its
arguments in order to correctly translate the arguments in a call to that
function. If a function parameter is not evaluated (as is the case in a Fexpr
or Nlambda type function) then the translator should not translate the
corresponding argument in any calls to the function. If the argument is
evaluated, either by the interpreter or explicitly by a call to EVAL from
within the function, the the translator must translate the argument. The
problem, of course, is how to determine whether or not a function expliecitly
evaluates an initially un-evaluated argument.

The handling of function arguments which may or may not be evaluated is
problematic in systems such as this. The proper thing to do is to examine the
code to the function and try to determine whether there is an explicit call to
EVAL. Franslator takes the more practical approach of assuming that the
function either will or will not explicitly evaluate all of its un-evaluated
arguments. The decision is controlled by the value of a global variable. A
facility is supplied which allows one to directly inform the translator about
a function's type, number of arguments and exactly which arguments are
evaluated.

B. The Second Pass

During the second pass, each source-dialect file in the set is processed
independently, resulting in a corresponding file in the target-dialect. The
processing, for the most part, is simply a matter of translating each s-
expression in the source file and writing the result in the target file. In
addition, for each of the source files, a file containing notes about the
translation is produced. Entries are made, for example, when the translator
discovers a function which is not in its data base and upon encountering a
function call with an improper number of arguments. In addition, any rule can
add notes to this file as one of its side effects.

T. Finin 110 PRESENTED PAPERS

Report No. 4842 Bolt Beranek and Newman Inc.

IV. Transformation Rules

The actual translation is done by a set of transformation rules. Each
rule specifies the translation of one s-expression into one or more resultant
s-expressions. In addition to the usual "pattern" and "result" parts, rules
can be easily augmented with arbitrary conditions and actions.

A. The Structure of a Rule

A rule has two obligatory parts: a pattern which determines the
expressions the rule applies to and a result which specifies the result of the
transformation. In addition to these, a rule can have up to five optional
attributes such as a test and priority. The syntax of a rule is:

<rule> -> (<pattern> <result> . <attributes>)

<attributes> => () | (<attribute> . <attributes>)
<attribute> -> (<attribute name> <attribute valued)
<attribute name> -> test | side-effect | priority ...

<attribute value> -> {an s-expression}

Variables in the pattern are specified using a variation of the MacLisp
"backquote" convention. Any symbol in the rule's pattern which is preceded by
a "," is taken as a variable which can match any one s-expression. A symbol
preceded by ",@" can match any number of sister s-expressions. In the result
part of a transformation rule the comma and €@ have a slightly different
interpretation. There, s-expressions which are preceded by a "," are replaced
by their values and those preceded by ",@" have their values "spliced in" in
their place.

Some examples of transformation rules are shown below.

[r1] (NIL nil)
[r2] ((NLISTP ,x) (not (dtpr ,x)))
[r3] ((PROG1 ,fargs) (prog2 nil ,@args))
[r4] ((MAPCAR ,list (FUNCTION ,f))
(mapcar ',(makeMonadic f) ,list))
[r5] ((DECLARE: ,@args) ,(translateDeclare: ,args))

T. Finin 111 PRESENTED PAPERS

Bolt Beranek and Newman Inc. Report No. 4842

Rule [r1] is the simplest, mapping the symbol "NIL" into the symbol
"nil". Rule [r2] introduces the use of a simple variable. The third example
rule shows an application requiring a "@" variable. The rule [r}] shows an
computation embedded in the result part of the rule. The second element of
the result will be a list whose CAR is QUOTE and whose CADR is the result of
calling the function makeMonadic with argument f. The last rule, [r5] is one
in which the entire result is computed.

The optional rule attributes include TEST, SIDE-EFFECTS, PRIORITY, TYPE
and REGIME. The value of a TEST attribute is an Lisp expression which must
evaluate to non-NIL before the rule can be applied. The test is run after the
pattern has matched so that the pattern's variables will be bound to values.
An example of a rule using the TEST attribute is:

((PLUS ,@argst ,x ,@args2 ,y ,€@args3) ; pattern
(PLUS ,@argst! ,@args2 ,@args3 ,(+ x y)) jresult
(test (and (numberp x) (numberp y)))) ;test

This rule causes any numeric arguments to PLUS to be collected and summed at
translation time.

The SIDE-EFFECT attribute introduces a Lisp expression which will be
evaluated whenever the rule is applied and the result has been computed. Side
effect attributes are typically used to write messages about the translation
into the file of translation notes or to the terminal.

The PRIORITY attribute is used to rank the rules. Whenever two rules both
apply to an expression being translated, the one with higher PRIORITY is
applied first. Our current Interlisp to Franzlisp translation rules do not
use the priority feature.

The TYPE attribute should have as its value either splicing or replacing
(which is the default rule type). A splicing rule is one in which the result
is a list of expression which are to be "spliced" into the list containing the
expression being translated. A splicing rule is used, for example, to
transform a call to DEFINEQ into a sequence of calls to defun at the top level
of the file. In a replacing rule, the result is simply replaces the original
expression.

The REGIME attribute must be either cyclic or acyclic (the default case).
A cyclic rule can apply more than once to the same expression whereas a

T. Finin 112 PRESENTED PAPERS

Report No. 4842 Bolt Beranek and Newman Inc.

acyclic rule can only be applied once. The default REGIME is acycliec. An
example where a cyclic rule is appropriate is:

((and ,€x (and ,@y) ,6z) ; pattern
(and ,8x ,8y ,0z) ; result

(regime cyclic))

This rule eliminates a call to AND if it is embedded in another AND by raising\
its arguments.

B. Rule Representation

The translation rules are presented to the system in the form described
above and are immediately "compiled" (by macro-expansion) into Lisp code. Each
rule becomes a monadic function whose argument is an s-expression to be
translated. If that expression matches the rule's pattern then the function
will compute and return the translated form. If the expression and pattern do
not match, then a special symbol indicating failure is returned. The Lisp
code generated for a rule is optimized for efficiency. The pattern matching
operation, for example, is "open coded" into a conjunction of primitive tests
and action (e.g., EQ, EQUAL, LENGTH, SETQ).

Each rule is indexed by first assigning it to one of four classes
depending on the nature of its pattern. The four classes are rules whose
patterns are: (1) atomic; (2) lists with literal atoms as their first element;
(3) 1lists with variables as their first elements; and (4) lists with lists as
their first element. Rules in class two are indexed on the property list of
the symbol in their CARs. The other classes are not further indexed.

C. Controlling the Translation

The translation system was designed to provide a high degree of
transformational power in a simple format. A person writing a set of
transformation rules may want to have greater control of the translation
engine. In order to provide for such situations, the translation system makes
available a number of control functions and certain relevant global variables.
For example there exist functions for aborting the application of a

translation rule and for prematurely ending the translation of expression

T. Finin 113 PRESENTED PAPERS

Bolt Beranek and Newman Inc. Report No. 4842

without considering the application of any other rules. The rule writer has
access to such values as the stack of forms undergoing translation (to allow

for context sensitive rules), and the name of the current Lisp function being
translated.

In addition, there are various support and debugging functions which
facilitate the development of new sets of translation rules.

V. Summary, Current Status and Future Directions

This section has reported on the development of a general inter-dialect
Lisp translation system and its application to the task of translating the
Interlisp implementation of KL-ONE into FranzLisp. The translation system is
running smoothly and fairly efficiently. The current set of translation rules
and run-time support functions appear to cover all of the basic facilities
needed by KL-ONE. We are currently in a cycle in which a translation of
KL-ONE is made and then run to discover bugs in the translation rules or run-
time support system.

Some future work will be directed towards experimenting with extensions
to translation system to allow for more flexibility, power and/or efficiency.
Other work will involve broadening the set of interlisp to Franzlisp
translation rules to handle constructions not required in translating KL-ONE
and to handle CLISP code. A third direction is the writing of rules for
translating between other pairs of Lisp dialects. A set of Interlisp to
CommonLisp rules might be very useful, for example.

T. Finin 114 PRESENTED PAPERS

