Proceedings of the SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery
On Mining Web Access Logs
May 14, 2000
The proliferation of information on the world wide web has made the personalization of this information space a necessity. One possible approach to web personalization is to mine typical user profiles from the vast amount of historical data stored in access logs. In the absence of any a priori knowledge, unsupervised classification or clustering methods seem to be ideally suited to analyze the semi-structured log data of user accesses. In this paper, we define the notion of a “user session”, as well as a dissimilarity measure between two web sessions that captures the organization of a web site. To extract a user access profile, we cluster the user sessions based on the pair-wise dissimilarities using a robust fuzzy clustering algorithm that we have developed. We report the results of experiments with our algorithm and show that this leads to extraction of interesting user profiles. We also show that it outperforms association rule based approaches for this task.
InProceedings
ACM
Downloads: 3031 downloads
Google Scholar Citations: 122 citations