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Abstract-- This paper deals with an important probabilistic knowledge integration problem: revising 
a Bayesian network (BN) to satisfy a set of probability constraints representing new or more specific 
knowledge. We propose to solve this problem by adopting IPFP (iterative proportional fitting 
procedure) to BN. The resulting algorithm E-IPFP integrates the constraints by only changing the 
conditional probability tables (CPT) of the given BN while preserving the network structure; and the 
probability distribution of the revised BN is as close as possible to that of the original BN. Two 
variations of E-IPFP are also proposed: 1) E-IPFP-SMOOTH which deals with the situation where 
the probabilistic constraints are inconsistent with each other or with the network structure of the 
given BN; and 2) D-IPFP which reduces the computational cost by decomposing a global E-IPFP 
into a set of smaller local E-IPFP problems.  

Keywords: Bayesian networks, knowledge integration, iterative proportional fitting procedure.   

1. INTRODUCTION  

Consider a probabilistic knowledge base in the form of a Bayesian network (BN) G of n 
variables .  Denoting the set of parents of variable  as , the BN 
consists of two parts: 1) , the network structure that captures the 
interdependencies among variables in G; and 2) , the set of conditional 
probability tables (CPTs) that represents the degree of the interdependencies. It is 
assumed that  where u is any variable other than descents of xi. 
Base on this conditional independence assumption, the joint probability distribution 
(JPD) of G can be computed by the following chain rule [12]  
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                                                                                                (1) 
The knowledge base G may need to be revised when more up-to-date or more specific 

information of the domain or parts of the domain becomes available. This information is 
often given in the form of lower dimensional distributions  called probabilistic 
constraints, or constraints for short. For example, considering a BN for heart disease 
diagnosis whose variables includes all important factors affecting this disease, including 
drinking, smoking, among other things, and the BN has the marginals P1(drinking, heart-
disease) and P2(smoking, heart-disease) relating these factors to heart disease. A more 
recent survey concerning effects of drinking on people’s health, which may employ better 
survey methods or be drawn from a particular population, can generate a more accurate 
or more specific correlation between heart disease and drinking behavior, represented as 
a joint distribution Q1(drinking, heart-disease). Similarly, a distribution Q2(smoking, 
heart-disease) can be found from another survey concerning effects of smoking on 
people’s health. To integrate into the diagnosis system the knowledge of Q1 and Q2, 
which are typically different from P1 and P2, the BN needs to be revised so that its 
distribution satisfies these constraints. 

It is desirable that the revision is restrained to  (the CPTs) while keeping the 
structure  unchanged. This is because, among other things, the qualitative knowledge 
of  is more reliable and stable than the quantitative knowledge of . It is also 
preferred to minimize the change when revising G by these constraints so that the 
existing knowledge is preserved as much as possible. 

We propose to solve this problem by adopting Iterative Proportional Fitting Procedure 
(IPFP). IPFP is a mathematical procedure that iteratively modifies a JPD to satisfy a set 
of probability constraints while maintaining minimum Kullback-Leibler distance (also 
known as I-divergence [3, 7, 18]) to the original distribution. The procedure repeatedly 
iterates over the constraints and modifies the current JPD using one constraint at a time 
until convergence. One would think our task of BN revision can be accomplished by first 
applying IPFP to P(x), the JPD of the given BN, and then generate CPTs from the 
converging JPD. This approach does not work well for at least three reasons. First, the 
revised JPD resulted from the IPFP, although satisfying all the constraints, may not 
always be consistent with the interdependencies imposed by the network structure, and 
thus cannot be used to generate new CPTs properly. Secondly, IPFP converges only if all 
constraints are consistent with each other, it thus cannot be applied to inconsistent 
constraints. Thirdly, because in each iteration IPFP modifies every entry of P(x) whose 
size is exponential in the number of variables in the BN, it becomes computationally 
intractable with large BNs.   

In this paper, we present our solutions to these problems. The first problem is resolved 
by algorithm E-IPFP, which extends IPFP by casting the structural invariance as a new 
probability constraint. The second problem is dealt with by algorithm E-IPFP-SMOOTH, 
which modifies both the current JPD as well as the constraints in each iteration so that the 
inconsistency is gradually reduced or smoothened. The third problem is eased by 
algorithm D-IPFP, which decomposes a global E-IPFP into a set of smaller, local E-IPFP 
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problems, each of which corresponds to one constraint and only involves variables that 
are directly relevant to those in that constraint. 

The rest of this paper is organized as follows. Section 2 states precisely the BN 
revision problems we intend to solve. Section 3 gives a brief introduction to IPFP, which 
is the basis of our algorithms. E-IPFP and its convergence proof are given in Section 4. 
Section 5 describes E-IPFP-SMOOTH for constraints that are inconsistent with each 
other or with the structure of the given BN. Section 6 presents D-IPFP together with 
computer experiments demonstrating its effect in saving computing time. Section 7 
concludes with comments on related works and suggestions for future research. 

2. The Problem  

We adopt the following notations for the rest of this paper. To distinguish variables and 
their instantiations, we use capital letters X , Y, Z, … for a set of variables, and x an 
instantiation of X. Individual variables are indicated by subscripts, for example, Xi is a 
variable in X and xi its instantiation. Capital letters P, Q, R, … are for probability 
distributions, and bold P, Q, R …. for sets of distributions. A BN of variables X is 
denoted as G(x),  denotes the structure (i.e., the DAG of G(x)), and 

 the set of conditional probability tables (CPTs) of G(x). The JPD of 
G(x) is . denotes a set of JPDs sharing the network structure . 
A probability constraint  to X is a distribution on variables . R =  
denotes a set of constraints, and the set of all JPDs that satisfy all constraints in R.  

 
Definition 1. A JPD P(x) is said to satisfy constraint  if . 

 
We use I-divergence (also known as Kullback-Leibler distance) to measure the 

distance between two distributions P and Q on X [3, 7, 18].  
 

Definition 2. I-divergence from JPD P(x) to Q(x) is defined as 

                                                      (2) 

where  means Q dominates P (i.e., ). Note that 
 for all P and Q, the equality holds only if P = Q. 

 
Definition 3. Q(x) is said to be an I-projection  of P(x) on the set of JPD  if  
        !                                                                   

The problem of BN revision we are to solve is stated formally as follows. For a given 
with JPD P(x) and a set of constraints , 

construct a new BN  with JPD  meeting the following conditions: 
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C1: Constraint satisfaction: ; 
C2: Structural invariance: ; 
C3: Minimality:  is as small as possible. 
 

Definition 4. A set of constraints  is said to be consistent with 
each other if  R is said to be consistent with  if   
 

Note that, if R is consistent with  then condition C3 requires that  be an I-
projection of P on . 

 
Definition 5. is called a CPT extracted from  according to  if   
is determined by . A BN  is said to be extracted from P(x) according to 

 if  and every CPT in is extracted from P(x) according to . 
 
For a given P(x) and , extracting CPTs  is unique and this can be done 

by computing  and  from P(x) through marginalization. Also note that 
the JPD  of "might not be equal to P(x) even though the 
conditional distributions of , given  are the same in both P and . This, as can be 
seen later in Section 4, is because certain conditional interdependencies in , dictated by 

,  do not hold for P. Conversely, if  then P(x) satisfies C2. 

3. A Brief Introduction to IPFP 

Iterative Proportional Fitting Procedure (IPFP) first appeared in the literature in [6], and 
shortly after was used as a procedure to estimate cell frequencies in contingency tables 
under some marginal constraints [4]. Csiszar [3] provided a convergence proof for IPFP 
based on I-divergence geometry. Vomlel rewrote a discrete version of the proof [18]. 
IPFP was extended in [1, 2] as Conditional Iterative Proportional Fitting Procedure 
(CIPFP) to also take conditional distributions as constraints, and the convergence was 
established.  

IPFP has recently been suggested as a tool for modifying a JPD by probability 
constraints [18]. Specifically, for a set of constraints  and 
an initial JPD Q0, the IPFP procedure is carried out by iteratively modifying the JPDs 
according to the following formula, each time using one constraint in R:  
 

                                                                 (3) 

where  determines the constraint used at iteration k , and m is the 
number of constraints in R.  

What (3) does at step k is to change  to  so that . It has 
been shown that, at each step of IPFP,  is the I-projection of on for the chosen 
constraint [18]. For a given initial distribution  and a set of consistent 
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constraints R, IPFP converges to  which is an I-projection of  on . In other 
words, satisfies our requirements C1 and C3. For clarity (with the understanding 
that  if ), in the rest of this paper we write the above formula as 

                                                                                      (3-1) 

4. Algorithm E-IPFP 

For a given and , our task is to find a JPD such 
that 1)  (meeting C1); 2) (meeting C2); and 3) is as close to 
the JPD of G as possible. Since our methods are based on IPFP, C3 will be achieved to a 
degree by the iterative projections. In the rest of this paper, we will focus on C1 and C2. 

One may think that the integration can be done by first applying IPFP to the JPD of G, 
, using constraints in R until it converges to JPD , and then 

extracting CPTs  from  according to . However this would not 
work, as can be seen by a simple example in Figure 1.   

"
(a).  A three node BN, its CPTs, and its JPD Q! (x). 

"
(b)  CPTs extracted from the converging Q" , and the JPD QÕ generated from these CPTs. 

Figure 1.  A three node BN and its JPD after IPFP with constraint R"(b, c). 

Figure 1(a)  gives a simple BN of three binary variables A, B, and C, its initial CPTs 
and its JPD . This BN will be used as an illustrative example throughout of this 
paper. The JPD  (on the left of Figure 1(b)) is obtained by modifying the 
original JPD of this BN with constraint R1(b, c) = (0.36, 0.04, 0.34, 0.26) by (3) of IPFP. 
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One can easily verify that  satisfies R1. The I-divergence from  to the  is 
0.1674, which is minimum among all JPD that satisfy R1.  

New CPTs for A, B, and C (in the middle of Figure 1b) extracted from Q1 according to 
the network structure give a new JPD  (on the right of 
Figure 1(b)).  Note that is different from , and it does not satisfy constraint R1 any 
more. This is because IPFP does not preserve the network structure when modifying the 
JPD by (3). In particular, note that the conditional independence between B and C, given 
A, given in the original BN in this example does not hold in . Therefore,  meets C1 
and C3 but not C2 while  satisfies C2 but fails C1. In other words, IPFP works well if 
our purpose is to integrate constraints into a JPD but is inadequate if we also want to 
preserve the variable interdependencies given in the original BN.  

4.1. Structure constraint 

To overcome this problem, E-IPFP extends the standard IPFP by treating the BN 
structure as an additional constraint, called structure constraint,  

                                            .                                                  (4) 

where . By (4)  is the JPD of a BN whose CPTs are extracted from 

 according to the network structure. Unlike all constraints in R, which are 
typically low dimensional distributions, this structure constraint is on all variables in X. 
By (3) and (4), this constraint, when applied at iteration k, changes  to 

, and thus forcing  meeting C2, the structural 
invariance requirement. Therefore, when applying IPFP with constraints in R 
plus , both C1 and C2 are satisfied by the converging JPD. The algorithm E-IPFP 
is stated as follows 

 
 
 
 
 
 
 
  
 
 
 
 
 
 
 

 

Note that E-IPFP is exactly the same as IPFP except Step 2.3 in which we first extract 
the CPT for each variable from  according to the network structure and then form 
and apply the structure constraint as given in (4). For practical purpose, convergence of 
E-IPFP can be determined by testing, after every m+1 iterations (i.e., at the end of Step 
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1.  where ; 
2. Starting with k = 1, repeat the following steps until convergence  

   2.1. j = ((k-1) mod (m+1)) + 1; 
   2.2. if  j < m+1 
              

    2.3. else   
               extract from  according to ; 
               ; 
    2.4. k = k+1; 

3. return  with ;  
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2.3), if the difference between  and  is below some given threshold by 
some metrics such as I-divergence or total variation.  

4.2. Convergence of E-IPFP 

During the iteration process in E-IPFP all constraints remain constant except , which 
changes its value after every iteration of the outer loop (Step 2). In other words, the I-
projection on  is chasing a moving target. Moreover, it can be easily shown that 

itself is not convex while convexity of  for all constraints Rj is the basis for IPFP’s 
convergence [3, 18]. Therefore, the convergence proof for standard IPFP does not apply 
when the structure constraint is added. 

Now we analyze the convergence of E-IPFP. In an earlier work [11] we have shown 
that, for the standard IPFP on initial JPD with a set of consistent constraints,  

, the converging JPD Q* can be obtained by modifying  by a 
single composite constraint RÕ(y), where . This composite constraint can 
be computed by applying IPFP to  with . Therefore, it suffices to 
prove the convergence of E-IPFP with R containing a single constraint.  

Denote the following: 

:  JPD of the given BN ; 
¥! R(y): the constraint; 

  

 

 
Points of Q0 through Q3 are depicted in Figure 2 below. 

!

!
Figure 2.  Successive JPDs from E-IPFP 

 
Without loss of generality, the convergence of E-IPFP can be established by showing 
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!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !

Therefore, (5) holds if  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"%$!

Denoting 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"&$!

the convergence of E-IPFP is given by the theorem below. The proof is given in the 
appendix.  

!
Theorem 1. For any given BN  and R(y), . 

!
By Theorem 1, E-IPFP moves alternately between two sequences of JPDs (Q0, Q2,…) 

and (Q1, Q3,…), which are points in the two sets and , respectively. At 
convergence, the two sequences approach Q2k and Q2k+1, respectively. If R(y) is consistent 
with GS, then the two sequences merge into one and both C1 and C2 are met. If R(y) is 
inconsistent with GS, then the distance between Q2k and Q2k+1 is greater than 0 since 

, and in this case we say E-IPFP converges to a limit cycle of Q2k and Q2k+1.   
When E-IPFP is applied to the example in Figure 1, it converges to a single JPD after 

27 iterations with . Here each iteration goes through both constraint 
R1(b, c) and the structure constraint once. The converging JPD and the three CPTs 
extracted from the converging JPD are given in Figure 3 below. It can be seen that 1) the 
constraint R1(b,c) is satisfied by , i.e., C1 is satisfied; 2) although R1 only 
involves variables B and C, all three tables are modified from their original values; and 3) 

, i.e., C2 is satisfied. The I-divergence from Q* to the 
JPD of the original BN is 0.5557, which is larger than the I-divergence of 0.1674 for the 
JPD from standard IPFP (see Figure 1). This is to be expected because one more 
constraint (the structure constraint) is used in E-IPFP.  

 

!
!

Figure 3. E-IPFP result for the single constraint R"(b, c)  

5. Inconsistent Constraints  

When constraints are inconsistent either with each other or with the BN structure, there 
does not exist a JPD that satisfies all constraints and BN structure. Therefore, E-IPFP will 
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not converge to a single point but rather it oscillates between some JPDs each of which 
satisfies some constraints but not others. At this point, we could stop the attempt to 
integrate the constraints into the given BN and try to resolve the inconsistency first. 
Alternatively, we can try to find an approximate solution that satisfies the constraints as 
much as possible. An easy solution for this would be to take the average of these 
oscillating JPDs. This may work for IPFP for general JPDs but not for E-IPFP because 
averaging will destroy the interdependencies given in GS, thus failing C2. We have 
developed an algorithm SMOOTH to deal with inconsistent constraints for IPFP in 
general JPD [21, 14]. Now we adopt it to E-IPFP for BNs.  

Note that, both IPFP and E-IPFP only modify the joint distribution  while 
keeping the constraints in R unchanged. Algorithm SMOOTH differs in that it makes the 
modification bi-directional: at each step, not only  is modified to satisfy the 
constraint but the constraint is also modified to be closer to . Specifically, before 

is to be modified by constraint  at step k, SMOOTH will first modify the 
constraint by 
                                                                                     (8) 

where  is the smoothing factor.  
(8) modifies to include a small portion of , a marginal from the JPD 

resulted from step k – 1. Since can be seen as the result of a sequence of revisions by 
all other constraints, intuitively, (8) has the effect of pulling  closer to #"thus 
reducing or smoothening the inconsistency among the constraints.  

Incorporating SMOOTH into E-IPFP, we have algorithm E-IPFP-SMOOTH:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Algorithm E-IPFP-SMOOTH differs from E-IPFP only in Step 2.2 where it modifies 
the selected constraint by (8) before the I-projection over this constraint is performed. As 
a result, the BN structure is preserved as with E-IPFP, but the constraints are only 
approximately satisfied. Also note that the smoothing (Step 2.2) only applies to real 
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constraints in R, not the structure constraint Rm+1. To ensure that the smoothing is 
unbiased α should be chosen as very close to 1. However, when α is too close to 1, the 
convergence becomes very slow with a long tail of Qk of little changes. Therefore, when 
the process gets closer to the convergence point, we can afford to use smaller α for a 
faster convergence."The best schedule for decreasing from our experiments"is to use a 
sigmoid function [14]: 

"""""""""""""""""""""""""""""""""""""""                                               (9) 

With large A and small B, α is close to 1 at the beginning (k is small), and close to 0 
when k becomes very large. α decreases very slowly at the two ends, but fast in the 
middle. Parameter A controls how long  is to remain close to 1 (longer for larger A) 
and B controls how fast decreases in the middle (faster for smaller B).  

To illustrate E-IPFP-SMOOTH, we apply the algorithm to the BN given in Figure 1 
with two constraints: R1(b,c) = (0.36, 0.04, 0.34, 0.26)  and R2(a) = (0.1,0.9). Although 
there exists some JPD Q(a, b, c) that satisfies both R1 and R2, it can be shown that no BN 
with this given structure can satisfy both. In other words, R = (R1, R2) is inconsistent with 
the BN structure GS. The running results of this example using both E-IPFP and E-IPFP-
SMOOTH with a constant !  = 0.95 are given in Figure 4 below.  

 
(a)! Three successive JPDs from E-IPFP after 60 iterations 

 
(b) Single JPD Q* from E-IPFP-SMOOTH after 80 iterations.  

Figure 4. Results for E-IPFP and E-IPFP-SMOOTH with constraints inconsistent with the network 
structure. 

It can be seen from Figure 4(a) that, because R is inconsistent with GS, E-IPFP does 
not converge to a single JPD but rather cycles through three JPDs where Q(k) satisfies 
R1(b, c) but not R2(a), Q(k+1) satisfies R2(a) but not R1(b, c), Q(k+2) satisfies the 

!

!
!

! "#$% & '! " #
! = "

+ "

!
!
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structure constraint and R2(a) but not R1(b, c). However, when E-IPFP-SMOOTH is 
applied (Figure 4(b)), it converges to a single JPD Q* (in the middle). It can be verified 
using the CPTs extracted from Q* on the right of Figure 4(b) that Q* satisfies the 
structure constraint. On the other hand, since the two constraints are modified in each 
iteration, Q* does not satisfy them, as can be seen from the small differences between 
R1(b, c) and Q*(b, c) and between R2(a) and Q*(a) given on the left of Figure 4(b). 

E-IPFP-SMOOTH can also be applied to integrate constraints that are inconsistent 
with each other, as shown in the next example which uses the constraint R1(b, c) as before 
and a new constraint R3(a, b) = (0.06, 0.14, 0.54, 0.26). Note that the marginals R1(b) = 
(0.4, 0.6) but R3(b) = (0.6, 0.4), therefore no JPD, let along any BN, can satisfy both R1 

and R3. Again, E-IPFP converges to a cycle of three JPDs in 60 iterations and E-IPFP-
SMOOTH to a single JPD Q* in 120 iterations. The results are given in Figure 5 below.  

 
(a) Three JPDs from E-IPFP after 60 iterations 

 
(b) Single JPD from E-IPFP-SMOOTH after 120 iterations 

Figure 5. Results for E-IPFP and E-IPFP-SMOOTH with inconsistent constraints. 
 
Convergence of SMOOTH with standard IPFP for two constraints that are inconsistent 

with each other has been established earlier [14]. Now we show E-IPFP-SMOOTH 
convergence for constraints that are inconsistent with the BN structure GS. Similar to 
Theorem 1 we show it for a single constraint R(y) that is inconsistent with GS.  

Theorem 2. For any given BN and constraint R(y) inconsistent with GS, 
E-IPFP-SMOOTH converges to Q* consistent with GS. 

 

! " #! "# # #=
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Recall that from Theorem 1 we have , where, as shown in Figure 
2, Q3 is an I-projection of Q2 to if E-IPFP is used. Now with E-IPFP-SMOOTH, 
R(y) is modified by (8) to  

                                                                                      (10) 

Let  be the I-projection of Q2 to using . The convergence of E-IPFP-
SMOOTH can then be established by showing . This can be done by 
showing that 

                                                                                                     (11) 
Intuitively, since contains a portion of Q2(y),  would be more similar and 
closer to Q2(x) than , so (11) holds. The formal proof of Theorem 2 is given in the 
appendix.  

6. D-IPFP  

When  is modified by by (3) of IPFP, it checks each entry in  
against every entry of . The cost of (3) can thus be roughly estimated as 

, which is huge when |X| is large, making the process computationally 
intractable for BN of large size. Since by the chain rule of (1) the joint distribution of a 
BN is a product of distributions of much smaller size (i.e., its CPTs), the cost of E-IPFP 
may be reduced if we can make use of the interdependencies of the variables represented 
by the network structure. This has motivated the development of algorithm D-IPFP which 
decomposes the global E-IPFP, the one involving all variables in X, into a set of local E-
IPFP, each for one constraint , on a small subnet of G that contains  

First we show that algorithm E-IPFP only changes CPTs for variables in the given 
constraints and their ancestors.  Consider a BN G(x) with JPD "
and a single constraint R(y) consistent with GS. Let D1 be the set of all variables in Y and 
their ancestors and D2"= X \ D1. Variables in D1 and their CPTs form a BN, which is a 
subnet of G(x), denoted G(d1), with JPD" . When applying (3) to 

with constraint R(y) we have 

                         (12) 

Since is completely determined by CPTs of variables in D1, applying (3) on 
of G is equivalent to on the subnet G(d1) while keeping CPTs for variables in D2 

unchanged. Therefore, when the structure constraint is applied (step 2.3 of E-IPFP), only 
CPTs for variables in D1 need to be revised. If D1 is a small subset of X, substantial 
saving can be achieved by doing E-IPFP on the subnet G(d1). However, when D1 is large, 
the computation is still intractable. To further reduce the complexity, we have developed 
D-IPFP in which E-IPFP is performed in a further restricted subnet containing only 
variables in Y and their parents.  
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6.1. Algorithm D-IPFP 

Let  i.e., S contains parents of all variables in Y except those that are also 
in Y. We call S the cap of Y. D1 can be partitioned into three parts: Y, S, 
and . (Examples of Y and related S, D1, D2, D3 are given in Subsection 
6.2 for a 15 variable BN of Figure 6). For subnet G(d1), S d-separates Y and D3 and thus Y 
and D3 are independent of each other, given S. In other words, Y is capped by S and, 
when S is instantiated or its distribution is fixed, any change on Y is shielded from 
spreading to any variable in D3. By this conditional independence, the JPD for G(d1) can 
be expressed as 

 

Since  does not contain any variable in Y,  and 
. Combining this with (12), when R(y) is used at step k we have 

       (13) 

This suggests that we can keep all CPTs for variables not in Y unchanged and use E-
IPFP to modify only those for as given in the first term in (13). One problem 
arises: since is a conditional distribution but Qk-1(y) is not conditioned under s, 
the first term in (13), is in general not a probability distribution. This can be resolved by 
normalization 

                                                                                  (14) 

with normalization factor  
                                        .                                              (15) 

Take a closer look at this term. Let  

                           then 

                                                                  (16) 

Comparing (14) and (16), we have   From (16) we can see that 
 is computed by applying two constraints to , first is R(y), the second is 
, called cap constraint since it forces the marginal of S to remain to its current 

value of and thus caps the changes in Y’s CPTs from spreading to variables in D3. 
For efficiency reason, we suggest using (15) to compute  to avoid computing ! 

Note that, 1) the JPD after the second modification (using the cap constraint) may not 
satisfy constraint R(y), and 2) to extract CPTs from , the structure constraint for 
variables in Y needs to be applied to modify CPTs for variables in Y while keeping CPTs 
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for all other variables constant. This is the core of algorithm D-IPFP, which is given 
below where the cap of  for each constraint , is denoted as .  

 
 
 
 
 
 
 
 
 
 

 
 
Step 2.2 in D-IPFP applies two constraints,  and the cap constraint (by ). 

Step 2.3 applies the structure constraint for variables in . Note that, each iteration 
(Step 2 in D-IPFP) only applies the three constraints once, not iterates to convergence for 
the given . We made this choice for efficiency reason because  may be 
changed after applications of other constraints in R if their constraint variables or their 
caps overlap with that of other constraints. 

The convergence of D-IPFP could be established analogous to the convergence proof 
of E-IPFP (i.e., merging all constraints in R into a single constraint) using equations of 
(13), (14) and (16). However, the formal proof has been evading us at this moment. 

Also note that, D-IPFP is a trade-off between accuracy and computing cost. Because 
D-IPFP introduces additional constraints for each in R, the converging 
distribution from D-IPFP, although satisfying all constraints, would have higher I-
divergence to the JPD of the original BN than that of E-IPFP.  

D-IPFP can be easily modified, analogous to Step 2.2 of E-IPFP-SMOOTH, to deal 
with inconsistent constraints. 

6.2. Experiments 

To empirically validate the algorithms and to get a sense of how expensive this approach 
may be, we have conducted experiments of limited scope with an artificially composed 
BN of 15 discrete variables. The network structure is given in Figure 6 below. For a 
hypothetical constraint on Y = {F, L, M}, we have S = {E, B, C}, D1 = {F, L, M, E, B, C, 
A, R, D}, D2 = {H, K, G, N, Q, J }, and D3 = {A, R, D}. 

Three sets of 4, 8, and 16 constraints, respectively, are selected for the experiments. 
These constraints are consistent with each other and with the network structure. The 
number of variables in a constraint ranges from 1 to 3, the size of the subnet associated 
with a constraint ( ) ranges from 2 to 8. Therefore a saving in computational 
time by D-IPFP would be in the order of #

jY ( )jjR y jS
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1.!  where ; 
2.!Starting with k = 1, repeat the following procedure until convergence  

   '() . j = ((k-1) mod (m+1)) + 1; 
   

   
   2.4. k = k+1; 

3.!return  with ;  
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Figure 6: The network of 15 variables for the experiments comparing performance of E-IPFP and D-IPFP 

 
Both E-IPFP and D-IPFP were run for each of the three sets of constraints. The 

program is a brute force implementation of the two algorithms without any optimization. 
The results are given in Table 1 below. 

Table 1: Experiment Results 

# of 
Cons. 

# Iterations 
(E-IPFP|D-IPFP) 

Exec. Time  
(E-IPFP|D-IPFP) 

I-divergence 
 (E-IPFP|D-IPFP) 

4 8    27 1264s 1.93s 0.08113 0.27492 
8 13 54 1752s 11.53s 0.56442 0.72217 

16 120 32 13821s 10.20s 2.53847 3.33719 

 
Each of the 6 experimental runs converged to a joint distribution that satisfies all 

given constraints and is consistent with the network structure. As expected, D-IPFP is 
significantly faster than E-IPFP with moderately larger I-divergences. The rate of 
speedup is roughly in the theoretically estimated range ( ), the performance variation 
among the three sets of constraints is primarily due to the number of iterations each run 
takes.  

7. Conclusions 

In this paper, we developed algorithm E-IPFP that adopts IPFP for the purpose of 
revising a probabilistic knowledge base represented as a BN by a set of low dimensional 
probabilistic constraints. The revision is done by only modifying the conditional 
probability tables of the BN while leaving the network structure intact. E-IPFP is 
extended to E-IPFP-SMOOTH to deal with the situation when the constraints are 
inconsistent with each other or with the BN structure. We have also showed that a 
significant saving in computational cost can be achieved by decomposing the global E-
IPFP into local ones with much smaller scale, as described in algorithm D-IPFP. 
Convergence of these algorithms is also analyzed. Computer experiments of limited 
scope were conducted to validate the analysis results.  

!"
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Several pieces of existing work are particularly relevant to this work, besides those 
related to the development of the original IPFP and proofs of its convergence that were 
cited earlier. Vomlel studied in detail how IPFP can be used for probabilistic knowledge 
integration [18]. However, this works applies IPFP to update JPDs, not to JPDs 
represented as BNs. Several works have extended IPFP to BN, including Valtorta et al 
[17, 8] and our earlier works [11, 14]. In these works, IPFP is used to support belief 
update in BN by a set of soft evidences that are observed simultaneously. Those soft 
evidences are in the form of low dimensional distributions and are taken as constraints by 
IPFP style computing.  However, these works were not concerned themselves with 
revising the BN itself. In other words, the methods developed in those works are BN 
inference methods, not methods for knowledge integration and revision.  

The issue of inconsistent constraints has been studied by others. It has been reported 
by others [18, 19] and observed by us that when constraints are inconsistent, IPFP will 
not converge but oscillate. Vomlel [19] developed an algorithm, named GEMA, to deal 
with inconsistent constraints when using IPFP to modify a JPD. We have developed 
algorithm SMOOTH [21, 14] for the belief update in BN by inconsistent constraints. 
Algorithm E-IPFP-SMOOTH incorporates SMOOTH into E-IPFP for modifying CPTs of 
a BN.  

We are continuing our investigation of knowledge integration for inconsistent 
constraints. When constraints are inconsistent with each other, some error or noise must 
exist in some of these constraints, or the meanings/semantics of some variables take 
different interpretations in different constraints. It is desirable to take into consideration 
of the degree of trust or semantic difference one has on each of these constraints during 
the integration. This can be easily accomplished by allowing different smoothing factor !  
for each constraint, with larger !  for those believed to have higher fidelity or closer 
semantics. Smoothing factors may also be used to deal with another form of 
inconsistency where the JPD of the revised BN is too far away from the original BN. 

Structural inconsistency is a more difficult matter. When constraints from highly 
trusted sources exhibit significant inconsistency with the given BN structure, it is an 
indication that the given BN structure is no longer an accurate model of the domain. In 
such a situation, it is more desirable to modify the BN structure than changing the 
constraints as E-IPFP-SMOOTH does. The modification of BN structure may involve 
adding/removing arcs and/or nodes in the original BN. We are actively exploring the idea 
of adding nodes for “hidden variable”, whose effects on other variables were not 
considered when the original BN was constructed but whose presence might account for 
the difference or inconsistency between the constraints and the given BN structure.  

Efficiency of our approach also requires additional investigation. As shown in our 
experiments, IPFP based methods are in general very expensive. The convergence time 
of E-IPFP in our experiments with a small BN (15 nodes) and moderate number of 
constraints is in the order of hours. Even the performance of D-IPFP can be bad if some 
constraints involve larger number of variables. Complexity can be further reduced if we 
can divide a large constraint into smaller ones by exploring interdependence between the 
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variables in the constraint (possibly based on the network structure). Vomlel [18] has also 
studied the behavior of IPFP with input set generated by decomposable generating class. 
If such input set can be properly ordered, IPFP may converge in a small number of 
cycles. This kind of input set roughly corresponds to ordering constraints for a BN in 
such a way that the constraint involving ancestors are applied before those involving 
descendants, if such order can be determined. Several related works may also be of 
interest to readers who are concerned with the complexity of IPFP and that of its 
applications to BN, these include the method proposed for space efficient implementation 
of IPFP [5], methods for decomposing a large BN into small BNs [9, 20], and methods 
for effective approximation of IPFP with BN junction trees [8, 10, 16]. 
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Appendix 

Proof of Theorem 1.  

By induction on , the number of variables in the given G.  
Base case: , a BN with a single variable x1, with constraint . It is trivial 

that . Substituting these into (7) 

    

where the last inequality comes from the fact that I-divergence is always non-negative. 
Inductive assumption:  for any . 
Inductive proof: show that . Without loss of generality, let  be a 

root node of the BN. For clarity, let . By (7) and (2), 

          

can been seen to be a sum of two parts: 

                     

Let these two parts be called  Now we show that both and  
are nonnegative.  
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First, note that since x0 is a root note, its CPT (i.e., its marginal) will not be changed 
when Q2 is generated from Q1 by applying the structure constraint, so Q2(x0) = Q1(x0). 
Substituting Q2(x0) by Q1(x0) we have 

 

                      

 
Now consider . 
Case 1.  Let , then . Since 

 and   

                          

and  (because  is an I-Projection of  to ), we have  

                                      . 

Note that, for any arbitrary particular state  of variable ,  
is a BN of x, where 

                        

Therefore,  is an I-Projection of  to  from which CPTs of 
 are extracted. Then by inductive assumption 

 
 

 
and 

                           

 
Case 2. . By definition of , we have 
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Since , so  

                                        (A6) 

where . 

Now show that  is a PD of y. Let , then 

 

So  is a PD. 

Therefore, for any given , by (A6),  is an I-Projection of  to . 
Then by inductive assumption and analogous to (A5), we have 

             
              

(A7) 

Combining (A2), (A3), (A5) and (A7),                                                            �  

Proof of Theorem 2. 

We prove the theorem by showing that the inequality (11) holds. By (3) and (10), 

              (A8) 

 is thus a function of ! , denoted,  When !  = 0, and 
; when !  = 1, and , which is greater than 0 

if . By (A8), the derivative of  
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Note that each entry in the summary of (A9) is strictly positive because  

if  and   
if  

This means that when !  increases from 0 toward 1,  strictly increases from 0 
toward , and  thus  for any .The only time this 
derivative equals zero is when  This proves (11).  

Also note that the above is true for all pairs during the successive 
iterations, so  Since Q2k are consistent with GS, the algorithm 
converges to a single JPD consistent with GS.                                                                    �                                                                                   
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