
1

0pt

Generated on Thu Aug 19 23:57:17 2004 for Snoop IDS by Doxygen

2

Generated on Thu Aug 19 23:57:17 2004 for Snoop IDS by Doxygen

Snoop IDS Reference Manual
1.0

Generated by Doxygen 1.2.18

Thu Aug 19 23:57:16 2004

Contents

Chapter 1

Snoop IDS Data Structure Index

1.1 Snoop IDS Data Structures

Here are the data structures with brief descriptions:

hashtable(Structure for a HT) .??
ht bucket(Structure for a HT bucket) .??
intruder(The intruder struct holds the mac, ipv6 addresses, the time when it was classified as

intrusive and the dropcount for that period) .??
neighbor(The neighbor struct stores that mac address and corresponding IPv6 address of its

neighbors) .??

2 Snoop IDS Data Structure Index

Generated on Thu Aug 19 23:57:17 2004 for Snoop IDS by Doxygen

Chapter 2

Snoop IDS File Index

2.1 Snoop IDS File List

Here is a list of all documented files with brief descriptions:

common.h(Common header files required by all other modules)??
hashtable.c(Implements a hashtable with quadratic probing)??
hashtable.h(Implements a hashtable with quadratic probing)??
snoop.c(Uses the pcap library, to listen on any available network interface in promiscuous mode.

Raw packets are captured and further processed for filtering, IPv6 packets are of inter-
est. TCP streams over IPv6 are monitored. AODV6 packets are in UDP datagrams,
again in IPv6 packets. AODVD hello messages are used to populate the neighbor table.
The IDS itself is independent of the routing protocol is in use. In this instance we used
SecAODV, so neighbors are discovered using AODV hello messages)??

snoop.h(Uses the pcap library, to listen on any available network interface in promiscuous mode.
Raw packets are captured and further processed for filtering, IPv6 packets are of inter-
est. TCP streams over IPv6 are monitored. AODV6 packets are in UDP datagrams,
again in IPv6 packets. AODVD hello messages are used to populate the neighbor table)??

4 Snoop IDS File Index

Generated on Thu Aug 19 23:57:17 2004 for Snoop IDS by Doxygen

Chapter 3

Snoop IDS Data Structure
Documentation

3.1 hashtable Struct Reference

Structure for a HT.

#include <hashtable.h >

Data Fields

• ht bucket∗ table

Table of pointers to buckets.

• unsigned intsize

Maximum size.

• unsigned intcount

how many entries

3.1.1 Detailed Description

Structure for a HT.

The documentation for this struct was generated from the following file:

• hashtable.h

6 Snoop IDS Data Structure Documentation

3.2 ht bucket Struct Reference

Structure for a HT bucket.

#include <hashtable.h >

Data Fields

• u char∗ packet

Pointer to raw packet.

• ht statestate

Whether the entry is valid, invalid, deleted or late.

• time t timestamp

timestamp when received

3.2.1 Detailed Description

Structure for a HT bucket.

The documentation for this struct was generated from the following file:

• hashtable.h

Generated on Thu Aug 19 23:57:17 2004 for Snoop IDS by Doxygen

3.3 intruder Struct Reference 7

3.3 intruder Struct Reference

The intruder struct holds the mac, ipv6 addresses, the time when it was classified as intrusive and the
dropcount for that period.

#include <snoop.h >

Data Fields

• u int8 t etheraddr[6]

ethernet address

• u int8 t ip6 addr[16]

ip6 address

• time t whendetected

end of sampling period is recorded

• u int32 t dropcount

right now there is just one type, need (type,count) for each type of attack

3.3.1 Detailed Description

The intruder struct holds the mac, ipv6 addresses, the time when it was classified as intrusive and the
dropcount for that period.

The documentation for this struct was generated from the following file:

• snoop.h

Generated on Thu Aug 19 23:57:17 2004 for Snoop IDS by Doxygen

8 Snoop IDS Data Structure Documentation

3.4 neighbor Struct Reference

The neighbor struct stores that mac address and corresponding IPv6 address of its neighbors.

#include <snoop.h >

Data Fields

• u int8 t src ether[6]

source ethernet address

• u int8 t src ip6 [16]

corresponding ip6 address

• r stateroutestate

live, bad or expired

• u int32 t dropcount

count of dropped packets since last timeout

• clock t expiry

when this route will expire

3.4.1 Detailed Description

The neighbor struct stores that mac address and corresponding IPv6 address of its neighbors.

The documentation for this struct was generated from the following file:

• snoop.h

Generated on Thu Aug 19 23:57:17 2004 for Snoop IDS by Doxygen

Chapter 4

Snoop IDS File Documentation

4.1 common.h File Reference

Common header files required by all other modules.

#include <pcap.h >

#include <stdio.h >

#include <stdlib.h >

#include <string.h >

#include <errno.h >

#include <sys/socket.h >

#include <netinet/in.h >

#include <arpa/inet.h >

#include <netinet/if ether.h >

#include <net/ethernet.h >

#include <netinet/ether.h >

#include <netinet/ip.h >

#include <netinet/ip6.h >

#include <netinet/udp.h >

#include <netinet/tcp.h >

#include <time.h >

#include <sys/types.h >

#include <sys/stat.h >

#include <fcntl.h >

#include <signal.h >

#include <unistd.h >

#include "aodv.h"

10 Snoop IDS File Documentation

Defines

• #defineAODV6 RREQ1

The AODV6 message type values, from RFC 3561.

• #defineETHER HDRLEN 14

Length of the ethernet header in bytes.

• #defineETHERTYPEIPV6 0x86dd

The protocol field value for IPv6.

• #defineIP PROTOTCP6

Value for protocol field for TCP in IPv6 datagrams is 6.

• #defineIP PROTOUDP17

Value for protocol field for UDP in IPv6 datagrams is 17.

• #defineIP PROTOICMPV6 58

Value for protocol field for ICMPv6 in IPv6 datagrams is 58.

4.1.1 Detailed Description

Common header files required by all other modules.

Author: Anand Patwardhan
email: anand.patwardhan@umbc.edu
Date : 30 April 2004

The SNOOP program is an intrusion detection mechanism to detect local
intrusions in a Mobile Ad Hoc Network.

Copyright (C) 2004 Anand Patwardhan
E-mail: anand.patwardhan@umbc.edu

eBiquity Research Group
University of Maryland, Baltimore County
1000 Hilltop Circle, Baltimore, MD 21250, USA.

http://research.ebiquity.org

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software

Generated on Thu Aug 19 23:57:17 2004 for Snoop IDS by Doxygen

mailto:anand.patwardhan@umbc.edu
mailto:anand.patwardhan@umbc.edu
http://research.ebiquity.org

4.1 common.h File Reference 11

Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

4.1.2 Define Documentation

4.1.2.1 #define AODV6RREQ 1

The AODV6 message type values, from RFC 3561.

One of the RFC has values 16, 17, 18, 19 and one has 1, 2, 3, and 4

4.1.2.2 #define ETHERHDRLEN 14

Length of the ethernet header in bytes.

This is usually already defined in ether.h

4.1.2.3 #define ETHERTYPEIPV6 0x86dd

The protocol field value for IPv6.

The protocol field value for IPv6 over ethernet is 0x86dd

Generated on Thu Aug 19 23:57:17 2004 for Snoop IDS by Doxygen

12 Snoop IDS File Documentation

4.2 hashtable.c File Reference

Implements a hashtable with quadratic probing.

#include "common.h"

#include "hashtable.h"

Functions

• hashtable∗ createHashtable(unsigned int size)

Create a hashtable of specified size.

• int makeEntry(hashtable∗ht, u char∗raw, clockt time)

Add a new raw packet to the hashtable (inserts new entry into HT).

• int performID(hashtable∗ht, u char∗raw, clockt time)

Performs comparison to see if a forwarded packet matches a received packet.

• void print (hashtable∗ht)

Prints current contents of hashtable.

• void dumppacket(u char∗packet)

Prints the contents of a raw packet in human readable form.

• void hex dumppacket(u char∗packet)

Prints the hex contents of a raw packet.

4.2.1 Detailed Description

Implements a hashtable with quadratic probing.

Author: Anand Patwardhan
email: anand.patwardhan@umbc.edu
Date : 30 April 2004

Implements a hashtable with quadratic probing, TCP sequence nos.
are used as keys for hashing packets, the hashtable itself does
not contain the raw packets, but pointer to raw packets.
TCP sequence nos. were chosen to be the keys since we intend to
perform intrusion detection on forwarded packets amongst other
things. If the HT is full, no more packets can be watched, this
however can be controlled by using an appropriate timeout period
for the timer which will flush packets deeming them to be dropped
after the timeout.

The functions makeEntry and PerformID are the HT equivalent of
insert and remove.

The size for the hashtable should be a sufficiently large prime
no. to minimize collisions and reducing the chances of overflow

Generated on Thu Aug 19 23:57:17 2004 for Snoop IDS by Doxygen

mailto:anand.patwardhan@umbc.edu

4.2 hashtable.c File Reference 13

Descriptions of each of the functions can be found in hashtable.h .

The SNOOP program is an intrusion detection mechanism to detect local
intrusions in a Mobile Ad Hoc Network.

Copyright (C) 2004 Anand Patwardhan
E-mail: anand.patwardhan@umbc.edu

eBiquity Research Group
University of Maryland, Baltimore County
1000 Hilltop Circle, Baltimore, MD 21250, USA.

http://research.ebiquity.org

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

4.2.2 Function Documentation

4.2.2.1 hashtable∗ createHashtable (unsigned intsize)

Create a hashtable of specified size.

Parameters:
size Size of the hashtable

Returns:
address of allocated HT

4.2.2.2 void dumppacket (u char ∗ packet)

Prints the contents of a raw packet in human readable form.

Parameters:
packet The raw packet to be printed

4.2.2.3 void hexdump packet (u char ∗ packet)

Prints the hex contents of a raw packet.

Generated on Thu Aug 19 23:57:17 2004 for Snoop IDS by Doxygen

mailto:anand.patwardhan@umbc.edu
http://research.ebiquity.org

14 Snoop IDS File Documentation

Parameters:
packet The raw packet to be printed in hexadecimal format

4.2.2.4 int makeEntry (hashtable∗ ht, u char ∗ raw, clock t time)

Add a new raw packet to the hashtable (inserts new entry into HT).

Uses quadratic probing to make the new entry, uses TCP sequence number. Involves parsing the TCP
header to get the sequence no. Thus currently only TCP packets can be watched, though any valid sized
packet could still be entered, but not recommended. In the case of TCP packets, seq. nos. are ideal
candidates for keys in the HT, especially when searching the HT to match an identical packet.

Parameters:
ht Hashtable to make entry in

raw Raw packet

time Timestamp when packet was received

4.2.2.5 int performID (hashtable∗ ht, u char ∗ raw, clock t time)

Performs comparison to see if a forwarded packet matches a received packet.

In the comparison, the hop limit field is ignored. The hop limit should be expected to decrease by one, if
not, should be considered as a malicious modification, though not currently done in this code.

Parameters:
ht Specifies the hashtable

raw The raw packet contents

time The time when this packet was received

4.2.2.6 void print (hashtable∗ ht)

Prints current contents of hashtable.

For debugging purposes, prints current contents of HT

Parameters:
ht Hashtable to print

Generated on Thu Aug 19 23:57:17 2004 for Snoop IDS by Doxygen

4.3 hashtable.h File Reference 15

4.3 hashtable.h File Reference

Implements a hashtable with quadratic probing.

#include "common.h"

Data Structures

• structhashtable

Structure for a HT.

• structht bucket

Structure for a HT bucket.

Enumerations

• enumht state

Enumeration of states of a HT entry.

Functions

• hashtable∗ createHashtable(unsigned int size)

Create a hashtable of specified size.

• int makeEntry(hashtable∗ht, u char∗raw, clockt time)

Add a new raw packet to the hashtable (inserts new entry into HT).

• int performID(hashtable∗ht, u char∗raw, clockt time)

Performs comparison to see if a forwarded packet matches a received packet.

• void print (hashtable∗ht)

Prints current contents of hashtable.

• void dumppacket(u char∗packet)

Prints the contents of a raw packet in human readable form.

• void hex dumppacket(u char∗packet)

Prints the hex contents of a raw packet.

4.3.1 Detailed Description

Implements a hashtable with quadratic probing.

Author: Anand Patwardhan
email: anand.patwardhan@umbc.edu
Date : 30 April 2004

Generated on Thu Aug 19 23:57:17 2004 for Snoop IDS by Doxygen

mailto:anand.patwardhan@umbc.edu

16 Snoop IDS File Documentation

Implements a hashtable with quadratic probing, TCP sequence nos.
are used as keys for hashing packets, the hashtable itself does
not contain the raw packets, but pointer to raw packets.
TCP sequence nos. were chosen to be the keys since we intend to
perform intrusion detection on forwarded packets amongst other
things. If the HT is full, no more packets can be watched, this
however can be controlled by using an appropriate timeout period
for the timer which will flush packets deeming them to be dropped
after the timeout.

The functions makeEntry and PerformID are the HT equivalent of
insert and remove.

The size for the hashtable should be a sufficiently large prime
no. to minimize collisions and reducing the chances of overflow

The SNOOP program is an intrusion detection mechanism to detect local
intrusions in a Mobile Ad Hoc Network.

Copyright (C) 2004 Anand Patwardhan
E-mail: anand.patwardhan@umbc.edu

eBiquity Research Group
University of Maryland, Baltimore County
1000 Hilltop Circle, Baltimore, MD 21250, USA.

http://research.ebiquity.org

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

4.3.2 Function Documentation

4.3.2.1 hashtable∗ createHashtable (unsigned intsize)

Create a hashtable of specified size.

Parameters:
size Size of the hashtable

Returns:
address of allocated HT

Generated on Thu Aug 19 23:57:17 2004 for Snoop IDS by Doxygen

mailto:anand.patwardhan@umbc.edu
http://research.ebiquity.org

4.3 hashtable.h File Reference 17

4.3.2.2 void dumppacket (u char ∗ packet)

Prints the contents of a raw packet in human readable form.

Parameters:
packet The raw packet to be printed

4.3.2.3 void hexdump packet (u char ∗ packet)

Prints the hex contents of a raw packet.

Parameters:
packet The raw packet to be printed in hexadecimal format

4.3.2.4 int makeEntry (hashtable∗ ht, u char ∗ raw, clock t time)

Add a new raw packet to the hashtable (inserts new entry into HT).

Uses quadratic probing to make the new entry, uses TCP sequence number. Involves parsing the TCP
header to get the sequence no. Thus currently only TCP packets can be watched, though any valid sized
packet could still be entered, but not recommended. In the case of TCP packets, seq. nos. are ideal
candidates for keys in the HT, especially when searching the HT to match an identical packet.

Parameters:
ht Hashtable to make entry in

raw Raw packet

time Timestamp when packet was received

4.3.2.5 int performID (hashtable∗ ht, u char ∗ raw, clock t time)

Performs comparison to see if a forwarded packet matches a received packet.

In the comparison, the hop limit field is ignored. The hop limit should be expected to decrease by one, if
not, should be considered as a malicious modification, though not currently done in this code.

Parameters:
ht Specifies the hashtable

raw The raw packet contents

time The time when this packet was received

4.3.2.6 void print (hashtable∗ ht)

Prints current contents of hashtable.

For debugging purposes, prints current contents of HT

Parameters:
ht Hashtable to print

Generated on Thu Aug 19 23:57:17 2004 for Snoop IDS by Doxygen

18 Snoop IDS File Documentation

4.4 snoop.c File Reference

Uses the pcap library, to listen on any available network interface in promiscuous mode. Raw packets
are captured and further processed for filtering, IPv6 packets are of interest. TCP streams over IPv6 are
monitored. AODV6 packets are in UDP datagrams, again in IPv6 packets. AODVD hello messages are
used to populate the neighbor table. The IDS itself is independent of the routing protocol is in use. In this
instance we used SecAODV, so neighbors are discovered using AODV hello messages.

#include "common.h"

#include "hashtable.h"

#include "snoop.h"

Functions

• void SIGALRM handler(int sig)

Alarm handler, updates drop counts.

• void timer updatestate(void)

Examines the hashtable and clears up packets, updates drop counts.

• void pkt callback(u char∗args, const struct pcappkthdr∗pkthdr, const uchar∗packet)

The callback function for the packet capture.

• u int16 t handleethernet(u char∗args, const struct pcappkthdr∗pkthdr, const uchar∗packet)

Returns the type of packet contained within the ethernet frame.

• int handleIPv6 (u char∗args, const struct pcappkthdr∗pkthdr, const uchar∗packet)

Examines IPv6 packets for AODV6 and TCP payloads.

• int handleAODV (const uchar∗packet)

Examines and handles AODV packets.

• int find neighbor(neighbor∗pair)

Helper function that returns the index of the provided neighbor in the neighbor table.

• int addneighbor(neighbor∗pair)

Helper function that adds a neighbor to the neighbor table.

• int incr dropcount(struct etheraddr∗ethersrc)

Increments the dropcount of the entry in the neigbor table corresponding to the provided mac address.

• void print neighbors(void)

Helper function that prints contents of neighbor table.

• void log intrusions(void)

Reads the neighbor table, logs non-zero dropcount entries as potential intrusions.

Generated on Thu Aug 19 23:57:17 2004 for Snoop IDS by Doxygen

4.4 snoop.c File Reference 19

4.4.1 Detailed Description

Uses the pcap library, to listen on any available network interface in promiscuous mode. Raw packets
are captured and further processed for filtering, IPv6 packets are of interest. TCP streams over IPv6 are
monitored. AODV6 packets are in UDP datagrams, again in IPv6 packets. AODVD hello messages are
used to populate the neighbor table. The IDS itself is independent of the routing protocol is in use. In this
instance we used SecAODV, so neighbors are discovered using AODV hello messages.

Seesnoop.hdocumentation for function descriptions.

Author: Anand Patwardhan
email: anand.patwardhan@umbc.edu
Date : 30 April 2004

The SNOOP program is an intrusion detection mechanism to detect local
intrusions in a Mobile Ad Hoc Network.

Copyright (C) 2004 Anand Patwardhan
E-mail: anand.patwardhan@umbc.edu

eBiquity Research Group
University of Maryland, Baltimore County
1000 Hilltop Circle, Baltimore, MD 21250, USA.

http://research.ebiquity.org

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

We referred to Tim Carstens’ example code and Martin Casado’s
tutorial. We also looked at the ipgrab source code and tcpdump source.
Source code seems to be the only documentation on pcap.

4.4.2 Function Documentation

4.4.2.1 int find neighbor (neighbor ∗)

Helper function that returns the index of the provided neighbor in the neighbor table.

Provided a neighbor instance, looks up and returns the index of the neighbor in the neighbor table.

Generated on Thu Aug 19 23:57:17 2004 for Snoop IDS by Doxygen

mailto:anand.patwardhan@umbc.edu
mailto:anand.patwardhan@umbc.edu
http://research.ebiquity.org

20 Snoop IDS File Documentation

4.4.2.2 int handleAODV (const u char ∗)

Examines and handles AODV packets.

Looks for RREP messages to build the neigbor tables. We can potentially remove entries from the neigbor
table if hello messages are missed.

4.4.2.3 uint16 t handle ethernet (u char ∗, const struct pcappkthdr ∗, const u char ∗)

Returns the type of packet contained within the ethernet frame.

We are interested only in IPv6, but can be easily modified to handle other protocols

4.4.2.4 int handleIPv6 (u char ∗, const struct pcappkthdr ∗, const u char ∗)

Examines IPv6 packets for AODV6 and TCP payloads.

Once IPv6 packets are filtered out, further filtering of AODV6 and TCP protocols is done here. For AODV6
we watch for ”Hello” messages i.e. special RREP messages, to identify neigbhors and populate the neigbor
table.

4.4.2.5 void logintrusions (void)

Reads the neighbor table, logs non-zero dropcount entries as potential intrusions.

This function reads the neighbor table, logs non-zero entries to the suspects file and resets dropcounts for
the next time period.

4.4.2.6 void pkt callback (u char ∗, const struct pcappkthdr ∗, const u char ∗)

The callback function for the packet capture.

The callback function opens the device in promiscuous mode and listens for packets. The raw packets
captured (1500 bytes) are then passed on for further filtering. We deal with only IPv6 packets, others are
ignored.

4.4.2.7 void SIGALRM handler (int)

Alarm handler, updates drop counts.

Calls the timerupdatestate function

4.4.2.8 void timer update state (void)

Examines the hashtable and clears up packets, updates drop counts.

Will remove entries from the hashtable that are old, gives newer ones a second chance, if entries are not
cleared by a second timeout, the packet is assumed to have been dropped.

Generated on Thu Aug 19 23:57:17 2004 for Snoop IDS by Doxygen

4.5 snoop.h File Reference 21

4.5 snoop.h File Reference

Uses the pcap library, to listen on any available network interface in promiscuous mode. Raw packets
are captured and further processed for filtering, IPv6 packets are of interest. TCP streams over IPv6 are
monitored. AODV6 packets are in UDP datagrams, again in IPv6 packets. AODVD hello messages are
used to populate the neighbor table.

#include "common.h"

Data Structures

• structintruder

The intruder struct holds the mac, ipv6 addresses, the time when it was classified as intrusive and the
dropcount for that period.

• structneighbor

The neighbor struct stores that mac address and corresponding IPv6 address of its neighbors.

Defines

• #defineMAXNEIGHBORS10

MAXNEIGHBORS is used to limit the number of neigbors to watch for intrusions.

• #defineALARM TIMEOUT 3

ALARMTIMEOUT is the value in seconds for the timeout to examine the hashtable.

Enumerations

• enumr state

Three states of a neighbor within the neighbor table.

Functions

• void SIGALRM handler(int)

Alarm handler, updates drop counts.

• void timer updatestate(void)

Examines the hashtable and clears up packets, updates drop counts.

• void pkt callback(u char∗, const struct pcappkthdr∗, const uchar∗)

The callback function for the packet capture.

• u int16 t handleethernet(u char∗, const struct pcappkthdr∗, const uchar∗)

Returns the type of packet contained within the ethernet frame.

• int handleIPv6 (u char∗, const struct pcappkthdr∗, const uchar∗)

Generated on Thu Aug 19 23:57:17 2004 for Snoop IDS by Doxygen

22 Snoop IDS File Documentation

Examines IPv6 packets for AODV6 and TCP payloads.

• int handleAODV (const uchar∗)

Examines and handles AODV packets.

• int find neighbor(neighbor∗)

Helper function that returns the index of the provided neighbor in the neighbor table.

• int addneighbor(neighbor∗)

Helper function that adds a neighbor to the neighbor table.

• void print neighbors(void)

Helper function that prints contents of neighbor table.

• int incr dropcount(struct etheraddr∗)

Increments the dropcount of the entry in the neigbor table corresponding to the provided mac address.

• void log intrusions(void)

Reads the neighbor table, logs non-zero dropcount entries as potential intrusions.

4.5.1 Detailed Description

Uses the pcap library, to listen on any available network interface in promiscuous mode. Raw packets
are captured and further processed for filtering, IPv6 packets are of interest. TCP streams over IPv6 are
monitored. AODV6 packets are in UDP datagrams, again in IPv6 packets. AODVD hello messages are
used to populate the neighbor table.

Author: Anand Patwardhan
email: anand.patwardhan@umbc.edu
Date : 30 April 2004

The SNOOP program is an intrusion detection mechanism to detect local
intrusions in a Mobile Ad Hoc Network.

Copyright (C) 2004 Anand Patwardhan
E-mail: anand.patwardhan@umbc.edu

eBiquity Research Group
University of Maryland, Baltimore County
1000 Hilltop Circle, Baltimore, MD 21250, USA.

http://research.ebiquity.org

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

Generated on Thu Aug 19 23:57:17 2004 for Snoop IDS by Doxygen

mailto:anand.patwardhan@umbc.edu
mailto:anand.patwardhan@umbc.edu
http://research.ebiquity.org

4.5 snoop.h File Reference 23

GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

We referred to Tim Carstens’ example code and Martin Casado’s
tutorial. We also looked at the ipgrab source code and tcpdump source.
Source code seems to be the only documentation on pcap.

4.5.2 Define Documentation

4.5.2.1 #define ALARM TIMEOUT 3

ALARM TIMEOUT is the value in seconds for the timeout to examine the hashtable.

The hashtable is examined every ALARMTIMEOUT seconds; a second chance algorithm is used to clas-
sify packet drops as intrusions. Basically if a packet is not retransmitted by the time of a second timeout, it
is considered to be dropped and removed from the hashtable.

4.5.2.2 #define MAXNEIGHBORS 10

MAXNEIGHBORS is used to limit the number of neigbors to watch for intrusions.

To be scalable, it is necessary to watch only a bounded number of neighbors depending on the memory
and cpu capacity of the device, or else it can be quickly overwhelmed and effectiveness of the IDS will
decrease.

4.5.3 Function Documentation

4.5.3.1 int find neighbor (neighbor ∗)

Helper function that returns the index of the provided neighbor in the neighbor table.

Provided a neighbor instance, looks up and returns the index of the neighbor in the neighbor table.

4.5.3.2 int handleAODV (const u char ∗)

Examines and handles AODV packets.

Looks for RREP messages to build the neigbor tables. We can potentially remove entries from the neigbor
table if hello messages are missed.

4.5.3.3 uint16 t handle ethernet (u char ∗, const struct pcappkthdr ∗, const u char ∗)

Returns the type of packet contained within the ethernet frame.

We are interested only in IPv6, but can be easily modified to handle other protocols

Generated on Thu Aug 19 23:57:17 2004 for Snoop IDS by Doxygen

24 Snoop IDS File Documentation

4.5.3.4 int handleIPv6 (u char ∗, const struct pcappkthdr ∗, const u char ∗)

Examines IPv6 packets for AODV6 and TCP payloads.

Once IPv6 packets are filtered out, further filtering of AODV6 and TCP protocols is done here. For AODV6
we watch for ”Hello” messages i.e. special RREP messages, to identify neigbhors and populate the neigbor
table.

4.5.3.5 void logintrusions (void)

Reads the neighbor table, logs non-zero dropcount entries as potential intrusions.

This function reads the neighbor table, logs non-zero entries to the suspects file and resets dropcounts for
the next time period.

4.5.3.6 void pkt callback (u char ∗, const struct pcappkthdr ∗, const u char ∗)

The callback function for the packet capture.

The callback function opens the device in promiscuous mode and listens for packets. The raw packets
captured (1500 bytes) are then passed on for further filtering. We deal with only IPv6 packets, others are
ignored.

4.5.3.7 void SIGALRM handler (int)

Alarm handler, updates drop counts.

Calls the timerupdatestate function

4.5.3.8 void timer update state (void)

Examines the hashtable and clears up packets, updates drop counts.

Will remove entries from the hashtable that are old, gives newer ones a second chance, if entries are not
cleared by a second timeout, the packet is assumed to have been dropped.

Generated on Thu Aug 19 23:57:17 2004 for Snoop IDS by Doxygen

