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Abstract—A common Big Data problem is the need to
integrate large temporal data sets from various data sources
into one comprehensive structure. Having the ability to cor-
relate evolving facts between data sources can be especially
useful in supporting a number of desired application functions
such as inference and influence identification. As a real world
application we use climate change publications based on the
Intergovernmental Panel on Climate Change, which publishes
climate change assessment reports every five years, with cur-
rently over 25 years of published content. Often these reports
reference thousands of research papers. We use dynamic topic
modeling as a basis for combining report and citation domains
into one structure. We are able to correlate documents between
the two domains to understand how the research has influenced
the reports and how this influence has changed over time. In
this use case, the topic report model used a total number of
410 documents and 5911 terms in the vocabulary while in the
topic citations the vocabulary consisted of 25,154 terms and the
number of documents was closer to 200,000 research papers.

Keywords-big data; topic model; cross-domain correlation;
data integration; domain influence;

I. INTRODUCTION

Combining large data sets from a combination of sources
can be complicated by a number of factors such as contextual
differences and semantic differences. However, the benefit
is finding facts that provide additional meaning and are
supportive of tasks such as classification and inference that
could not be acquired from processing a single source of
data.

When working with scientific research that has an impact
on society, panels are often formed to report on the findings
of that research. Understanding how that research influences
the recommendations and assertions in the reports also
entails combining sources of data. However, the sources
combined are constrained since they are mostly related to
the same general domain, i.e., they are not vastly different
domains.

Understanding how research influences report recom-
mendation or assessments, or in general how one domain
influences another, provides a basis for inferring how that
research may influence future reports. An important part

of understanding how one domain influences another is to
understand how these domains are changing over time.

In this work we use Dynamic Topic Models (DTM) [1]
to model how topics evolve for different domains. We apply
our own methodology to find a common vocabulary between
the two domains and build divergence matrices using Jensen-
Shannon divergence to discover pairs of cross-domain topics
that have low divergences. We use these cross-domain topic
pairs to cluster documents from the two domains to discover
documents that are semantically closely related.

A. Use Case - Climate Change Assessment Reports

“The Intergovernmental Panel on Climate Change (IPCC)
is a scientific body established in 1988 under the auspices of
the United Nations” at the request of member governments,
to provide “the world with an objective, scientific view of
climate change and its political and economic impacts” [2].
Thousands of scientists voluntarily contribute to conducting
computational simulated scenarios, writing sections of chap-
ters and formulating the summary recommendations in the
Assessment Reports, which are then reviewed by govern-
ments. The IPCC issues Assessment Reports approximately
every five years beginning in 1990 with AR1, 1995 (AR2),
2001 (AR3), 2007 (AR4) and 2014 (AR5). Each report
obeys a formal structure and consists of four books, (Phys-
ical Science Basis, Impacts, Adaptations and Vulnerability,
Mitigation of Climate Change and Synthesis Reports) [2].
Each book has 12 to 16 chapters with a Summary for Policy
Makers. Each chapter contains 800 to 1200 citations.

B. Contribution

Our work makes contributions to help scientists gain
insights into how climate change research is evolving and
also contributes a general approach for integrating data
from a scientific domain and from bibliographic sources
which support it. This is the first time to our knowledge
that anyone has created a semantic language model of the
IPCC literature and its citations. We have modeled over 30
years of climate change research and can show how key
concepts have evolved over time. By using our approach



to integrating two domains into a common space, we can
show how particular aspects and threads of climate change
research relate to the various IPCC reports.

C. Application

This work can also be used as a tool for climate change
researchers to quickly reference and acquire a coarse under-
standing of climate change research past and present. It can
reduce the human time spent in understanding how climate
change research has evolved over the past 30+ years, and
can be used, with additional user interfaces, to support a
search tool for a climate change researchers.

II. BACKGROUND

In this section we describe the purpose of the IPCC. We
also describe topic modeling since this method of finding
thematic structure in documents is foundational to our work.

A. IPCC

Approximately every five years dating back to 1989,
thousands of climate scientists, research centers and govern-
ment labs volunteer to prepare comprehensive Assessment
Reports for the Intergovernmental Panel on Climate Change
(IPCC) [2]. These are highly curated reports distributed to
approximately 200 nation policy makers. There have been
five IPCC Assessment Reports to date, the latest leading to
a Paris Agreement in December 2016 [3] signed thus far by
172 nations to limit the amount of global Greenhouse gases
emitted to producing no more than a 2◦ C warming of the
atmosphere.

The IPCC operationally defines climate science in three
parts:

1) The study of the physical, chemical and biological
mechanisms that determine the workings of the cli-
mate system, which is comprised of the atmosphere,
the oceans, the cryosphere and the land surface. It
investigates past, present and future climate though
observational, theoretical and modeling.

2) The assessment of impacts, especially anthropogenic
influences on the climate system, on ecosystems and
socio-economic systems. Important components in-
clude sea level rise, extreme events such as hurricanes,
impacts on agriculture.

3) The possibilities for mitigating climate change through
such strategies as conservation, renewable energy, car-
bon capture and sequestration, and geoengineering.

These reports are a living evolving big data collection
tracing 30 years of climate science research, observations,
and model scenario intercomparisons. They contain more
than 200,000 citations over a 30 year period that trace
the evolution of the physical basis of climate science,
the observed and predicted impact, risk and adaptation
to increased greenhouse gases and mitigation approaches,
pathways, policies for climate change.

The task of studying these reports and understanding the
research that supports each report is laborious, hence as
soon as one report is published the work begins for the
composition of the next report, a five year process. This
sort of effort can be seen in other domains such as law,
economics and various scientific domains. Leading to the
question, how does one come to understand and infer new
information from big data that spans over many decades?

B. Topic Modeling

Foundational to this work is both Latent Dirichlet Allo-
cation (LDA) [4] and Dynamic Topic Models (DTM) [1].

Topic modeling has a long history of research particularly
in the Natural Language Processing domain and is used to
identify the semantic structure or ’hidden’ structure of a
collection of documents. LDA is based on the early work of
Deerwester et al. [5] who introduced the concept of Latent
Semantic Analysis (LSA) based on which uses singular
value decomposition and Hofmann [6] who introduced the
concept of Probabilistic Latent Semantic Indexing (pLSI)
which introduced a probabilistic generative approach. Blei
et al. [4], [7] furthered the probabilistic generative approach
by incorporating a Dirichlet prior and using a Bayesian
estimation.

With LDA each document has a mixture of topics rep-
resented as a probability distribution and each topic is
represented by a probability distribution over the set of
words found in the vocabulary which is composed from
the words found in the collection of documents. Topics are
drawn from a Dirichlet distribution.

The generative process of LDA is typically shown as a
plate diagram, conveyed by Figure 1, where ω represents
the words, β1..k are the topics, θd,k is the topic proportion
of topic k in document D, and Zd,k is the topic assignments
[4], [7].

From this generative process, a joint probability distri-
bution is obtained over observed and hidden variables [4],
[7]. Equations 1 and 2 [4], [7] show the joint distribution
of hidden and observed variables and the posterior which is
intractable and is estimated using a variational method such
as an EM algorithm [8] or a sampling method such as Gibbs
sampling [9].

p(β1:K , θ1:D, z1:D, w1:D)

=

K∏
i=1

p(βi)

D∏
d=1

p(θd)

(
∏N

n=1
p(zd,n|θd)p(wd,n|β1:K , zd:n))

(1)

p(β1:K , θ1:D, z1:D|w1:D) =

p(β1:K , θ1:D, z1:D, w1:D)

p(w1:D)

(2)



Where k is a specified input number of topics across the
document collection and n is a specified input number of
terms per topic. βk is the topic proportions θk is marginal
probability of observed variables (computed by summing the
joint distribution over all possible hidden topic structure) zd
is the topics assignments Wd is the observed word for doc
d

Figure 1: Plate diagram of LDA (Blei et al., 2003)

DTM tries to capture how topics evolve over some spec-
ified time period, where documents are split into specified
time slices and a topic model is generated for each given
time slice. Topics evolve over time and are captured in
this model. The Figure 2 is typically used to capture this
generative process where β represents the parameters of a
topic for some time slice ti and topics along with topic
proportions evolves over the time slices [1]. A normal
distribution is used over topics and approximate inference
is achieved with a variational method. Further discussion
can be found in the work by Blei et al. [1].

Our time slices are discrete, in that we use assessment re-
port periods as time slices. Therefore, DTM is an appropriate
way to model how these time slices are changing. It may
be less appropriate if we were solely analyzing continuous
time slices.

Figure 2: Plate diagram of DTM (Blei et al., 2006)

III. METHODOLOGY

In this section we will explain the structure of the IPCC
reports, how we acquire the citations, preprocessing, our
method for modeling and how we use the document-topic
distributions and topic-term distributions. Figure 3 visually
depicts the structure of the IPCC reports. This structure is
important to this work as it relates to how we build the topic
model. The topic model is based on conceptual documents

but what is treated as a document can vary based on how
we wish to use topic modeling.

Figure 3: The Structure of IPCC

A. IPCC Hierarchical Structure

The IPCC is naturally hierarchical. Reports are composed
of books, books are composed of chapters, chapters are
composed of subsections.

There are n reports ar1, ar2, ..., arn, currently n = 5.
There are m books brn,1, brn,2, ...brn,m where brn,m ⊂

arn, currently m = 4 for all arn.
There are l chapters chn,m,1, chn,m,2, ...chn,m,l where

chn,m,l ⊂ brn,m.
The citation modeling consist of documents ci that are

cited in the chapters of the IPCC books.
For each chn,m,l, we extract k citations

cin,m,l,1, ...cin,m,l,k found in that document. The citations
are stored in a directory structure by chapter, by year.

The main focus of this work is to model reports and to
model citations. For citations a document in our topic model
is equivalent to the full text of a paper. For reports, we
experimented with treating a chapter as a document, a book
as a document and even a full report as a document. Treating
chapters as documents yields a higher number of documents
per time slice.

B. Preprocessing

Report chapters are in the form of PDF files, we used
a pdf to text converter to convert PDFs to text using
PDFMiner1. Unfortunately these conversions can produce
noisy text but the essence of the document can be captured.
At the end of each chapter is typically a set of citations
to support the chapter. We parsed these sections to extract
citations and generated a knowledge base of citations linked
to each chapter which captures the chapter, the year, the
authors, and the title of the citation. We built parsers that
were specific to each assessment report so as to maximize
the number of extracted citations. Using Microsoft Bing
[10], we retrieve approximately 150,000 citations referenced
across chapters and convert those citations to text also.
As one could imagine, this is a challenging task as the
citations are often formatted in non-standard ways or the
retrieval is not possible. Errors are expected and noise is

1https://pypi.python.org/pypi/pdfminer/



not uncommon. For the Physical Science Basis book, we
calculated approximately a 20% error rate between parsing,
extraction and retrieval. Meaning we were able to retrieval
approximately 80% of the citations.

Using a word n-gram model based on a heterogeneous cli-
mate change glossary referenced in Table I, we first look for
word n-grams, then singular words. We use lemmatization to
get a single form of words. We remove all stopwords, words
that are significantly numeric (necessary since many of the
reports contain extensive numeric analysis) and functional
words. We also apply noise filtering and exclude words with
a frequency less than ten or a length less than three. Word
frequencies are calculated for chapters and citations.

Table I: Climate Change Glossary Sample

Glossary Sample
anthropogenic climate change
anthropogenic influence
anthropogenic carbon dioxide
atlantic oscillation
atmospheric aerosol
atmospheric dynamic
atmospheric model
atmospheric co2
anthropogenic emission
anthropogenic co2 emission
aerosol cloud

C. Modeling

Using the C code based implementation of DTM2 we
model books, where each chapter in a book is treated as
a document. We also build topic models for citations for
each chapter. Temporal document sets are built based on
the assessment period, where there are five periods. We
use this time slicing for both the chapters and citations.
Document-topic and topic-term probability distributions are
built from the vocabularies of the respective assessment
report chapters and citations. We currently use variations
in modeling according to Table II where we also vary the
number of topics K according to the size of the collection.
We highlight our use of K in the Experimentation section
of this paper.

D. Micro-Filtering

The output from DTM enables us to generate topic-
term probability matrices and document-topic matrices from
which we apply our own algorithms to achieve ’micro-
filtering’, single-domain and cross domain correlation.

From the topic-term probability matrix we calculate n
high rank terms per topic. Where n defines how many high
rank terms to include. We also build m high rank topics

2https://github.com/blei-lab/dtm

Table II: Variations in Modeling

Model Type Information Used
Report All Books
Report Specific Book
Report Specific Chapter
Citation All Citations
Citation Specific Books
Citation Specific Chapters

per document. These measures allow us to really understand
which terms and topics are most significant in the models
we build.

E. Cross-Domain Correlations

Based on the high rank terms for each topic, we formulate
a new ’micro-model’. We do this for any set of domains
we wish to correlate. In our experiments in particular we
generated ’micro-models’ for reports and citations. In order
to perform any sort of correlation between ’micro-models’
we generate a common shared ’micro-model’ vocabulary
which is simply stated as given V 1 and V 2, we want to
generate V S = V 1∪V 2. Using V S, we formulate new word
vectors and calculate divergences using Jensen-Shannon
divergence and correlations using Pearson correlation for
each set of topics.

For report chapter topics and citation topics, for each
(ch tp, ci tp) pair exists a set of correlation measures
CORR0..n = corr1, corr2, ...corrm where n is the number
of (ch tp, ci tp) pairs. In this case we have two measures
for each pair, a divergence measure and p-correlation mea-
sure. We use these sets of correlation measures to establish
points in space where each (ch tp, ci tp)n pair is a point.
Given that we have established m high rank topics per
document, our (ch tp, ci tp)n points give way to a set of
chapter,citation points which we use to establish relatedness
and influential relationships.

The Jensen-Shannon divergence between two probability
distributions P1 and P2 is defined as:

JSD [P1, P2] =
1

2
(KL[P1,

P1 + P2

2
]+KL[P2,

P1 + P2

2
])

(3)
Where KL is the KullbackLeibler divergence.
The Pearson correlation is defined as:

ρ(X,Y ) =
Cov(X,Y )√
V ar(X)V ar(Y )

. (4)

IV. RELATED WORK

Blei et al. [1] used DTM to model the evolution of a
collection of Science articles and showed promising results
related to the evolution of topics for specific terms such as
’Atomic Physics’ and ’Neuroscience’. This work through
the topic chaining was able to capture known trends among
the collection of Science articles. Their document collection
was from JSTOR and they used an OCR engine to obtain



a text version of these papers. It was not specifically stated
but implied that each paper represented a document in this
model. There was no mention of the citations referenced in
each paper. It is likely the citations found in each document
were not parsed, retrieved and used in their model.

Work by Shalit et al. [11] used DTM for modeling the
musical influence. They applied this work to a large data set
of songs for a continuous time period from 1922 to 2010.
Their problem is similar from a hierarchical perspective,
i.e. sound segments - songs - album structure is similar to
our data - chapter - book - report structure. Influence is an
important component of our work but we also examine how
the science has changed over time, which is less of a focus
in this work.

Recent work by Li et al. [12] described a number of
experiments they conducted with dynamic topic models.
They modified the original algorithm by using a hierarchical
Pitman-Yor process. Document topic proportions and distri-
butions are evolved using this method. They also used Gibb
sampling rather than a variational method. This method was
also built for multi-core use. Their experiments consisted of
the ABC data set and used a time period with three months
of content per time slice over the course of a ten year period.
They showed similar term evolution results via the topics.
This work primarily focused on building a dynamic scalable
model and rather than the content, which is really the essence
of our work.

More recent work by Hu et al. [13] also highlighted
using dynamic topic modeling for topic evolution. Their
work was focused on the evolution of a software project.
The documents for this model were commit messages for
a project’s revision control system. This work did not
modify the DTM algorithm itself but instead performed post-
processng methods based on the document topic and topic
term distributions. We similarly apply additional methods to
the output of the DTM modeling.

There were other methods that examined topic evolution
over time [14] that were less relevant to this work.

V. EXPERIMENTS AND RESULTS

Our preliminary experiments focused primarily on one
book, the Physical Science Basis.

Our first experiment involved a specific chapter from each
assessment report with a significant representation of the
concept ’Radiative Forcing’, i.e., the main theme of the
chapter. We built two models for this experiment, a radiative
forcing chapter report model with five documents (each
chapter document is decomposed into several subsections)
and a vocabulary of 790 terms, and a radiative forcing
citation model with 1451 documents as shown in Table III
and 5744 terms.

We built models for reports and citations with topic size
varying as K = [5, 10, 20, 30, 40]. We found for reports the
most useful model based on topic term rank was five topics

Table III: Physical Science - Radiative Forcing Citation
Counts

Assessment Report Citation Count
AR1 12
AR2 164
AR3 345
AR4 435
AR5 490

Table IV: Physical Science Citation Counts

Assessment Report Citation Count
AR1 1051
AR2 3393
AR3 4527
AR4 7096
AR5 9545

with really the core topics clustering in two specific areas:
’radiative forcing’ and ’anthropogenic’ topics. For citations
we found ten topics was sufficient.

Our second experiment involved all chapters within the
Physical Science book. We limited the number of chapters
for the Physical Science book to 11 chapters for each
assessment period, where the assessment periods represent
the five time slices. We built two models for this experiment,
a physical science chapter report model with 55 documents
and a vocabulary of 1953 terms, and a physical science
citation model with 25,612 documents as shown in Table
IV and 15,485 terms.

We experimented with changing a number of variables.
For example, we experimented with changing the number of
topics K. For the Physical Science reports we experimented
with [5, 10, 20, 30, 40] topics. For Physical Science citations,
we experimented with 10-number intervals from 10 to 100
topics. We also experimented with term rank, we tested our
approach with a top 10 rank, top 15, and top 20 rank.

In the below results, we used 20 topics for the reports
and 60 topics for the citations. We used low topic repetition
as a measure for determining how large K should be. An
example of a report topic evolution among high ranked terms
is shown in Table V for the reports.

Among ’black carbon’ research there was a publication
peak around 2001 which is about the time the third assess-
ment report was published. So we would expect to see a
peak around AR3 or AR4 in Figure 4. We saw a slight peak
at AR4 however it is not statistically significant. Overall the
probabilities for ’black carbon’ are low. We compare this
with Figure 5 which shows the evolution of ’black carbon’
for citations and do not see this peak at all. The probabilities
are slightly higher in the citations model.

In this case, we only found a single topic that had
’black carbon’ in the top terms however, often concepts can



Table V: Dynamic Topic Generation - 20 Topics Physical
Science Reports

Topic 14 - Top 10 Terms Topic 15 - Top 10 Terms

Assessment 1

climate change
general circulation models
radiative forcing
carbon dioxide
global warming
ocean model
atmospheric co2
carbon cycle
temperature
system

cloud
anthropogenic
radiative forcing
black carbon
climate change
effect
temperature
boundary layer
fossil fuel
sulphate

Assessment 2

climate change
radiative forcing
general circulation models
atmospheric co2
global warming
carbon dioxide
temperature
carbon cycle
ocean model
climate model

cloud
anthropogenic
radiative forcing
black carbon
climate change
effect
fossil fuel
temperature
boundary layer
sulphate

Assessment 3

climate change
atmospheric co2
temperature
radiative forcing
global warming
carbon cycle
carbon dioxide
general circulation models
sea level rise
climate model

anthropogenic
radiative forcing
black carbon
cloud
climate change
temperature
fossil fuel
boundary layer
atmospheric aerosol
sulphate

Assessment 4

climate change
temperature
atmospheric co2
radiative forcing
equilibrium climate sensitivity
sea level rise
global warming
carbon cycle
carbon dioxide
surface temperature

anthropogenic
radiative forcing
black carbon
surface temperature
temperature
climate change
radiation budget
boundary layer
tropospheric
climate model

Assessment 5

temperature
climate change
equilibrium climate sensitivity
carbon cycle
atmospheric co2
radiative forcing
sea level rise
global warming
carbon dioxide
surface temperature

radiative forcing
anthropogenic
temperature
surface temperature
climate change
black carbon
boundary layer
global warming
climate model
atmospheric aerosol

be found among a number of topics. Changes in concept
probabilities for a given topic could imply a trend. However
because these concepts may be found among the high ranked
terms of multiple topics, it is important to observe how
the concept trends among those topics. For example, the
concept ’climate model’ remains steady over assessments,
shown in Figure 6. This was consistent with the other
four topics that had ’climate model’ present in the top ten
terms. The concept ’general circulation model’ showed a
decrease in probability as seen in Figure 8. By observing
another topic for ’general circulation model’ as shown in
Figure 9, we see though the trend isn’t exactly the same,

Figure 4: Physical Science Report Chapter Topic Evolution
of ’Black Carbon’

Figure 5: Physical Science Citation Topic Evolution of
’Black Carbon’

there is still a decrease in probability from the top ten.
In climate change research the use of ’general circulation
model’ has been found in publications since the 1980s. More
recently, ’climate models’ are used more frequently than
’general circulation model’. Our models do tend to show
these attributes. We compare ’climate model’ topics among
citations in Figure 7 with ’general circulation model’ topics
among citations in Figure 10 and there does also seem to
be some agreement with citations.

There were also results that seem to be in disagreement
from reports to citations, as seen with the concept ’sea level
rise’ in Figure 11. The report topic trend tends to decline,
whereas with the citations there tends to be a slight increase
in probability as seen in Figure 12. This was also consistent
among other topics which included ’sea level rise’ as a term.

It is important to understand what is truly a trend and what
is a side-effect of the model itself and how the documents
are composed. For example, a concept in one assessment



Figure 6: Physical Science Chapter Report Evolution of
Climate Model

Figure 7: Physical Science Citation Evolution of Climate
Model

Figure 8: Physical Science Chapter Report Evolution of
’General Circulation Model’

Figure 9: Physical Science Chapter Report Evolution of
’General Circulation Model’

Figure 10: Physical Science Citation Evolution of ’General
Circulation Model’

Figure 11: Physical Science Chapter Report Evolution of
’Sea Level Rise’



Figure 12: Physical Science Citation Evolution of ’Sea Level
Rise’

Figure 13: Physical Science Report 20-Topic and Citation
60-Topic Divergence Matrix

may be coupled with a number of other concepts in a given
chapter. However, in the next assessment, that same concept
could appear with other concepts in a different chapter.
The concept trend may change for a given topic but it
will also change in other topics that capture this different
representation. By observing how the probabilities change
across all topics which contain a concept in the top ten terms
we are able to gain a better understanding of the trend.

A. Clustering Cross-domain Documents

We used the output from the dynamic topic models to
correlate the citations and chapters. In Figure 13, we show
an example of a chapter report 20 topic by a citation 20 topic
divergence matrix. The lower the divergence, the more likely
the topics contain similar terms. In the experiment which
includes chapter report 20 topics and citation 60 topics cross-
domain divergences, we set a threshold of 10% and find topic
pairs between the two domains that have a divergence of this
score or less.

The divergence matrix can also be plotted to show (report
topic, citation topic) points in space, where each point
represents when the divergence was below the 10% thresh-
old indicating a potential match between the cross-domain
topics. For example, in Figure 14 we show report, citation
points for Assessment Report 3.

We use the topic divergences to cluster report chapters as
documents and full citation papers from the two domains.

Figure 14: Physical Science Report Topic,Citation Topic
Points in Space

With a chapter document topic probability threshold set at
50% and a citation topic probability threshold set at 80%, we
were able to find clusters of chapter documents and citation
documents from the two domains that are related. For ex-
ample, in Figure 15 we found a cluster which included three
chapters related to ’Radiative Forcing’ from AR1, AR2, and
AR3. To confirm this result, we mapped specific chapters
from each assessment that relate to ’Radiative Forcing’ using
their table of contents and cosine similarity measure. What
we found was that AR1, AR2 and AR3 were significantly
more similar and, AR4 and AR5 were significantly more
similar. This is consistent with the cluster results shown in
Figure 15. The citations in this cluster can be mapped back
to either these chapters from AR1, AR2, and AR3, or a
chapter from one of the other assessment reports related to
’Radiative Forcing’. Most of these citations can be mapped
to chapters which we did not designate as a ’Radiative
Forcing’ chapter but indeed have a discussion related to
’Radiative Forcing’. The thresholds are important in that
they influence our precision and recall. When we relax the
thresholds our recall does increase. More experimentation
will need to be performed to find the optimal thresholds for
each.

VI. CONCLUSION

This paper highlights our early work and a methodology
for assessing relatedness and influence between two domains
by topic modeling each domain and using a subset of the
vocabulary to find cross-domain topic pairs which could
be used to cluster documents from the two domains. We
performed topic modeling of five IPCC Assessment Reports
and we performed topic modeling of the citations over time
based on their occurrence in each chapter of the assessment
reports. This unique citation document collection as created
by thousands of climate scientists enables one to discover
the influence that the referenced publications exert on the



Figure 15: Physical Science Report and Citation Cluster
Example

report as the citation research led to new topic emphasis
over time.

The continuation of this work will include a service-
oriented computing interface for the cross domain of topic
report documents and topic citation documents that will
enable climate change researchers to mine, correlate and
display the influence of selected citations not even appearing
at some specified ranked probability measure in that chapter
or report. The value of such a service would be to sig-
nificantly aid climate researchers by enhancing the ability
of climate researchers, as well as the general community,
to detect changes over time on the importance of portions
of assessment reports based on probability measures of
the relevant topic citations. This methodology is applicable
to document collections from other domains for studying
time evolving reports for business, government as well
as science and engineering. Finally, we plan to include a
Watson interface to be used to optimize client user content
in exploring the complex interactions of climate processes
and to recognize shifts in document topic terms owing to
influences of temporal research contributions.
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