
1

International Journal of Uncertainty, Fuzziness and Knowledge-Based ystems
© World Scientific Publishing Company

BAYESIAN NETWORK REVISION WITH PROBABILISTIC CONSTRAINTS

YUN PENG
University of Maryland Baltimore County, Computer Science and Electrical Engineering

1000 Hilltop Circle, Baltimore, MD 21250 USA

ZHONGLI DING
Google Inc.

Mountain View, CA 94043, USA

SHENYONG ZHANG
East China Research Institute of Electronic Engineering

Hefei, Anhui 230031, China

RONG PAN
BloomReach, Inc.,

Mountain View, CA 94040

Received (received date)
Revised (revised date)

Accepted (accepted date)

Abstract-- This paper deals with an important probabilistic knowledge integration problem: revising
a Bayesian network (BN) to satisfy a set of probability constraints representing new or more specific
knowledge. We propose to solve this problem by adopting IPFP (iterative proportional fitting
procedure) to BN. The resulting algorithm E-IPFP integrates the constraints by only changing the
conditional probability tables (CPT) of the given BN while preserving the network structure; and the
probability distribution of the revised BN is as close as possible to that of the original BN. Two
variations of E-IPFP are also proposed: 1) E-IPFP-SMOOTH which deals with the situation where
the probabilistic constraints are inconsistent with each other or with the network structure of the
given BN; and 2) D-IPFP which reduces the computational cost by decomposing a global E-IPFP
into a set of smaller local E-IPFP problems.

Keywords: Bayesian networks, knowledge integration, iterative proportional fitting procedure.

1. INTRODUCTION

Consider a probabilistic knowledge base in the form of a Bayesian network (BN) G of n
variables . Denoting the set of parents of variable as , the BN
consists of two parts: 1) , the network structure that captures the
interdependencies among variables in G; and 2) , the set of conditional
probability tables (CPTs) that represents the degree of the interdependencies. It is
assumed that where u is any variable other than descents of xi.
Base on this conditional independence assumption, the joint probability distribution
(JPD) of G can be computed by the following chain rule [12]

(, ,)i nx x x= L ix !!
!" # $%S i iG x !=

! " # $%! " "# ! $!=

! " # $! " $! ! ! !" # $ " #! !=

2 Y. Peng, Z. Ding, S. Zhang & R. Pan

 (1)
The knowledge base G may need to be revised when more up-to-date or more specific

information of the domain or parts of the domain becomes available. This information is
often given in the form of lower dimensional distributions called probabilistic
constraints, or constraints for short. For example, considering a BN for heart disease
diagnosis whose variables includes all important factors affecting this disease, including
drinking, smoking, among other things, and the BN has the marginals P1(drinking, heart-
disease) and P2(smoking, heart-disease) relating these factors to heart disease. A more
recent survey concerning effects of drinking on people’s health, which may employ better
survey methods or be drawn from a particular population, can generate a more accurate
or more specific correlation between heart disease and drinking behavior, represented as
a joint distribution Q1(drinking, heart-disease). Similarly, a distribution Q2(smoking,
heart-disease) can be found from another survey concerning effects of smoking on
people’s health. To integrate into the diagnosis system the knowledge of Q1 and Q2,
which are typically different from P1 and P2, the BN needs to be revised so that its
distribution satisfies these constraints.

It is desirable that the revision is restrained to (the CPTs) while keeping the
structure unchanged. This is because, among other things, the qualitative knowledge
of is more reliable and stable than the quantitative knowledge of . It is also
preferred to minimize the change when revising G by these constraints so that the
existing knowledge is preserved as much as possible.

We propose to solve this problem by adopting Iterative Proportional Fitting Procedure
(IPFP). IPFP is a mathematical procedure that iteratively modifies a JPD to satisfy a set
of probability constraints while maintaining minimum Kullback-Leibler distance (also
known as I-divergence [3, 7, 18]) to the original distribution. The procedure repeatedly
iterates over the constraints and modifies the current JPD using one constraint at a time
until convergence. One would think our task of BN revision can be accomplished by first
applying IPFP to P(x), the JPD of the given BN, and then generate CPTs from the
converging JPD. This approach does not work well for at least three reasons. First, the
revised JPD resulted from the IPFP, although satisfying all the constraints, may not
always be consistent with the interdependencies imposed by the network structure, and
thus cannot be used to generate new CPTs properly. Secondly, IPFP converges only if all
constraints are consistent with each other, it thus cannot be applied to inconsistent
constraints. Thirdly, because in each iteration IPFP modifies every entry of P(x) whose
size is exponential in the number of variables in the BN, it becomes computationally
intractable with large BNs.

In this paper, we present our solutions to these problems. The first problem is resolved
by algorithm E-IPFP, which extends IPFP by casting the structural invariance as a new
probability constraint. The second problem is dealt with by algorithm E-IPFP-SMOOTH,
which modifies both the current JPD as well as the constraints in each iteration so that the
inconsistency is gradually reduced or smoothened. The third problem is eased by
algorithm D-IPFP, which decomposes a global E-IPFP into a set of smaller, local E-IPFP

1() (|).n
i i iP x P x p==P

(),j
jQ y x!

PG
!"

!" PG

 BN Reasoning with Uncertain Evidences

3

problems, each of which corresponds to one constraint and only involves variables that
are directly relevant to those in that constraint.

The rest of this paper is organized as follows. Section 2 states precisely the BN
revision problems we intend to solve. Section 3 gives a brief introduction to IPFP, which
is the basis of our algorithms. E-IPFP and its convergence proof are given in Section 4.
Section 5 describes E-IPFP-SMOOTH for constraints that are inconsistent with each
other or with the structure of the given BN. Section 6 presents D-IPFP together with
computer experiments demonstrating its effect in saving computing time. Section 7
concludes with comments on related works and suggestions for future research.

2. The Problem

We adopt the following notations for the rest of this paper. To distinguish variables and
their instantiations, we use capital letters X , Y, Z, … for a set of variables, and x an
instantiation of X. Individual variables are indicated by subscripts, for example, Xi is a
variable in X and xi its instantiation. Capital letters P, Q, R, … are for probability
distributions, and bold P, Q, R …. for sets of distributions. A BN of variables X is
denoted as G(x), denotes the structure (i.e., the DAG of G(x)), and

 the set of conditional probability tables (CPTs) of G(x). The JPD of
G(x) is . denotes a set of JPDs sharing the network structure .
A probability constraint to X is a distribution on variables . R =
denotes a set of constraints, and the set of all JPDs that satisfy all constraints in R.

Definition 1. A JPD P(x) is said to satisfy constraint if .

We use I-divergence (also known as Kullback-Leibler distance) to measure the

distance between two distributions P and Q on X [3, 7, 18].

Definition 2. I-divergence from JPD P(x) to Q(x) is defined as

 (2)

where means Q dominates P (i.e.,). Note that
 for all P and Q, the equality holds only if P = Q.

Definition 3. Q(x) is said to be an I-projection of P(x) on the set of JPD if
 !

The problem of BN revision we are to solve is stated formally as follows. For a given
with JPD P(x) and a set of constraints ,

construct a new BN with JPD meeting the following conditions:

! " #! $ "%! " "# $ $!=
! " # ! $ "%! " "# $! $!=

!" # " $ #!

" " "# $ # $!== " !"!
!"

! "!!" # !" #! ! " #$!
!" #

!!

! "!!" # ! " ! "! !
!" # $ #=

! " #

! "
! "$%& '(

! "!)) "

%*+,-.'/,

! "

! "
! " ! #

"$! # >

! " <<#
= $

#+%&

!" << ! " # $ %& ! ' " # '$ %&! " ! ! # !> ! >
!"##$!!"#

! "!!

! "" # $%& ! "" #
!

" ! # " ! #
!

=
!!

!

! " ! # "! "# $ # #= ! "
! "# $ %& $ %& & $ %'!

!" # " # " #=! !
! !! " # $! "# # #= !" #! "

4 Y. Peng, Z. Ding, S. Zhang & R. Pan

C1: Constraint satisfaction: ;
C2: Structural invariance: ;
C3: Minimality: is as small as possible.

Definition 4. A set of constraints is said to be consistent with
each other if R is said to be consistent with if

Note that, if R is consistent with then condition C3 requires that be an I-
projection of P on .

Definition 5. is called a CPT extracted from according to if
is determined by . A BN is said to be extracted from P(x) according to

 if and every CPT in is extracted from P(x) according to .

For a given P(x) and , extracting CPTs is unique and this can be done

by computing and from P(x) through marginalization. Also note that
the JPD of "might not be equal to P(x) even though the
conditional distributions of , given are the same in both P and . This, as can be
seen later in Section 4, is because certain conditional interdependencies in , dictated by

, do not hold for P. Conversely, if then P(x) satisfies C2.

3. A Brief Introduction to IPFP

Iterative Proportional Fitting Procedure (IPFP) first appeared in the literature in [6], and
shortly after was used as a procedure to estimate cell frequencies in contingency tables
under some marginal constraints [4]. Csiszar [3] provided a convergence proof for IPFP
based on I-divergence geometry. Vomlel rewrote a discrete version of the proof [18].
IPFP was extended in [1, 2] as Conditional Iterative Proportional Fitting Procedure
(CIPFP) to also take conditional distributions as constraints, and the convergence was
established.

IPFP has recently been suggested as a tool for modifying a JPD by probability
constraints [18]. Specifically, for a set of constraints and
an initial JPD Q0, the IPFP procedure is carried out by iteratively modifying the JPDs
according to the following formula, each time using one constraint in R:

 (3)

where determines the constraint used at iteration k , and m is the
number of constraints in R.

What (3) does at step k is to change to so that . It has
been shown that, at each step of IPFP, is the I-projection of on for the chosen
constraint [18]. For a given initial distribution and a set of consistent

!" # " #$$ " #! ! !
! !" # $ # $ #= ! " !

!
! !" "=

! "## $! " "

! "
! "# $ %& $ %& $ %'!

!" # " # " #=! !

! "! "! !" ! "
!"! " #! !

!" !!

!!

!"# !!"# ! !"!" ! "!" # !!
! "!" # !" #! "

! "!" # !
! !" "= !

!" ! "!" #

! "!" # !"# !!"# !
)(iP p),(iixP p
1

' () (|)n
i i iP x P x p==P !" #! "

!" !! !!
!!

! "!" # !" # " #! " ! "=

! "
! "# $ %& $ %& & $ %'!

!" # " # " #=! !

! "!!" #

!

!
!

" # $ "
$# $

$
$

!
"

!
!"

" !
"

#$ % &
' &% (

% ()*+,-.#/,
% &

!

!
!

="
#

= $ %#&

!! "# $%& # "! " #= ! +

!"# !" #! !"!" # ! " ! "! !
" !# $ % $=

!" !!" !
!"!

! "!!" # !"# !"

 BN Reasoning with Uncertain Evidences

5

constraints R, IPFP converges to which is an I-projection of on . In other
words, satisfies our requirements C1 and C3. For clarity (with the understanding
that if), in the rest of this paper we write the above formula as

 (3-1)

4. Algorithm E-IPFP

For a given and , our task is to find a JPD such
that 1) (meeting C1); 2) (meeting C2); and 3) is as close to
the JPD of G as possible. Since our methods are based on IPFP, C3 will be achieved to a
degree by the iterative projections. In the rest of this paper, we will focus on C1 and C2.

One may think that the integration can be done by first applying IPFP to the JPD of G,
, using constraints in R until it converges to JPD , and then

extracting CPTs from according to . However this would not
work, as can be seen by a simple example in Figure 1.

"
(a). A three node BN, its CPTs, and its JPD Q! (x).

"
(b) CPTs extracted from the converging Q" , and the JPD QÕ generated from these CPTs.

Figure 1. A three node BN and its JPD after IPFP with constraint R"(b, c).

Figure 1(a) gives a simple BN of three binary variables A, B, and C, its initial CPTs
and its JPD . This BN will be used as an illustrative example throughout of this
paper. The JPD (on the left of Figure 1(b)) is obtained by modifying the
original JPD of this BN with constraint R1(b, c) = (0.36, 0.04, 0.34, 0.26) by (3) of IPFP.

!"# !" !! !!
!"# !"
!"# =!" # ! " # $!

"# $! =

!
!

" #
" # " #

" #

!
!

" " !
"

$
% & % &

% $!
!

= "

! " #! "# # #= !
!" # $% % # $&!

!" # " #=R ! !"# !"
! " # !" # ! ! ! " #

!"# $! ! !"# !"

! "# $ # % $!
" " "# $ % $!== " !"# !"

! " # $! !" # ! !"# !" ! "!" #

! " # # $! " # $

! " # # $! " # $

6 Y. Peng, Z. Ding, S. Zhang & R. Pan

One can easily verify that satisfies R1. The I-divergence from to the is
0.1674, which is minimum among all JPD that satisfy R1.

New CPTs for A, B, and C (in the middle of Figure 1b) extracted from Q1 according to
the network structure give a new JPD (on the right of
Figure 1(b)). Note that is different from , and it does not satisfy constraint R1 any
more. This is because IPFP does not preserve the network structure when modifying the
JPD by (3). In particular, note that the conditional independence between B and C, given
A, given in the original BN in this example does not hold in . Therefore, meets C1
and C3 but not C2 while satisfies C2 but fails C1. In other words, IPFP works well if
our purpose is to integrate constraints into a JPD but is inadequate if we also want to
preserve the variable interdependencies given in the original BN.

4.1. Structure constraint

To overcome this problem, E-IPFP extends the standard IPFP by treating the BN
structure as an additional constraint, called structure constraint,

 . (4)

where . By (4) is the JPD of a BN whose CPTs are extracted from

 according to the network structure. Unlike all constraints in R, which are
typically low dimensional distributions, this structure constraint is on all variables in X.
By (3) and (4), this constraint, when applied at iteration k, changes to

, and thus forcing meeting C2, the structural
invariance requirement. Therefore, when applying IPFP with constraints in R
plus , both C1 and C2 are satisfied by the converging JPD. The algorithm E-IPFP
is stated as follows

Note that E-IPFP is exactly the same as IPFP except Step 2.3 in which we first extract
the CPT for each variable from according to the network structure and then form
and apply the structure constraint as given in (4). For practical purpose, convergence of
E-IPFP can be determined by testing, after every m+1 iterations (i.e., at the end of Step

! " # # $! " # $ *Q 0Q

! ! !"# $ $ % # % # & % # & %! " # $! " ! # " ! $ "= ! !
!! !!

!! !!

!!

! !" # " $ #
!

" # ! !$ $
% & ' & !+ "#

= $

! " #! ! "# $! " ! " #!" #+

!"# !" #!

!"# !" #!

! ! !" # " # " $ #!
" # $ " $ $% & ' & % & !+ = "= = # ! "!" #

! " #!" #+

!"# !" #!

E-IPFP(,)
1. where ;
2. Starting with k = 1, repeat the following steps until convergence

 2.1. j = ((k-1) mod (m+1)) + 1;
 2.2. if j < m+1

 2.3. else
 extract from according to ;
 ;
 2.4. k = k+1;

3. return with ;

"""""""

! " ! # "! "# $ # #= ! "# $ $ %!" " "=! !
! "# $ # % $!

" " "# $ % $!== " ! " #! ! "" # $! "

!
!

" #
" # " # $

" #

!
!

" " !
"

$
% & % &

% $!
!

= "

! " # $! " "# $!" ! " #!" #! !"
!"#!# $$!!"

#
!" $%$% !"= #=

!! " # $S PG G G= ! " # $ %&! " # #$ % & !=

 BN Reasoning with Uncertain Evidences

7

2.3), if the difference between and is below some given threshold by
some metrics such as I-divergence or total variation.

4.2. Convergence of E-IPFP

During the iteration process in E-IPFP all constraints remain constant except , which
changes its value after every iteration of the outer loop (Step 2). In other words, the I-
projection on is chasing a moving target. Moreover, it can be easily shown that

itself is not convex while convexity of for all constraints Rj is the basis for IPFP’s
convergence [3, 18]. Therefore, the convergence proof for standard IPFP does not apply
when the structure constraint is added.

Now we analyze the convergence of E-IPFP. In an earlier work [11] we have shown
that, for the standard IPFP on initial JPD with a set of consistent constraints,

, the converging JPD Q* can be obtained by modifying by a
single composite constraint RÕ(y), where . This composite constraint can
be computed by applying IPFP to with . Therefore, it suffices to
prove the convergence of E-IPFP with R containing a single constraint.

Denote the following:

: JPD of the given BN ;
¥! R(y): the constraint;

Points of Q0 through Q3 are depicted in Figure 2 below.

!

!
Figure 2. Successive JPDs from E-IPFP

Without loss of generality, the convergence of E-IPFP can be established by showing

!!! !!!"#$!

i.e., in successive iterations the I-divergence between the two end-points of the I-
projection to is monotonically decreasing. Since and is an I-
projection of Q2 to while Q1 is not, we have by Definition 3

!"!" # ! "# ! #! "# $! +

!+!"

!
! !

! "# $+
!

!"!
!"!

! " #! "

! "# $ $ %!" " "=! ! ! " #! "
! " !" " " "= ! !!

! " #! "
! "# $ $ %!" " "=! !

!" # $ # % $
!" " ! !# " $ " !"¥ = # ! " #! "# # #=

! " " # $
"

$
% # $ # $ &%%'()%*+,-./)0'1.2%.3% # $%'.% 4

$! "

! "
$ # $ # $

"
¥ = !

! " " !# $ % $ & % ' ##()*#+(,-.(-,*#./0+(,120(#*3(,1.(*4#5,/6# 7 #2(#2+#.8*1,#
! "# # ! ! $% # % # % %!"¥ = # " ! !

! " " # $
"

$
% # $ # $ &%%'()%*+,-./)0'1.2%.3% # $%4506%'.% 7%

$! "

! "
$ # $ # $

"
¥ = !

! " # $% && ' % && '(! " " ! " "!

! " #! "! ! " # $% ! "# # ! ! !!

! " #! "!

8 Y. Peng, Z. Ding, S. Zhang & R. Pan

!! !

Therefore, (5) holds if

!! !!!"%$!

Denoting

!!! !!!"&$!

the convergence of E-IPFP is given by the theorem below. The proof is given in the
appendix.

!
Theorem 1. For any given BN and R(y), .

!
By Theorem 1, E-IPFP moves alternately between two sequences of JPDs (Q0, Q2,…)

and (Q1, Q3,…), which are points in the two sets and , respectively. At
convergence, the two sequences approach Q2k and Q2k+1, respectively. If R(y) is consistent
with GS, then the two sequences merge into one and both C1 and C2 are met. If R(y) is
inconsistent with GS, then the distance between Q2k and Q2k+1 is greater than 0 since

, and in this case we say E-IPFP converges to a limit cycle of Q2k and Q2k+1.
When E-IPFP is applied to the example in Figure 1, it converges to a single JPD after

27 iterations with . Here each iteration goes through both constraint
R1(b, c) and the structure constraint once. The converging JPD and the three CPTs
extracted from the converging JPD are given in Figure 3 below. It can be seen that 1) the
constraint R1(b,c) is satisfied by , i.e., C1 is satisfied; 2) although R1 only
involves variables B and C, all three tables are modified from their original values; and 3)

, i.e., C2 is satisfied. The I-divergence from Q* to the
JPD of the original BN is 0.5557, which is larger than the I-divergence of 0.1674 for the
JPD from standard IPFP (see Figure 1). This is to be expected because one more
constraint (the structure constraint) is used in E-IPFP.

!
!

Figure 3. E-IPFP result for the single constraint R"(b, c)

5. Inconsistent Constraints

When constraints are inconsistent either with each other or with the BN structure, there
does not exist a JPD that satisfies all constraints and BN structure. Therefore, E-IPFP will

! " # "$ %% & $ %% &! " " ! " "!

! " ! #$ %% & $ %% &! " " ! " "!

! " ! #$ % $ && % $ && %'! " # # " # #! = "

! " #! "# # #= ! " #!! "

!"! ! "! "!

! "!" # $! = "! !

! " #$%& '(! "! = "

!" # # $! " # $

!" # # $!" $!" % $!" % $! " # $! " ! # " ! $ "=

 BN Reasoning with Uncertain Evidences

9

not converge to a single point but rather it oscillates between some JPDs each of which
satisfies some constraints but not others. At this point, we could stop the attempt to
integrate the constraints into the given BN and try to resolve the inconsistency first.
Alternatively, we can try to find an approximate solution that satisfies the constraints as
much as possible. An easy solution for this would be to take the average of these
oscillating JPDs. This may work for IPFP for general JPDs but not for E-IPFP because
averaging will destroy the interdependencies given in GS, thus failing C2. We have
developed an algorithm SMOOTH to deal with inconsistent constraints for IPFP in
general JPD [21, 14]. Now we adopt it to E-IPFP for BNs.

Note that, both IPFP and E-IPFP only modify the joint distribution while
keeping the constraints in R unchanged. Algorithm SMOOTH differs in that it makes the
modification bi-directional: at each step, not only is modified to satisfy the
constraint but the constraint is also modified to be closer to . Specifically, before

is to be modified by constraint at step k, SMOOTH will first modify the
constraint by
 (8)

where is the smoothing factor.
(8) modifies to include a small portion of , a marginal from the JPD

resulted from step k – 1. Since can be seen as the result of a sequence of revisions by
all other constraints, intuitively, (8) has the effect of pulling closer to #"thus
reducing or smoothening the inconsistency among the constraints.

Incorporating SMOOTH into E-IPFP, we have algorithm E-IPFP-SMOOTH:

Algorithm E-IPFP-SMOOTH differs from E-IPFP only in Step 2.2 where it modifies
the selected constraint by (8) before the I-projection over this constraint is performed. As
a result, the BN structure is preserved as with E-IPFP, but the constraints are only
approximately satisfied. Also note that the smoothing (Step 2.2) only applies to real

! " #!" #!

! " #!" #!

! " #!" #!

!"# !" #! ! "!!" #

!
"# $ # $ #! $ # $! ! !
! ! "# $ # $ % $! ! "= + "

! "! <!
! "!!" # ! " #!

"# $!

!!" !

!"! !
!" ! #!!

E-IPFP-SMOOTH(,)
1.! where ;
2.! Starting with k = 1, repeat the following procedure until

convergence
 2.1. j = ((k-1) mod (m+1)) + 1;

2.2.!if j < m+1

 2.3. else
 extract from according to ;
 ;
 2.4. k = k+1;

 3. return with ;

! " ! # "! "# $ # #= ! "# $ $ %!" " "=! !

! "# $ # % $!
" " "# $ % $!== " ! " #! ! "" # $! "

!" # " # "! # " #$! ! !
! ! "# $ # $ % $! ! "= + "

!
!

" #
" # " # $

" #

!
!

" " !
"

$
% & % &

% $!
!

= "

! " # $! " "# $!" ! " #!" #! !"
!"#!# $$!!"

#
!" $%$% !"= #=

!! " # $S PG G G=
! " # $ %&! " # #$ % & !=

10 Y. Peng, Z. Ding, S. Zhang & R. Pan

constraints in R, not the structure constraint Rm+1. To ensure that the smoothing is
unbiased α should be chosen as very close to 1. However, when α is too close to 1, the
convergence becomes very slow with a long tail of Qk of little changes. Therefore, when
the process gets closer to the convergence point, we can afford to use smaller α for a
faster convergence."The best schedule for decreasing from our experiments"is to use a
sigmoid function [14]:

""""""""""""""""""""""""""""""""""""""" (9)

With large A and small B, α is close to 1 at the beginning (k is small), and close to 0
when k becomes very large. α decreases very slowly at the two ends, but fast in the
middle. Parameter A controls how long is to remain close to 1 (longer for larger A)
and B controls how fast decreases in the middle (faster for smaller B).

To illustrate E-IPFP-SMOOTH, we apply the algorithm to the BN given in Figure 1
with two constraints: R1(b,c) = (0.36, 0.04, 0.34, 0.26) and R2(a) = (0.1,0.9). Although
there exists some JPD Q(a, b, c) that satisfies both R1 and R2, it can be shown that no BN
with this given structure can satisfy both. In other words, R = (R1, R2) is inconsistent with
the BN structure GS. The running results of this example using both E-IPFP and E-IPFP-
SMOOTH with a constant ! = 0.95 are given in Figure 4 below.

(a)! Three successive JPDs from E-IPFP after 60 iterations

(b) Single JPD Q* from E-IPFP-SMOOTH after 80 iterations.

Figure 4. Results for E-IPFP and E-IPFP-SMOOTH with constraints inconsistent with the network
structure.

It can be seen from Figure 4(a) that, because R is inconsistent with GS, E-IPFP does
not converge to a single JPD but rather cycles through three JPDs where Q(k) satisfies
R1(b, c) but not R2(a), Q(k+1) satisfies R2(a) but not R1(b, c), Q(k+2) satisfies the

!

!
!

! "#$% & '! " #
! = "

+ "

!
!

 BN Reasoning with Uncertain Evidences

11

structure constraint and R2(a) but not R1(b, c). However, when E-IPFP-SMOOTH is
applied (Figure 4(b)), it converges to a single JPD Q* (in the middle). It can be verified
using the CPTs extracted from Q* on the right of Figure 4(b) that Q* satisfies the
structure constraint. On the other hand, since the two constraints are modified in each
iteration, Q* does not satisfy them, as can be seen from the small differences between
R1(b, c) and Q*(b, c) and between R2(a) and Q*(a) given on the left of Figure 4(b).

E-IPFP-SMOOTH can also be applied to integrate constraints that are inconsistent
with each other, as shown in the next example which uses the constraint R1(b, c) as before
and a new constraint R3(a, b) = (0.06, 0.14, 0.54, 0.26). Note that the marginals R1(b) =
(0.4, 0.6) but R3(b) = (0.6, 0.4), therefore no JPD, let along any BN, can satisfy both R1

and R3. Again, E-IPFP converges to a cycle of three JPDs in 60 iterations and E-IPFP-
SMOOTH to a single JPD Q* in 120 iterations. The results are given in Figure 5 below.

(a) Three JPDs from E-IPFP after 60 iterations

(b) Single JPD from E-IPFP-SMOOTH after 120 iterations

Figure 5. Results for E-IPFP and E-IPFP-SMOOTH with inconsistent constraints.

Convergence of SMOOTH with standard IPFP for two constraints that are inconsistent

with each other has been established earlier [14]. Now we show E-IPFP-SMOOTH
convergence for constraints that are inconsistent with the BN structure GS. Similar to
Theorem 1 we show it for a single constraint R(y) that is inconsistent with GS.

Theorem 2. For any given BN and constraint R(y) inconsistent with GS,
E-IPFP-SMOOTH converges to Q* consistent with GS.

! " #! "# # #=

12 Y. Peng, Z. Ding, S. Zhang & R. Pan

Recall that from Theorem 1 we have , where, as shown in Figure
2, Q3 is an I-projection of Q2 to if E-IPFP is used. Now with E-IPFP-SMOOTH,
R(y) is modified by (8) to

 (10)

Let be the I-projection of Q2 to using . The convergence of E-IPFP-
SMOOTH can then be established by showing . This can be done by
showing that

 (11)
Intuitively, since contains a portion of Q2(y), would be more similar and
closer to Q2(x) than , so (11) holds. The formal proof of Theorem 2 is given in the
appendix.

6. D-IPFP

When is modified by by (3) of IPFP, it checks each entry in
against every entry of . The cost of (3) can thus be roughly estimated as

, which is huge when |X| is large, making the process computationally
intractable for BN of large size. Since by the chain rule of (1) the joint distribution of a
BN is a product of distributions of much smaller size (i.e., its CPTs), the cost of E-IPFP
may be reduced if we can make use of the interdependencies of the variables represented
by the network structure. This has motivated the development of algorithm D-IPFP which
decomposes the global E-IPFP, the one involving all variables in X, into a set of local E-
IPFP, each for one constraint , on a small subnet of G that contains

First we show that algorithm E-IPFP only changes CPTs for variables in the given
constraints and their ancestors. Consider a BN G(x) with JPD "
and a single constraint R(y) consistent with GS. Let D1 be the set of all variables in Y and
their ancestors and D2"= X \ D1. Variables in D1 and their CPTs form a BN, which is a
subnet of G(x), denoted G(d1), with JPD" . When applying (3) to

with constraint R(y) we have

 (12)

Since is completely determined by CPTs of variables in D1, applying (3) on
of G is equivalent to on the subnet G(d1) while keeping CPTs for variables in D2

unchanged. Therefore, when the structure constraint is applied (step 2.3 of E-IPFP), only
CPTs for variables in D1 need to be revised. If D1 is a small subset of X, substantial
saving can be achieved by doing E-IPFP on the subnet G(d1). However, when D1 is large,
the computation is still intractable. To further reduce the complexity, we have developed
D-IPFP in which E-IPFP is performed in a further restricted subnet containing only
variables in Y and their parents.

! " # $% && ' % && '! " " ! " "!

! " #! "!

!"# $ # $ #% $ # $! " ! " # "! != + "

!
"! !" #$! "! !" #! "

!
" # $ %& '' (& '' (! " " ! " "!

!
" # " #$ %% & $ %% &'! " " ! " "!

!" #! "
!
"# $! "

! " #! "

!"# !" #! ! "!!" # !"# !" #!

! "!!" #
! ! ! !"# # $!" #$!

! "!!" # !!"

! !" # " $ #
!" " ! !# $ # $!"= #

!" ! "# $ # % $
!" # ! !$ % $ & !"= #

! " #!" #!

! "
! ! !

! !

$ # $
$ # $ % # & $ '% # & $'

$ # $! "
! ! # " "$ % $ %

#

& ' & '
() () () ()

(' ('
! !" " "# #

" "

= = $ $

! " #!" #!

! " #!" #!

 BN Reasoning with Uncertain Evidences

13

6.1. Algorithm D-IPFP

Let i.e., S contains parents of all variables in Y except those that are also
in Y. We call S the cap of Y. D1 can be partitioned into three parts: Y, S,
and . (Examples of Y and related S, D1, D2, D3 are given in Subsection
6.2 for a 15 variable BN of Figure 6). For subnet G(d1), S d-separates Y and D3 and thus Y
and D3 are independent of each other, given S. In other words, Y is capped by S and,
when S is instantiated or its distribution is fixed, any change on Y is shielded from
spreading to any variable in D3. By this conditional independence, the JPD for G(d1) can
be expressed as

Since does not contain any variable in Y, and
. Combining this with (12), when R(y) is used at step k we have

 (13)

This suggests that we can keep all CPTs for variables not in Y unchanged and use E-
IPFP to modify only those for as given in the first term in (13). One problem
arises: since is a conditional distribution but Qk-1(y) is not conditioned under s,
the first term in (13), is in general not a probability distribution. This can be resolved by
normalization

 (14)

with normalization factor
 . (15)

Take a closer look at this term. Let

 then

 (16)

Comparing (14) and (16), we have From (16) we can see that
 is computed by applying two constraints to , first is R(y), the second is
, called cap constraint since it forces the marginal of S to remain to its current

value of and thus caps the changes in Y’s CPTs from spreading to variables in D3.
For efficiency reason, we suggest using (15) to compute to avoid computing !

Note that, 1) the JPD after the second modification (using the cap constraint) may not
satisfy constraint R(y), and 2) to extract CPTs from , the structure constraint for
variables in Y needs to be applied to modify CPTs for variables in Y while keeping CPTs

! " #
!" # !$ #!"= !

! " # $ %! ! " #= !

! " " " "# $ # % % $ # % & $ # $ # & $ # & $ # $ # & $ # % $! " ! # $ " ! # " $! $! # $! " $! $! # $! " $= = = =

!" # $! " #
!!" # $ " % $

!" # $! !% & ' % (!" #= $
! " # ! " #

!" # ! !$ % & $ ' !"= #

! "
! ! ! !#

! !

$ % $ %
$ % $ % & $ ' % (& $ ' %(& $ ' %()

$ % $ %! "
! ! # " "$ % & $ %

#

' (' (
) *) *) (+) *) *

) () (
! !" " " "# #

" "

= = $ $

!" #!

! " # $!" # $!

!
" "

"

$
% $ # % $

$! ! !
!

" #
$ # % $ # %

$ #
!" "

"

=

! !

!

" #
!$ " % #

" #! " !

!

"
$ " %

$ "
! " "

"

= #

!
"

"

$
% $ # % $ %

$! !
!

" #
$ # % $ # %

$ #!
!

=

! "
" !

"

$# $
% $ # % $ &

$ # $
!

! !
! !

" #$ %
" % # " % #

" % " #
!

!
!

=

!

" " # $ % # $&! ! !" # " #! " "=
' (|)!" # $! " # $!" # $-

! " #!" #-

! " #!" #-

1kb -
! " #$kQ s

' (|)!" # $

14 Y. Peng, Z. Ding, S. Zhang & R. Pan

for all other variables constant. This is the core of algorithm D-IPFP, which is given
below where the cap of for each constraint , is denoted as .

Step 2.2 in D-IPFP applies two constraints, and the cap constraint (by).

Step 2.3 applies the structure constraint for variables in . Note that, each iteration
(Step 2 in D-IPFP) only applies the three constraints once, not iterates to convergence for
the given . We made this choice for efficiency reason because may be
changed after applications of other constraints in R if their constraint variables or their
caps overlap with that of other constraints.

The convergence of D-IPFP could be established analogous to the convergence proof
of E-IPFP (i.e., merging all constraints in R into a single constraint) using equations of
(13), (14) and (16). However, the formal proof has been evading us at this moment.

Also note that, D-IPFP is a trade-off between accuracy and computing cost. Because
D-IPFP introduces additional constraints for each in R, the converging
distribution from D-IPFP, although satisfying all constraints, would have higher I-
divergence to the JPD of the original BN than that of E-IPFP.

D-IPFP can be easily modified, analogous to Step 2.2 of E-IPFP-SMOOTH, to deal
with inconsistent constraints.

6.2. Experiments

To empirically validate the algorithms and to get a sense of how expensive this approach
may be, we have conducted experiments of limited scope with an artificially composed
BN of 15 discrete variables. The network structure is given in Figure 6 below. For a
hypothetical constraint on Y = {F, L, M}, we have S = {E, B, C}, D1 = {F, L, M, E, B, C,
A, R, D}, D2 = {H, K, G, N, Q, J }, and D3 = {A, R, D}.

Three sets of 4, 8, and 16 constraints, respectively, are selected for the experiments.
These constraints are consistent with each other and with the network structure. The
number of variables in a constraint ranges from 1 to 3, the size of the subnet associated
with a constraint () ranges from 2 to 8. Therefore a saving in computational
time by D-IPFP would be in the order of #

jY ()jjR y jS

()jjR y 1kb -

jY

()jjR y 1()jkQ s-

1()jkQ s- ()jjR y

| | | |j jY S+
15 8 72 2 .- =

D-IPFP(,)
1.! where ;
2.!Starting with k = 1, repeat the following procedure until convergence

 '() . j = ((k-1) mod (m+1)) + 1;

 2.4. k = k+1;

3.!return with ;

"""""""

() (,)s PG x G G= 1 2{ , , }mR R R R= L
! "# $ # % $!

" " "# $ % $!== " ! " #! ! "" # $! "

1 1
1

()
2.2 (|) (|) ;

()

j
jj j j j

k k kj
k

R y
Q y s Q y s

Q y
b- -

-

¢ = × ×

1 (|) (|)2.3 j
k i j k i i iQ x Q x X Yp p-¢= " Î

!! " # $S PG G G= ! " # $ %&! " # #$ % & !=

 BN Reasoning with Uncertain Evidences

15

Figure 6: The network of 15 variables for the experiments comparing performance of E-IPFP and D-IPFP

Both E-IPFP and D-IPFP were run for each of the three sets of constraints. The

program is a brute force implementation of the two algorithms without any optimization.
The results are given in Table 1 below.

Table 1: Experiment Results

of
Cons.

Iterations
(E-IPFP|D-IPFP)

Exec. Time
(E-IPFP|D-IPFP)

I-divergence
 (E-IPFP|D-IPFP)

4 8 27 1264s 1.93s 0.08113 0.27492
8 13 54 1752s 11.53s 0.56442 0.72217

16 120 32 13821s 10.20s 2.53847 3.33719

Each of the 6 experimental runs converged to a joint distribution that satisfies all

given constraints and is consistent with the network structure. As expected, D-IPFP is
significantly faster than E-IPFP with moderately larger I-divergences. The rate of
speedup is roughly in the theoretically estimated range (), the performance variation
among the three sets of constraints is primarily due to the number of iterations each run
takes.

7. Conclusions

In this paper, we developed algorithm E-IPFP that adopts IPFP for the purpose of
revising a probabilistic knowledge base represented as a BN by a set of low dimensional
probabilistic constraints. The revision is done by only modifying the conditional
probability tables of the BN while leaving the network structure intact. E-IPFP is
extended to E-IPFP-SMOOTH to deal with the situation when the constraints are
inconsistent with each other or with the BN structure. We have also showed that a
significant saving in computational cost can be achieved by decomposing the global E-
IPFP into local ones with much smaller scale, as described in algorithm D-IPFP.
Convergence of these algorithms is also analyzed. Computer experiments of limited
scope were conducted to validate the analysis results.

!"

16 Y. Peng, Z. Ding, S. Zhang & R. Pan

Several pieces of existing work are particularly relevant to this work, besides those
related to the development of the original IPFP and proofs of its convergence that were
cited earlier. Vomlel studied in detail how IPFP can be used for probabilistic knowledge
integration [18]. However, this works applies IPFP to update JPDs, not to JPDs
represented as BNs. Several works have extended IPFP to BN, including Valtorta et al
[17, 8] and our earlier works [11, 14]. In these works, IPFP is used to support belief
update in BN by a set of soft evidences that are observed simultaneously. Those soft
evidences are in the form of low dimensional distributions and are taken as constraints by
IPFP style computing. However, these works were not concerned themselves with
revising the BN itself. In other words, the methods developed in those works are BN
inference methods, not methods for knowledge integration and revision.

The issue of inconsistent constraints has been studied by others. It has been reported
by others [18, 19] and observed by us that when constraints are inconsistent, IPFP will
not converge but oscillate. Vomlel [19] developed an algorithm, named GEMA, to deal
with inconsistent constraints when using IPFP to modify a JPD. We have developed
algorithm SMOOTH [21, 14] for the belief update in BN by inconsistent constraints.
Algorithm E-IPFP-SMOOTH incorporates SMOOTH into E-IPFP for modifying CPTs of
a BN.

We are continuing our investigation of knowledge integration for inconsistent
constraints. When constraints are inconsistent with each other, some error or noise must
exist in some of these constraints, or the meanings/semantics of some variables take
different interpretations in different constraints. It is desirable to take into consideration
of the degree of trust or semantic difference one has on each of these constraints during
the integration. This can be easily accomplished by allowing different smoothing factor !
for each constraint, with larger ! for those believed to have higher fidelity or closer
semantics. Smoothing factors may also be used to deal with another form of
inconsistency where the JPD of the revised BN is too far away from the original BN.

Structural inconsistency is a more difficult matter. When constraints from highly
trusted sources exhibit significant inconsistency with the given BN structure, it is an
indication that the given BN structure is no longer an accurate model of the domain. In
such a situation, it is more desirable to modify the BN structure than changing the
constraints as E-IPFP-SMOOTH does. The modification of BN structure may involve
adding/removing arcs and/or nodes in the original BN. We are actively exploring the idea
of adding nodes for “hidden variable”, whose effects on other variables were not
considered when the original BN was constructed but whose presence might account for
the difference or inconsistency between the constraints and the given BN structure.

Efficiency of our approach also requires additional investigation. As shown in our
experiments, IPFP based methods are in general very expensive. The convergence time
of E-IPFP in our experiments with a small BN (15 nodes) and moderate number of
constraints is in the order of hours. Even the performance of D-IPFP can be bad if some
constraints involve larger number of variables. Complexity can be further reduced if we
can divide a large constraint into smaller ones by exploring interdependence between the

 BN Reasoning with Uncertain Evidences

17

variables in the constraint (possibly based on the network structure). Vomlel [18] has also
studied the behavior of IPFP with input set generated by decomposable generating class.
If such input set can be properly ordered, IPFP may converge in a small number of
cycles. This kind of input set roughly corresponds to ordering constraints for a BN in
such a way that the constraint involving ancestors are applied before those involving
descendants, if such order can be determined. Several related works may also be of
interest to readers who are concerned with the complexity of IPFP and that of its
applications to BN, these include the method proposed for space efficient implementation
of IPFP [5], methods for decomposing a large BN into small BNs [9, 20], and methods
for effective approximation of IPFP with BN junction trees [8, 10, 16].

Acknowledgment

This work was supported in part by NIST awards 60NANB6D6206 and
70NANB9H9145, NSF award IIS-0326460, and the China Scholarship Council (CSC).

Appendix

Proof of Theorem 1.

By induction on , the number of variables in the given G.
Base case: , a BN with a single variable x1, with constraint . It is trivial

that . Substituting these into (7)

where the last inequality comes from the fact that I-divergence is always non-negative.
Inductive assumption: for any .
Inductive proof: show that . Without loss of generality, let be a

root node of the BN. For clarity, let . By (7) and (2),

can been seen to be a sum of two parts:

Let these two parts be called Now we show that both and
are nonnegative.

! !!
! ! "! =

!" #! "

! " " " "# $ # $ # $! " ! " # "= =

! " ! ! ! ! " !# $ # # $ %% # $$ # # $ %% # $$ # # $ %% # $$ "&! " # ! $! " # ! # ! " # ! $!! = " = #

! "# $ $%%%$ & '!" " "! " !! !

! " #$ % % %&&&% ' !!" " " "! " !!

! "# $ $%%%$ &!" " " "=

! !

!

" ! " !
! " ! " !

#! ! $!

$!
" !

! !

% # & % # &
% # & % # &'() % # &'()

% # & % # &

% # &
************ % # &'() **%+"&

% # &

! ! ! !

! !

" ! ! " ! !
! ! " ! ! " ! !

" ! ! " ! !

" ! !
" ! !

" ! !

! = "

=

#

#

!" # $! !!

!

! !

" ! " !
! # !

$! ! ! !

" ! " !
! # !

$ $! ! ! !

% & % ' &
% $ & % $ &()*

% & % ' &

% & % ' &
++++++++++++ % $ &()* % $ &()* ,+++++++++++++++++++++++++%-"&

% & % ' &

! !

! ! ! !

" ! " ! !
! ! " ! !

" ! " ! !

" ! " ! !
" ! ! " ! !

" ! " ! !

! =

= +

"

" "

! " # "$ % &'()*' $ % &+! ! ! !! !
!! !!

18 Y. Peng, Z. Ding, S. Zhang & R. Pan

First, note that since x0 is a root note, its CPT (i.e., its marginal) will not be changed
when Q2 is generated from Q1 by applying the structure constraint, so Q2(x0) = Q1(x0).
Substituting Q2(x0) by Q1(x0) we have

Now consider .
Case 1. Let , then . Since

 and

and (because is an I-Projection of to), we have

 .

Note that, for any arbitrary particular state of variable ,
is a BN of x, where

Therefore, is an I-Projection of to from which CPTs of
 are extracted. Then by inductive assumption

and

Case 2. . By definition of , we have

.

!

!

!

" !

" !
" !

! !

" !
" !

! !

" !
" ! " ! ! !

! !

$$$ % # &

% &
'$ % # &()*

% &

% &
% % # &&()*

% &

% &
% &()* % % & ++ % && !$$%,-&

% &

! !

! !

!

! !

" !
" ! !

" !

" !
" ! !

" !

" !
" ! # " ! " !

" !

!

=

= = "

#

#

#

!!

! "! "! { }!" #! ! "= !" # " $ %#! " ! # "=

! " ! " ! "# $ % # % # & %! " " ! " ! " "= !

! ! !
" ! ! ! ! ! ! !

! ! ! ! ! !

$ %& # %' & # &
$ & # $ & # & # ' &

$ %& # %' & # &
! " # ! # " ! "

$ " " $ " " $ " $ " "
$ " # $ # " $ "

= ! =

! " "# $ # $! " # "= !! !!
!" # $%! " #!

!
" ! ! !

! !

$% &
% & # % &

$% &
! " #

$ # # $ # #
$ " #

=

!
"! !! ! !

" " "# $ % # $ %
!" " ! !# " " # " !"= #

!
! " " " "
"

"

$ % & '(') * +,'-. /(0
$ & 1111111111111111111111111111111111#23&

$ & /4,567')58
! ! !

! !
! !

" # # # # #
" #

" #

!
!

!

" =#
= $

#%

!
" #$ % &! " " !

" "# $ %! " " !
"# $% &! " #

$
!

" #$ % &! " "

!
! !" #

$ # #!
#

% & '
% & ' ()* % & ' #+

% & '!

" ! !
" ! ! ! !

" ! !
= ! "#

!

!

" !
" ! # !

$! !

" !
! # !

! !

% & '
% $ ' % $ ' ()*

% & '

% & '
% ' % & ' ()* !+++%,-'

% & '

! !

! !

" ! !
! ! " ! !

" ! !

" ! !
" ! " ! !

" ! !

! =

= "

#

#

!! "! !!

! !
" ! ! !

! " !

$ # $
% $ # % $

$ # $
! " # $

$ $ # $ $
" # $

=

 BN Reasoning with Uncertain Evidences

19

Since , so

 (A6)

where .

Now show that is a PD of y. Let , then

So is a PD.

Therefore, for any given , by (A6), is an I-Projection of to .
Then by inductive assumption and analogous to (A5), we have

(A7)

Combining (A2), (A3), (A5) and (A7), �

Proof of Theorem 2.

We prove the theorem by showing that the inequality (11) holds. By (3) and (10),

 (A8)

 is thus a function of ! , denoted, When ! = 0, and
; when ! = 1, and , which is greater than 0

if . By (A8), the derivative of

where the last equality comes from

! !
! ! !

! !

" # $
" $ " $

" # $
! " #

! " ! #
! # "

=

!
" "

" " " " "
" " " " "

$ % $ & % $ %
$ & % $ & % $ & %

$ % $ & % $ & %
! " # $ " ! "

$ $ # $ $ # $ $
$ # " $ # " $

= =

! " "

"

$ % &
$ & $ &

$ &
! " #

$ # $ #
! "

=

! " #! " ! "! ! "=

! ! ! ! ! ! " ! " !
#! !

$ % $ %
$ & % $ % $ ' % $ ' ' #% $ ' ' #% $ ' %(

$ % $ %! !

" # " #
$! # " # $! # $! # ! $! # ! $! #

$ # $ #
! = = = =" "

! " #
" #

" #

$ % &
$ & $ ' &

$ &
! " #

$ # ! # "
! "

= =

!
"! !

" #$ % &! " " !
" "# $ %! " " ! " #! "

!

! !

" ! " !
" ! # ! # ! # !

$! ! ! !

% & ' % & '
% $ ' % $ ' ()* + % ' % & ' ()* !,-

% & ' % & '! ! ! !

" ! ! " ! !
! ! " ! ! " ! " ! !

" ! ! " ! !
! = "# # #

!" # $!%! !! "

' 2
3 2 2 3 2

2 2

() (1) ()'()() () () () (1) ()
() ()

! " # "! "
$ # $ # $ # $ # "

" # "
! !

! !
+ "

= # = # = + "

!
" #$ %% &I Q Q ().! a !

" #$ % $ %! " ! "=

!"# "f = !
" "# $ # $! " ! "= ! "#$% # && %! " # #=

!" # " #! " # "! ! "! !

!
" #

" #
" #

#

" #
" #

#

" #
" #

" #

"
" #

$ %
$ $ $ % && $ %% '

$ % $(% $ %
$ $ % $(% $ %%)*+ '

$ %

$ % $(% $ %
$ $ % $ %%)*+

$ %

$ % $ %
, $ $ % $(% $ %%

$ % $(% $ %

$ % $(
$ $ % $ %%)*+

!

!

!

!

"
$! $!

$! $!
$! $!

$!

$! $!
$! $!

$!

$! $!
$! $!

$! $!

$!
$! $!

!
!

!
! !

! ! !

! !

! !
! !

!

"
= " "

"
+ #

= " + # "

+ #
= #

#
+ + #

+ #

+
= #

$

$

$

$ #
" #

#

" #
" #

#

% $ %
$ % $ %

$ %

$ % $(% $ %
$ $ % $ %%)*+ ,,$-.%

$ %

!

!

$!
$! $!

$!

$! $!
$! $!

$!

!

! !

#
+ #

+ #
= #

$

$

! "

! " ! "# $ # $ # $ # $ % % &'
! ! !

" ! " ! " ! " !! = ! = ! =" " "! "

20 Y. Peng, Z. Ding, S. Zhang & R. Pan

Note that each entry in the summary of (A9) is strictly positive because

if and
if

This means that when ! increases from 0 toward 1, strictly increases from 0
toward , and thus for any .The only time this
derivative equals zero is when This proves (11).

Also note that the above is true for all pairs during the successive
iterations, so Since Q2k are consistent with GS, the algorithm
converges to a single JPD consistent with GS. �

References

)(*(*(! +,-./! 01! 2,34565,378! 96:;765<:! =;,>,;65,378! ?56653@! "29=?$! 18@,;56AB! C56A!
1>>85-765,3D!53!6A:!E6765D65-78!1378FD5D!,G!H5D-;:6:!E>76578!H767I/!!"##$%&'&/!() *+,-."+/0%
121/,3%)4%56+7%'/33-)*%-*%82,-3/!<,8(!)/!>>(!)J)K)J'/!)LML(!

'(N(!2;7B:;/!0=;,O7O5856F!P:7DQ;:D!C56A!R5<:3!P7;@5378D!734!2,34565,378DS!&K>;,T:-65,3D!
734!2,34565,378!96:;765<:!=;,>,;65,378!?56653@I/!'+2+-3+-93%2*0%:/9-3-)*3/!<,8(!)M/!>>(!U))K
U'L/!'VVV(!

U(9(! 2D5DW7;/! 0&K45<:;@:3-:! R:,B:6;F! ,G! =;,O7O5856F! H5D6;5OQ65,3D! 734! P535B5W765,3!
=;,O8:BDI/!;7/%<**"2#3%)4%8,). 2.-#-+=/!<,8(!U/!3,(!)/!>>(!)J%K)#M/!?:O(!)L&#(!

J(X(N(!H:B53@!734!?(?(!E6:>A73/!0Y3!7!Z:7D6!E[Q7;:!14TQD6B:36!,G!7!E7B>8:4!?;:[Q:3-F!
\7O8:!CA:3!6A:!N]>:-6:4!P7;@5378!\,678D!7;:!^3,C3I/!<**$%>2+7$%'+2+-3+$!_,8(!))/!>>(!
J'&KJJJ/!)LJV(!

#(`(!a5;,Qb:.!73D!E(!=c:Qd58/!0Y3!6A:!:GG:-65<:!5B>8:B:36765,3!,G!6A:!56:;765<:!>;,>,;65,378!
G56653@!>;,-:4Q;:I/!()?1"+2+-)*2#%'+2+-3+-93%@%:2+2%<*2#=3-3/!<,8(!)L/!>>(!)&&K)ML/!)LL#(!

%(`(!^;Q56A,G/!;/#/4))*A/,B//,3,/B/*-*C /!H:!93@:35:Q;/!<,8!#'/!>>(!)#K'#/!)LU&(!
&(E(!^Q88O7-.!734!`(1(!Z:5O8:;/!0Y3!93G,;B765,3!734!EQGG5-5:3-FI/!<**$%>2+7$%'+2+-3+$/!<,8(!

''/!>>(!&LKM%/!)L#)(!
M(E(!Z73@:<53!734!P(!_786,;67/!!0=:;G,;B73-:!N<78Q765,3!,G!18@,;56ABD!G,;!E,G6!N<54:36578!

e>476:! 53! +7F:D573! f:6C,;.DS! ?5;D6! `:DQ86DI/! 53! 6A:!8,)9//0-*C3%)4% +7/% '/9)*0%
&*+/,*2+-)*2#%()*4/,/*9/%)*%'92#2.#/%D*9/,+2-*+=%>2*2C/?/*+!"EeP KVM$/!f7>8:D/!9678F/!
Y-6,O:;!) KU/!'VVM/!>>(!'MJK'L&(!

L(E(!Z73@:<53/!P(!_786,;67/! !734!P(!+8,:B:.:/!01@:36K:3-7>DQ876:4!+7F:D573! f:6C,;.D!
734!6A:! `QB,;!=;,O8:BI/!53!6A:!8,)9//0-*C3%)4%+7/%E-*+7%&*+/,*2+-)*2#%()*4/,/*9/%)*%
<"+)*)?)"3%<C/*+3%2*0%>"#+-2C/*+%'=3+/?3!"11P1E K)V$/!_,8QB:!)/!\,;,36,/!273747/!
P7F!)VK)J/!'V)V/!>>(!)##UK)###(!

)V(1(Z(!P74D:3!734!?(_(!a:3D:3/!0Z7WF!>;,>7@765,3S!1!TQ3-65,3!6;::! 53G:;:3-:! 78@,;56AB!
O7D:4!,3!87WF!:<78Q765,3I/!<,+-4-9-2#%&*+/##-C/*9//!_,8(!))U/!>>(!'VUg'J#/!)LLL(!

))(`(!=73/!h(!=:3@!734! i(!H53@/! !0+:85:G!e>476:!53!+7F:D573! f:6C,;.D!eD53@!e3-:;6753!
N<54:3-:I /! 53! 6A:!8,)9//0-*C3%)4% +7/% &FFF% &*+/,*2+-)*2#% ()*4/,/*9/%)*% ;))#3% G-+7%
<,+-4-9-2#%&*+/##-C/*9/%"92\19K'VV%$/!X7DA53@6,3/!H2/)U!g!)#/!f,<(!'VV%!

)'(a(!=:7;8/!8,).2.-#-3+-9%H/23)*-*C%-*%&*+/##-C/*+%'=3+/?3I%E/+G),B3%)4%8#2"3-.#/%&*4/,/*9/(!
E73!P76:,S!P, ;@73!^7QGB73/!)LMM(!

)U(h(!=:3@!734!i(!H53@/!0P,45GF53@!+7F:D573!f:6C,;.D!OF!=;,O7O5856F!2,3D6;7536DI/! 8,)9$%
JK3+%()*4/, /*9/%)*%D*9/,+2-*+=%-*%<,+-4-9-2#%&*+/##-C/*9//!aQ8F!'VV#/!N453OQ;@A(!

)J(h(! =:3@/! E(! iA73@/! 734! `(! =73/! 0+7F:D573! f:6C,;.! `:7D,353@! C56A! e3-:;6753!
N<54:3-:DI/!&*+/,*2+-)*2#% L)",*2#%)4%D*9/,+2-*+=M% N"OO-*/33% 2*0% P*)G#/0C/Q!23/0%

! " ! " "# $ # $%&'()% # $ #* $ # $ # $+! " ! " ! " ! " ! "! !> + " >

! " ! " "# $ # $%&'()% # $ #* $ # $ # $+! " ! " ! " ! " ! "! !< + " <

!
" #$ %% &! " "

! "# $$ %! " " !
" # " #$ %% & $ %% &! " " ! " "< ! "! <!

! "! !=

! " !# $ %$! !" "+

! " ! #$%&'# (! !" " !+ ! ! "

 BN Reasoning with Uncertain Evidences

21

'=3+/?3/!"#!"#$/!#ULK#%J/!'V)V(!
)#(=:3@/!h(!734!iA73@/!ES!0936:@;7653@!=;,O7O5856F!2,3D6;7536D!536,!+7F:D573!f:6DI/!53!!;7/%

8,)9//0-*C3%)4%R+7%F",)1/2*%()*4/,/*9/%)*%<,+-4-9-2#%&*+/##-C/*9/!"N219'V)V$/!Z5DO,3/!
=,;6Q@78/!1Q@QD6/!'V)V(!

)%(h(X(! \:A!734!P(!X:8853@/!0Y3!9B>;,<53@!6A:!NGG5-5:3-F! ,G!6A:!96:;765<:!=;,>,;65,378!
?56653@!=;,-:4Q;:I/!53!6A:!8,)9//0-*C3%)4%+7/%E-*+7%&*+/,*2+-)*2#%S),B37)1%)*%<,+-4-9-2#%
&*+/##-C/*9/%2*0%'+2+-3+-93/!^:F!X:D6/!?8,;547/!a73Q7;F!UK%/!'VVU(!

)&(P(!_786,;67/!h(!^5B/!734!a(!_,B8:8/!0E,G6!N<54:36578!e>476:!G,;!=;,O7O585D65-!PQ8657@:36!
EFD6:BDI/!&*+/,*2+-)*2#%L)",*2#%)4%<11,)T-?2+/%H/23)*-*C/!<,8(! 'L/!3,(!)/!>>(!&)K)V%/!
'VV'(!

)M(a(!_,B8:8/!0P:6A,4D!,G!=;,O7O585D65-!^3,C8:4@:!936:@;765,3I/!87:%;7/3-3/!H:>7;6B:36!
,G!2FO:;3:65-D/!?7-Q86F!,G!N8:-6;5-78!N3@53::;53@/!2W:-A!\:-A35-78!e35<:;D56F/!H: -!)LLL(!

)L(a(!_,B8:8/!0936:@;7653@!93-,3D5D6:36!H767!53!7!=;,O7O585D65-!P,4:8I/!L)",*2#%)4%<11#-/0%
E)* Q(#233-92#%U)C-93/!<,8(!)J/!3,(!U/!>>(!)!g!'V/!'VVJ(!

'V(h(! j573@/! 01! >;,O7O585D65-! G;7B:C,;.! G,;! -,,>:;765<:! BQ865K7@:36! 45D6;5OQ6:4!
536:;>;:6765,3!734! ,>65B5W765,3! ,G! -,BBQ35-765,3I/!<,+-4-9-2#%&*+/##-C/*9//! _,8(!M%/!>>(!
'L# gUJ'/!)LL%(!

')(E(!iA73@/!734!h(!=:3@/!013!NGG5-5:36!P:6A,4!G,;!=;,O7O585D65-!^3,C8:4@:!936:@;765,3I/!
53! 8,)9//0-*C3%)4% ;7/% JV+7% &FFF% &*+/,*2+-)*2#% ()*4/,/*9/%)*% ;))#3% G-+7% <,+-4-9-2#%
&*+/##-C/*9/%W&(;<&QJVVXY/!H7F6,3/!YA5,/!f,<(!UK#/!'VVM(!

