ABATe: Automatic Behavioral Abstraction
Technique to Detect Anomalies in Smart
Cyber-Physical Systems

Sandeep Nair Narayanan, Anupam Joshi, and Ranjan Bose

Abstract—Detecting anomalies and attacks in smart cyber-physical systems are of paramount importance owing to their growing
prominence in controlling critical systems. However, this is a challenging task due to the heterogeneity and variety of components of a
CPS, and the complex relationships between sensed values and potential attacks or anomalies. Such complex relationships are results
of physical constraints and domain norms which exist in many CPS domains. In this paper, we propose ABATe, an Automatic
Behavioral Abstraction Technique based on neural networks for detecting anomalies in smart cyber-physical systems. Unlike traditional
techniques which abstract the statistical properties of different sensor values, ABATe learns complex relationships between event
vectors from normal operational data available in abundance with smart CPS and uses this abstracted model to detect anomalies.
ABATe detected more than 88% of attacks in the publicly available SWaT dataset featuring data from a scaled down sewage water
treatment plant with a very low false positive rate of 1%. We also evaluated our technique’s ability to capture domain semantics and
multi-domain adaptability using a real-world automotive dataset, as well as a synthetic dataset.

Index Terms—Anomaly Detection, Cyber-physical systems, CPS, security, attack detection

1 INTRODUCTION

Headlines like “Casino Gets Hacked Through Its Internet-
Connected Fish Tank Thermometer” [54] and “Webcams used to
attack Reddit and Twitter recalled”" are increasingly common.
With rapid advancements in cognitive technologies, real-
time controls systems, and industrial electronics, Cyber-
Physical Systems (CPS) are being deployed in a wide va-
riety of domains including high confidence systems like
medicine, critical infrastructures, and automobiles. The po-
tential of CPS to affect critical infrastructure and lack of
security controls make them a lucrative target for attackers.
Attacks on cyber-physical systems cause not just economic
loss but impact the reputation, trustworthiness, and wide-
scale acceptability of emerging smart infrastructure that
CPS and IoT enable. Stuxnet, dubbed as the world’s first
digital weapon [55], is a classic attack example. It infected
the PLC’s (Programmable Logic Controllers) of a nuclear
plant and rapidly altered the speed of its isotope enrichment
centrifuge, causing premature physical damage. It took
several years to even detect the real reason behind early
death of those centrifuges. However, why would a PLC let
centrifuges run “erroneously” when the specifics of their
normal operation are well understood? This question leads

e Sandeep Nair Narayanan was with the Department of Computer Science
& Electrical Engineering, University of Maryland Baltimore County.
Email: sand7@umbc.edu

o Anupam Joshi was with the Department of Computer Science & Electrical
Engineering, University of Maryland Baltimore County.

Email: joshi@umbc.edu

e Ranjan Bose was with the Department of Electrical Engineering, Indian
Institute of Technology Delhi.

Email: rbose@ee.iitd.ac.in

Manuscript received Dec 19, 2018; revised Oct 11, 2020.
1. http:/ /www.bbc.com/news/technology-37750798

to our key insight that CPS follow laws of physics and
behavioral constraints specific to their domain of operation.
In particular, a centrifuge shouldn’t have spun unnaturally
fast or slowed down abnormally!

One approach to secure such systems is to add advanced
security features. Due to a variety of constraints [43] in-
cluding physical environment feedback, distributed control,
real-time response, wide-scale geographic distribution, and
multi-tiered characteristics, layering on a complex secu-
rity system is impossible in many cases. The area, power,
and cost requirements also put constraints on the cyber-
physical system’s design and make it hard to have ad-
vanced software and hardware security stack on them.
For example, the geographic distribution and remote lo-
cations of the components of a power grid CPS can result
in reduced network connectivity. Mobile CPS like health
and fitness monitoring systems can be power constrained.
Support for legacy systems is another constraint for adding
such advanced security features. For example, CAN bus, a
broadcast based legacy communication channel lacks even
the basic authentication and authorization techniques. This
deficiency is utilized in many attacks on cars which range
from simple driver distractions to complete remote takeover
of an unaltered car [22], [39], [51]. However, moving away
from CAN networks is often not permitted due to cost and
compatibility constraints.

Detect and mitigate is an alternate strategy to secure
such systems. In this paper, we propose a new tech-
nique, ABATe (Automatic Behavior Abstraction Technique)
to detect anomalous behaviors and attacks in smart cyber-
physical systems. A key insight on cyber-physical systems
is that their operations are governed by the laws of physics
and domain norms. For example, in the automotive domain,
a car (3400 Lbs with 250hp engine) will take several seconds

to accelerate from 0 to 100 mph. Similarly, its ignition state
will be “ON” when it is in motion. Such constrained normal
behaviors of CPS are well represented in their respective
operational data and are available in abundance. ABATe
automatically abstracts these normal operational behaviors
into context vectors by ingesting the operational data from
them.

Attacks on CPS, often defined as “intentional actions
trying to cause undesired effects in the physical world” [19],
are just perceived deviations from these normal behaviors.
Hence, ABATe looks for such deviations in the working data
and identifies different attacks on the cyber-physical system.
Our technique works in two stages; a domain independent
“offline learning phase” to abstract the norms of the domain
and an “online monitoring” phase to detect attacks by
measuring their deviation from normal. An important char-
acteristic of ABATe is its multi-domain adaptability (using
the same technique on data from different CPS domains).
We also don’t need examples of attack/anomalous states
— putting a CPS in “bad” states is often impossible due
to safety constraints, or can cause physical damage to the
system.

In this paper, we demonstrate ABATe’s capabilities using
real-world datasets from two different CPS domains. The
first dataset(SWaT) [17] is from a scaled down sewage water
treatment plant where data is collected over a period of
11 days. We use ABATe to detect the 36 well annotated
attack scenarios in this dataset. To prove ABATe’s multi-
domain adaptability, we collected and processed more than
25 hours of real driving data from a modern car. We also
use the automotive dataset to study the capability of ABATe
to abstract context from real-world cyber-physical systems
which enables it to detect attacks. Our evaluations show that
ABATe can detect a large variety of attack scenarios with
a low false positives rate. Our major contributions in this
paper include the following.

1) Developed a domain-independent technique,
ABATe to learn the normal working behavior of
cyber-physical systems using sensed normal data
and neural networks.

2) Used the learned model from ABATe to generate an
ABATe,.ore to detect attacks and anomalies.

3) Evaluated ABATe using a popular public SWaT
dataset and detected various labeled attacks in it.

4) Collected, aggregated, and analyzed data from a car
and used it to evaluate the context abstraction and
multi-domain adaptability of ABATe.

The rest of this paper is organized as follows. A brief
survey of related work and our attack model can be found in
Section 2 and Section 3 respectively. ABATe’s methodology
is described in Section 4 followed by a brief description of
its implementation in Section 5. A detailed evaluation of
ABATe using two real-world datasets; a SWaT dataset and a
car dataset ensue in Section 6 and the paper concludes with
a discussion of future work in Section 7.

2 LITERATURE REVIEW

Anomaly detection is successfully used in computer secu-
rity [30] , biological domain [37] , mechanical domain [8], [9]

2

, financial domain [10] , unusual activity detection [27] , user
behavior [3], etc. In an extensive survey, Chandola et al. [11]
define different types of anomalies which include point
anomalies, contextual anomalies, etc. and a wide variety
of techniques based on classification, clustering, statistics,
information theory etc. to detect them.

Warrender et al. [53] proposed T-STIDE (Threshold
Time-Delay Embedding) which employs a window-based
approach for anomaly detection in which a database of
normal subsequences is built and are compared against
the test sequences. Intrusion detection methods based on
HMM (Hidden Markov Model) have been suggested multi-
ple times [16], [47]. Another anomaly detection technique
based on hierarchical HMM's is proposed by Zhang et
al. [56]. However, Warrender et al. [53] reported significant
performance overheads when HMM based techniques are
compared with other techniques in longer sequences. Keogh
et al. [25] invented SAX (Symbolic Aggregate Approxima-
tion) to determine time-series discords which could be used
in a wide variety of domains like telemetry monitoring,
medicine, and surveillance.

Recently, neural networks got traction and several tech-
niques have been employed. Sabokruou et al. [48] used fully
convolutional neural networks to detect abnormal regions in
a video. O’shea et al. [44] applied recurrent neural network
for anomaly detection on air radio networks. Laskov et
al. [32] developed a technique to visualize anomaly detec-
tion. It enables experts to interpret predictions made by the
learning technique used. Some of the latest anomaly de-
tection techniques include Netflix RPCA (Robust Principle
Component Analysis), Yahoo EGADS [31], EXPOSE [49],
HTM [2], etc. Black box analysis techniques [13] are also
used to detect anomalies in large-scale systems, using exter-
nally available information.

2.1 Anomaly Detection in Cyber-Physical Systems

Detecting attacks in cyber-physical systems is a challenging
task. In the CPS domain, Gollmann et al. [20] described the
potential stages of a CPS and differentiates cyber-attacks
from cyber-physical attacks. A survey of various anomaly
detection techniques used in cyber-physical systems from
Mitchell et al. [40] describes the challenges and various tech-
niques proposed. Jones et al. [24] proposed a formal method
for anomaly detection using Standard Temporal Logic (STL).
If the attacks against the system are well understood, their
technique can be used to infer human readable formula.
Krotofil et al. [29] used statistical techniques to detect attacks
on cyber-physical systems. They used information theoretic
measures like sensor specific entropy and plant-wide en-
tropy to detect attacks. Several related research focused on
securing specific CPS domains. For example, research from
Sridhar et al. [50], Li et al. [33], Hong et al. [21] etc. focused
on securing the smart grid infrastructure while research
from Bezemskij et al. [4], [5], Vuong et al. [52], etc. focused
on securing robotic vehicles. In our research, we come up
with a domain independent solution to secure CPS domain.

A data-driven approach is proposed by Liu et al. [36].
They use spatio-temporal features and learn the system-
wide patterns using a Restricted Boltzmann Machine (RBM).
Goh et al. [18] used recurrent neural networks to detect

anomalies in cyber-physical systems. They used an LSTM
(Long Short-Term Memory) to model complex temporal
sequences and predicted the next expected output. The
deviation of the actual sensor data and the predicted data
using CUSUM (Cumulative Sum Control Chart) is then used
to detect attacks. However, they were only able to apply
their technique on phase 1 of the SWaT dataset [17] we use
for the evaluation of ABATe.

Several works in the power systems CPS use state es-
timation [14], [45] to detect attacks. DAD from Adepu et
al. [1] is another distributed attack detection technique for
a water treatment plant using invariants. Invariants are
mathematical relationships between different properties in
the system. From a CPS design, DAD extracts invariants
using state entanglement, component model, state condition
graphs, and state bounds. These invariants are later used to
detect attacks. DAD assumes CPS as a white box system
where design, environment variables, and their dependen-
cies are easily available. Moreover, the reported invariants
were extracted manually in their study. Mitchell et al. [41]
introduced another technique to transform behavior rules
to state machines for safety-critical systems like medical
cyber-physical systems. A key insight from their work is
that the accuracy of their technique is dependent on the
completeness of the behavior rule set.

Many of these existing techniques use statistical prop-
erties of sensor values to detect anomalies. However, they
fail to capture domain behaviors specific to the current
domain and current deployment environment. In the case
of cyber-physical systems, the same CPS deployed in dif-
ferent environment settings may behave differently. Hence,
it is important to devise techniques specific to the current
domain. However, the performance of techniques entirely
based on the abstraction of manually crafted behaviors
is directly dependent on the completeness of the domain
behaviors [41]. For large industrial cyber-physical systems,
creating such a complete set is an arduous task and error-
prone.

Our technique ABATe can automatically learn general
constrained behavior of CPS environments. It is capable of
abstracting the domain’s normal behavior in the form of
vectors using its operational data and makes ABATe suitable
for several CPS domains and deployment environments.
Unlike many techniques in the literature which are eval-
uated against synthetic dataset’s, we use two real-world
datasets to evaluate ABATe. As noted by Goh et al. [18],
many of the existing techniques are signature based where
anomalous behaviors are explicitly mentioned. Hence, a
direct comparison of such techniques to ours is difficult.
In section 6, we evaluate our technique using a standard
publicly available dataset SWaT and discuss the semantics
on how our technique detects these anomalies using another
automotive dataset. The section also compares results from
recent research that used SWaT dataset like CNN [28],
DNN [23], GAN [34], etc. It should be noted that a direct
comparison to some other recent unsupervised techniques
using the same dataset is not viable because some of
them [18] are restricted to specific phases of the SWaT
dataset, or they use domain specific characteristics [1] in
their techniques.

3 ATTACK MODEL

Several research [26] focus on detecting attacks and intru-
sions to the network infrastructure. CPS also share similar
network architectures. Hence, in this paper we focus on
those attacks that come past these network defense infras-
tructures and affects their physical state. Our system should
be used in conjunction with existing network defense archi-
tectures to protect the CPS infrastructure against common
network attacks like eavesdropping, unauthorized access,
etc.

Our proposed technique tries to detect anomalies based
on the data used for training. Not all attacks detected by our
technique are attacks. Sometimes, anomalies can be valid
but rarely occurring events. In cases where the working
conditions of the CPS significantly changes, our technique
can be learned additively to accommodate them. Moreover,
we assume that we have adequate normal data that is
representative of the actual working behavior of a cyber-
physical system.

4 METHODOLOGY

The operations of a cyber-physical system are constrained
by the laws of physics and implicit domain behaviors.
The dependencies arising from such constraints are well
represented in their normal working behavior. In a rule-
based system, an expert will list out all these dependencies
for detecting various anomalous behaviors. It is tedious
and error-prone in complex systems with tens or hundreds
of different components. In this paper, we develop ABATe
which learns these dependencies from the normal opera-
tional data and use them to detect anomalous behaviors.
Our technique works in two phases; an off-line “Learning
phase” and an on-line “Monitoring phase” as shown in
Figure 1. The off-line Learning phase abstracts a perceived
normal domain-model into context vectors from the existing
data. In the on-line Monitoring phase, the live data from all
the components is processed and is checked for anomalies
using the generated model.

4.1 Off-line Learning Phase

The off-line phase in ABATe ingests the data from a cyber-
physical system and abstracts its normal operational behav-
ior into context vectors. This phase constitutes 2 major tasks;
state vector generation and context vector generation.

4.1.1 State Vector Generation

Let X (Eq:1) be the set of n components in a CPS and
each z; € X takes value v;; at time {. v;; can either be
continuous or discrete. The raw state of a cyber-physical
system at time ¢, r¥; (Eq:2), is defined as a vector of the
aggregation of values from all its individual components at
that time instant. Let RV,., (Eq: 3) be the input sequence of
raw vectors. Each r@; is a point in an n-dimensional vector
space with each v; ; as a specific dimension. The potential
continuous nature of the sensor values causes the state space
to have an infinite number of states.

X:{xlax%“' axn} (1)

T = <Ul,t,712,t, <oy Uit "'avn,t>)

s Ly oen

Offline Phase

1: Preprocessing

l Preprocessed vectors

2: Event Model Generation
(state similarity measure)

l

3: Context Model Generation
(Learning rate, context vector length)

Context Model Event Model
Online Phase
4: Online Context Vector Generation
l ABATe Score
5: Anomaly Detection >

Fig. 1: ABATe Implementation Pipeline

RVieq = 101,702, ooy 7045 00y 704
where, 3)
s : raw vector at time t

We perform two optimizations on the normal opera-
tional data to generate a state vector set S, a subset of this
vector space. First, we assume that “given a long enough
duration of time, we can capture most normal behaviors
in a cyber-physical system”. It flows from the insight that
CPS have constrained behavior. Hence, we add only those
r7:’s which we have observed during the normal operation
of the CPS. Second, we aggregate those states which are
very close to each other in the state vector space and add
only their centroids to S because such states often exhibit
similar behaviors. In ABATe, we find the Euclidean distance
between two 77;’s and fold them as the same state, if the
distance falls below an empirically found state transition
threshold, 74, Each state in S now corresponds to a legal
state in the respective CPS.

We label each state s; € S randomly and generate one-
hot vectors [46] for each of them. In one-hot vectors, we
generate d separate variables for d distinct observations
of a variable. The generated hot vector set .S has a h;
corresponding to each s; € S. We generate the hot vectors
to make sure that each ho; is independent of each other
and assume no relationship between each other based on
the raw sensor values. ABATe will now automatically learn
the complex interdependencies from the normal operational
data and generate context vectors in the Context Vector
Generation task.

4.1.2 Context Vector Generation

In this task, ABATe learns context vectors that abstract the
perceived normal behavior of the CPS for each state hv; €
HS. To learn context vectors, ABATe finds an embedding for

4

each state hu, by capturing their distributional behavior in
the normal operational data. In mathematics, “an embedding
of one topological space X in another space Y is nothing more
than a homeomorphism of X onto a subspace of Y. The domain X
is called the embedded space and the target Y is called the ambient
space” [15]. Neural networks are successfully used to gen-
erate such embeddings in domains like Natural Language
Processing(NLP) [38] that learns the distributional behavior
of words in natural language text. In a similar way, ABATe
learns the embeddings for each state vector, h?}i € HS using
neural networks and CPS normal data. These embeddings
encapsulate the distributional behavior and encode the con-
textual information with them. For example, let ¢;,¢; be
the learned embeddings corresponding to hvs, hv] Then,
the vector similarity between ¢; & ¢; will be high if hvz
h%j has the same context (occur together frequently in the
normal operational data). Conversely, the vector similarity
will be minimum, if they never occur together. In the on-line
monitoring phase, we utilize this property to detect context
anomalies.

The neural network which learns the embedding in
ABATe determines a function which converts h?},» into ¢;
as presented in Eq: 4 and Eq: 5. The network has an
input layer with size equal to the number of states in H.S
(HSsize =| HS |). They are connected to a fully-connected
neural layer with input size as HS,;.. and output size as
the context vector length, Cj;.. (a hyper-parameter). There
will be no activation function for this layer and its output is
directly used as context vectors. The final layer is a soft-max
activation applied on a fully connected neural layer with
input size as the context vector length (Cj;,.) and output
size as H Sj;,.. The soft-max activation function implements
the soft-max function [6] as described in equation 5. Once
training is done, the first layer will act as a lookup function
and convert the state vector s; to context vector ¢;. The ¢;
is a condensed representation of hv; with encoded context
or their distribution in the normal data. In addition, it also
learns implicit relationships between states based on their
contexts.

Input Layer:

¢ = f(hv)

flz)=Wz+B

where, @)
hv;: Hot Vector corresponding to s;

W : Matrix with size HSg;2e X Cyize
B: vector with size Cl;,e
¢;: Context Vector corresponding to s;

Output Layer:

Output = SoftmazxAct(f'(c;))

flx)=W'z+ DB

SoftmazAct(x) =

where,

¢; : Context Vector corresponding to s;
W : Matrix with size C;.e X HSg; e
B: vector with size HSg; ..

T e 5)

To train the network, we introduce a new variable chv;
corresponding to each hw;. Each chv; is a hot vector and
assumes no relationship between any existing hv; and is

used only for training the neural network. We also introduce
a context window of size cw_size while training. It defines
the influence of a state to its preceding states. For example,
if cw_size = 2, it implies that the current state has some
dependency on the previous 2 states. We show that tuning
this variable adds robustness to ABATe.

The training set for the neural network, T'rainSet, is
a set of tuples in the format (input, output). We generate
these tuples from the sequence of normal operational data
of a cyber-physical system. Let hvl,hvg, .. hvz,h’ulﬂ,
be a sequence which appears in the normal operation
of the CPS. Now for each hv;, we generate tuples
(hvz k,chvsz cw_size For examfle we generate tuples
(hvi_a, chu;), <h_{)1 1, chv;) and (hvg, chv;) to TrainSet if
cw_size = 2. On training, the network will maximize the
log probability of chv;, given hu;_ ,VE=¢w-siz¢_The intuition
is that the neural network will bring all the context vectors
hw; which appear inside the context_window closer, while
it pushes apart those vectors which do not appear in the
context window. Such behavior helps encode the normal
working behavior of the cyber-physical system under con-
sideration into context vectors. After training, a context
vector ¢; will be generated for each hv; € HS. These off-
line stage operations are presented in algorithm 1.

Algorithm 1 Off-line Learning Phase

Input:
R‘/seq = ’I"?Jl, 7’7127 ceey
Output:
StateMdl: Raw vector to State vector mapping
CtxMdl: State vector to Context vector mapping

7"7)1‘7

1: procedure LEARNING PHASE(RS)
State Vector Generation

2: S « FoldSimilarVectorsToOne(RVseq, Tsim)
HS « GenerateHotVector(S)

Context Vector Generation
TrainSet < [|
for each window 70;_¢yy_size — 70; in RV;eq do

Append <h2}i_k, ti;viWﬁigw—Size to TrainSet

CtxMdl < TrainContextVectors(HS, TrainSet)
¢ < GetContextVector(CtzMdl, s;)

@

4.2 On-line Monitoring Phase

In the off-line phase, we created context vectors ¢; corre-
sponding to all state hot vectors hv; € HS and encapsulated
the normal behavior of the cyber-physical system. The on-
line monitoring phase aggregates live inputs from different
components in the system and generates an ABAT escore
that helps detect abnormal or anomalous states in the sys-
tem. Two kinds of anomalies are detected in this phase;
point anomalies based on the hot-vector set H'S and context
anomalies based on context vector set C'S.

The first step in this phase is the aggregatlon and gener-
ation of raw vectors, Input RVye, = 101, 1y, 15, ..y 10y, ...
using inputs from different components in the CPS, where
70} is the input vector at time . As described in section 4.1.1,
each 10, will be a point the same n-dimensional space. We
choose a state 5, € S corresponding to each 79, such that the

5

Euclidean distance between 3; and 77} is minimum. Now
a sequence of states InputStateseq = §1,55,...5}, ... will
be generated where 3, is the chosen state corresponding
to each 77}. Let EU, be the Euclidean distance between a
raw vector 70} and 77; corresponding to .. In all normal
cases, EU; should be a very small value because we assume
that in a constrained system like a CPS, we have already
observed most of the normal states. A small value for
EU, indicates an already observed state and higher values
indicate unobserved states. Hence this value is an indicator
for detecting point anomalies.

However, many anomalies that are contextual anomalies
cannot be detected using this score. Contextual anomalies
are those in which two already observed, but out of con-
text states come together. As described in section 4.1.2,
the context vectors encapsulate the context of each vector
and hence they are used to detect such anomalies. Let
InputCVseq = &, G, ...C,, ... be the context vector sequence
corresponding to InputStates.q, where ¢, is the context
vector corresponding to state 5. In ABATe, we use the cosine
distance (Eqn: 6) of the current context vector ¢, and the
previous context vector ¢,_; to detect context anomalies and
is denoted by C'ontextSim;. The ContextSim; determines
the appropriateness of a vector to its context or nearby
vectors. A lower score implies that the current vector is
very appropriate in the existing context as observed from
the perceived normal data used for generating the context
vectors and vice versa.

It can be observed that EU; and ContextSim, are re-
lated. When the value of EU, is high, the confidence in that
state is very low and the corresponding ContextSim, score
also should be considered with lower confidence. Hence to
generate a combined score to detect point anomalies and
context anomalies, we use a combined score as described in
Eqn: 7. The first component in the ABAT €50 corresponds
to the dissimilarity of current raw vector 77} to the known
states. Since we use the normalized values in the raw
vectors, the maximum distance possible between any two
vectors in the vector space is v/n, where n is the number
of components in the CPS. We take the exponential because
we need to magnify the fact that a higher value of EU;
increases the likelihood of point and contextual anomalies.
The second component indicates the contextual appropriate-
ness of the new state. A low value for ABAT e, indicates
that the current state is very similar to a state we have
already observed and that state is contextually appropriate.
On the other hand, a high value can indicate 2 situations; an
observed state with low contextual appropriateness or an
unobserved state, both of which indicates a deviation from
the perceived normal. Hence we use this ABAT 0 for
discerning anomalies by choosing an empirically estimated
detection threshold Tunomaty.- The operations of this stage
are described in algorithm 2.

é - ¢
. t " Ci—1
ContextSimy = 1 — g
1112 I
where,
&, C,_q: Context Vectors corresponding to S, and §,_,

(6)

ABATegeore = ¢ BV « ContextSim,
where,
ContextSim : Contextual similarity from Eqn: 6
EU; : Euclidean distance of 70, to 5,

@)

Algorithm 2 On-line Monitoring Phase

Input: L .
InputRVyeq <— 1m0}, 705, ..., TV], ...
StateMdl: Raw vector to State vector mapping
CtxMadl: State vector to Context vector mapping
Output:
ABAT@SCOTe

1: procedure MONITORINGPHASE(InputRV)

2 for each v} € InputRV;e, do

3 8, EU, getSim(StateMdl, rs})

4: ContextSim; <Eqn 6(CtxMdl, 5;,8,_4)

5: ABATe€score <Eqn 7(n, EU;, ContextSim;)
6: if ABAT Escore > Tanomaly then

7 report Anomaly

8 else

9 report Normal

5 ABATE IMPLEMENTATION

Our implementation of ABATe consists of a pipeline for
ingesting input data, generating corresponding context vec-
tors, and detecting on-line anomalies as shown in Figure 1.
It has five stages in total which include the off-line and on-
line phases as enumerated below.

1) Preprocessing Stage: The input from sensors come
in different formats (in cars, we collected in JSON
format, while the SWaT dataset is in csv format).
They are converted to a common vector format after
scaling the sensor values into a 0 — 1 scale in this
stage.

2) State Model Generation Stage: The second stage
corresponds to the generation of a state model by
aggregating states which have similar properties. In
ABATe, we consider each raw vector as a point in
an n-dimensional space and use Euclidean distances
between these two vectors for state aggregation.
Two raw vectors are aggregated if the Euclidean dis-
tance between them falls below a certain similarity
threshold, 7siy, (a hyper-parameter). Once similar
states are aggregated, they are labeled randomly.

3) Context Model Generation Stage: The context vec-
tors are generated using the neural network as
described in section 4.1.2. We implemented the neu-
ral network using Tensorflow as the backend and
trained the network using cross-entropy loss func-
tion with Adams optimizer. The hyperparameters
used in this step are the learning rate and context
vector length.

4) On-line Context Vector Generation Stage: This
stage takes context model, state model, and live
inputs from sensors as input. After preprocessing,

6

the live sensor inputs are used to generate a test
vector 70;. Then a state label 5, € S is determined
from the event model by choosing the state having
the closest Euclidean distance from 79;. The vector
¢, corresponding to S} is also retrieved from the
context model. The process is repeated for all the
live inputs to create a stream of state vectors and
context vectors. This stream of state vectors, context
vectors, and Euclidean distances (EU;) are input to
the Anomaly Detection stage.

5) Anomaly Detection Stage: Both point anomalies

and context anomalies are detected in this phase.
We generate an ABATe;cor. for this purpose. The
ContextSim, is generated from context vectors us-
ing Eqn: 6 and it is then used in Eqn: 7 to gen-
erate the stream of ABATe,core’s. A high value
for ABATe.ore denotes a potential deviation from
the perceived normal while a lower score denotes
normal operations.
Several single state-based or window-based tech-
niques can be used to determine anomalies. We
explored different techniques like window-average,
window-median, percent change, and so forth on
the sequence of ABAT escore’s. Their evaluation can
be found in section 6. The simple strategy is to
use a hyper-parameter Tonomaly- If the calculated
ABATegscore is above this threshold, an anomaly
is detected while any value below the score will
be deemed as normal. The value of T4pnomaly Needs
to be empirically estimated considering how critical
the CPS setup is. If the CPS is critical, a conservative
low value of T4p0maiy should be chosen while non-
critical systems can afford higher thresholds. We
found that the average based techniques yielded
best performance.

6 EVALUATION

ABATe abstracts the normal behavior of any cyber-physical
system in the form of context vectors and use it for detecting
deviations from normal that include attacks. In this section,
we evaluate various capabilities of ABATe. Detecting attacks
on real-world datasets, and its ability to abstract domain
behaviors are two critical features of ABATe. We evaluate
the performance of ABATe using 2 real-world datasets;
SWaT [17] (Sewage Water Treatment) dataset and an auto-
motive dataset. Detecting well-annotated attacks from the
SWaT dataset demonstrates the ability of ABATe to detect
attacks in real-world systems. ABATe’s multi-domain adapt-
ability and ability to abstract context are demonstrated using
a new automotive dataset which features almost 25 hours
(or 1000 miles) of real driving data from a modern car.
Finally, we demonstrate the usefulness of ABATe’s context
window using a synthetic dataset. Our evaluations show
that ABATe copes well with real-world cyber-physical sys-
tems to detect anomalies.

6.1 SWaT dataset Evaluation

The Secure Water Treatment (SWaT) dataset from Goh et
al. [17] is collected from a fully operational scaled down

sewage water treatment plant. The six stages of the plant
include

1) “RAW water Supply and storage” stage

2) “Pre-treatment” stage

3) “Ultrafiltration and backwash” stage

4) “De-Chlorination” stage

5) “Reverse Osmosis (RO)” stage

6) “RO Permeate Transfer, UF Backwash and Clean-

ing” stage.

The complete dataset contains readings from 51 different
components some of which are discrete while some others
are continuous in nature. The different components; sen-
sors, actuators, and PLC’s (Programmable Logic Control),
communicate via wired or wireless interfaces and data is
collected from all the 51 components every second.

The dataset has data from the plant for 11 days in total
with seven days of CPS normal working behavior. The plant
was put into various single-stage and multi-stage attacks
for the remaining 4 days. A total of 36 different attacks were
performed during this time. In many of the attacks, attackers
manipulate the data received to other components which
force the receiving component to behave erroneously.

The dataset contains 4 kinds of attacks. The first kind is
Single Stage Single Point (SSSP) where the attack focuses on
a single point in the same stage. For example, an attack is to
make the PLC controlling a valve to believe that the water
level in a tank is low. As a result, it will not automatically
open and cause overflowing. The second type is Single Stage
Multi Point where multiple components are involved in the
attack. A sample attack example from the dataset is when
two pumps which pump out water from a storage in the
same stage are attacked together, eventually resulting in
water overflow. Multi-Stage Single Point and Multi-Stage
Multi-Point are the similar counterparts in which multiple
stages are involved. The normal working data and the
attacks in the attack datasets are properly annotated. Apart
from data from its components, the dataset also contains
network data while the plant is running. In this work,
however, we use the measurements from its components
only because, as mentioned in our attack model, we try to
detect attacks from the physical characteristics of a smart
cyber-physical system irrespective of the underlying net-
work architectures or protocols.

6.1.1 Test Setup

The main objective of evaluations with the SWaT dataset
is to determine the ability of ABATe to detect attacks in
real-world cyber-physical systems. We also use this dataset
to analyze the sensitivity of similarity threshold parameter
on attack detection. As discussed in section 5, we can use
several techniques to detect anomalies using the sequence
of generated ABAT e cor.’s. We analyze the performance of
these metrics also using the SWaT dataset. This dataset has
7 days of data about its normal operation, and then 4 days
of data when attacks were performed.

The first step in ABATe is to generate a perceived normal
behavioral model. As training data, we used the data from
the first 7 days in the dataset (off-line Learning phase).
The values from different sensors had different ranges.
For example, some of them are binary (eg. valve status;

7

1 ® Gaussian Mean
® Mean

= Median

= % Change

® Percentile

® Raw Score

Fig. 2: ABATe SWaT data AUC Plots

Open/Closed) while some others had continuous values
(eg. Water tank level). On preprocessing, we normalized
the values from all the components to a range of 0.0 to
1.0. To study the effect of state similarity threshold hyper-
parameter, we generated models using 3 different values
for this parameter; 10%, 1%, and 0.7%. This threshold
determines when should two states to be folded into a
single state. Le. if the state similarity threshold is 0.7%,
two states are folded to a single state when the Euclidean
distance between the two points is less than 0.7% of the
maximum value. An event model and a context model are
generated using each of these values. The learning rate
hyper-parameter in the context generation phase as 0.0001
and context vector length is fixed at 100.

After the offline-learning phase, we generated 3 sets
of event models and context models. The well-annotated
attack dataset (which is not used during the offline phase)
comprising 36 different attacks performed over 4 days is
then used to evaluate ABATe. In the online phase, the se-
quences of ABATe states and ABAT esq0rcs Were generated
as described in section 5. Different techniques applied to the
generated sequence of ABAT escores to detect the presence
of different attacks include gaussian-average, window-median,
percentile, and percentage change.

6.1.2 Results

We now present our results and compare them with other
approaches published in the literature. The most common
metric used to measure the performance of an anomaly
detection system is the ROC (Receiver Operating Character-
istic) curve that plots the sensitivity (True positive rate) on
y-axis against specificity (False positive rate) on x-axis. By
true positives, we mean attacks getting detected as attacks
and true negatives are normal points detected as normal.
Each point in the graph will be the FPR against TPR for
a specific threshold. A similar measure is the AUC (Area
Under the Curve) of the ROC curve. The value of AUROC
will always be below 1.0 and a higher value means better
TPR’s at lower FPR’s.

We used 2 different ways to calculate true positives and
false negatives that are used to calculate precision, recall,

o 14
=) © —

True Positive Rate
N o o o
- wul (=2} ~

e
w

— Window: 2 Gaussian Mean

o
N

— Window: 3 Gaussian Mean
— Window: 1 Gaussian Mean

o
=

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False Positive Rate

Fig. 3: ABATe SWaT data ROC Plots: Window Comparison
using Gaussian Mean Window

—

N o o o o o
S 3 =2 N @ &)

True Positive Rate

e
w

— Gaussian Mean Thr: 0.7
— Gaussian Mean Thr: 10
~— Gaussian Mean Thr: 1.0

o
N

o
=

0 01 02 03 04 05 06 07 08 09 1
False Positive Rate

Fig. 4: ABATe SWaT data ROC Plots: State Transition Thresh-
old Comparison at Window size =1

and f1 score values. In the first method (attack-window
based), we detect the attack as a whole and increment true
positives or false negatives by the length of the current
attack window. That is, if the current attack has a sequence
of n vectors, and if the anomaly score goes above the thresh-
old for any of these vectors, we increment true positives
by n. Otherwise, we increment false negatives by n. For
ABATe, this is a better measurement because when an attack
happens the system may shift from state s; to another valid
but contextually dissimilar state s;. ABATe will detect this
as an anomaly. However, some further states after s; may
be contextually similar to s; and may be reported as false
negatives although the attack is already detected. In the
alternative method (log-entry based), we find an anomaly
score for every vector in the dataset and classify it as a
true positive, true negative, false positive, or false negative
according to the labels from the dataset. We report the
comparison measures for both these methods and compare
it against other techniques in the literature. ROC curves
reported used attack-window based technique for graph
generation.

14
© —

True Positive Rate
N o o o o
- w (=2} ~ [=-]

e
w

— % Change
— Raw Score

o
N

~— Gaussian Mean

o
=

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False Positive Rate

Fig. 5: ABATe SWaT data ROC Plots: Promising Technique
ROC Curve Comparison

First, we study the effects of moving-window based
approaches on the stream of ABATe,cor.'s generated to
identify anomalies. We experimented with different mov-
ing window measures of mean, median, percentile, and
gaussian mean along with raw ABATe,cor.'s. One other
measurement with which we experimented is using the
percent change of ABAT e for anomaly detection (Zero
values for the score results in infinity values for percentage
change. Hence percent change on the additive inverse of
ABATegcore values is used for detecting anomalies). Fig-
ure 2 depicts the clustered bar graph of AUROC values for
these different metrics. On the x-axis of this graph, each
cluster corresponds to a specific state similarity threshold
and each bar in the cluster corresponds to the technique
applied to aggregate ABAT esq0r values. The window size
used for the window-based techniques were fixed at 60.

Figure 2 shows that the best performing metric over
ABATeg0rc is the gaussian average. While median based
techniques performed poorly, techniques like percentile, and
percent change have good performances. To examine the
differences more closely, we plotted the ROC curves for
the most promising techniques, namely gaussian mean,
percentile, and percent change in Figure 5. From this plot,
we see that the gaussian mean technique performs slightly
better than others where 32 attacks were detected at around
1% false positive rate.

Next, we study the effect of state transition threshold
on the attack detection performance of ABATe using this
dataset. In general, the AUC clustered plot in Figure 2 shows
that maximum performance is achieved at 1% state transi-
tion threshold. Figure 4 plots the ROC curves on the SWaT
attack dataset, using gaussian mean technique with different
state transition thresholds (1.0%, 10.0%, and 0.7%). Lower
state transition thresholds imply more number of unique
states in the system but it is not translating to better results.
For example, 32 attacks were detected at around 1% false
positive rate for 1% state transition threshold while only 31
attacks were detected at the same false positive rate with
0.7% state transition threshold. There are two major reasons
for this behavior. Firstly, when state transition thresholds

come down, many actually similar states will get split into
separate states. Secondly, some of the newly created states
will occur very scarcely in the dataset. As a result, ABATe
learns only very minimum information about them from
the dataset. A very high value for state transition threshold
is expected to perform poorly because it compresses many
semantically different states as a single state. This evaluation
shows that choosing a proper state transition threshold
hyper-parameter can indeed result in better performance
of ABATe. Finally, Figure 3 plots the performance of ABATe
with context windows 1, 2, and 3. In this case, we can see
that all the three showed similar performance.

Several machine learning techniques like CNN [28],
DNN [23], and GAN [34] have been used in recently pub-
lished papers to detect attacks from the SWaT dataset. As
we detail next, in comparison to these techniques, ABATe
achieved better results.

Technique Precision | Recall | F1 Score
CNN [28] (8 layers) N/A N/A 0.861
DNN [23] 0.98 0.68 0.80
One Class SVM [23] 0.92 0.69 0.79
PCA [34] 0.2492 0.2163 | 0.23
KNN [34] 0.0783 0.0783 | 0.08
FB [34] 0.1017 0.1017 | 0.1
AE [34] 0.7263 0.5263 | 0.61
TABOR [35] 0.86 0.788 | 0.82
MADGAN [34] 0.9897 0.6374 | 0.77
ABATEgaussian

(log-entry based) 0.95 0.63 0.76
ABATegaussian

(attack-window based) 0.95 0.95 0.95

TABLE 1: Comparison of Techniques against SWaT dataset

Precision, recall, F1 score values from different tech-
niques are reported in table 1. It can be seen that ABATe
has one of the top reported F1 scores. The attack-window
based measurements for ABATe has an F1 score of 0.95 with
high values for both precision and recall. However, a note of
caution. As Inoue et al. [23] suggest, the reported numbers
for different techniques cannot always be directly compared.
For instance, SVM based techniques use a window approach
unlike DNN’s. This argument is applicable while comparing
other techniques also. Moreover, F1 score alone should not
be used to compare performances because at the reported F1
scores, many techniques have low values for Recall which
implies that fewer attacks are correctly identified. ABATe
shows high numbers for precision and recall! Apart from
achieving higher recall numbers, a factor that distinguishes
ABATe from other techniques that use neural networks is
its simple network used for training. This means lower
training time compared to other DeepNN based techniques
described in literature. Moreover, once trained, we do not
need to run neural networks during online detection phase.
Instead, we can store the context vectors as efficient lookup
tables. This will remove the requirement for specialized
circuitry in the CPS environment.

o
o

o
~

True Positive Rate

02|

0.0L!
0.0 0.2

0.4 0.6 0.8 1.0
False Positive Rate

Fig. 6: ABATe Car data ROC curve

6.2 Automotive dataset Evaluation

Evaluations with SWaT dataset demonstrated the effective-
ness of ABATe in detecting real attacks on cyber-physical
systems. The ability of ABATe to detect attacks is because
of its capability to abstract the CPS context from various
component measurements. We demonstrate this capability
using a new automotive dataset featuring 25 hours of real
driving data. Besides it also demonstrates the multi-domain
adaptability of ABATe.

A modern car with advanced systems like lane-
departure warning system, adaptive cruise controls, and
Anti-lock Braking System is a typical cyber-physical sys-
tem with sensors, control systems, and actuators. Recent
research enlists a growing number of attacks against cars.
They are partly attributed to the fact that cars are becoming
intelligent and many driving decisions are now transferred
from drivers to control systems. Research focusing on au-
tonomous driving will only boost these attack numbers. As
described in previous research [42], a core issue with the
automotive domain is their requirement to support legacy
systems (owing to economic and practical limitations). For
example, in some cars, hi-tech features are built on top
of comparatively older CAN bus technology which lacks
even basic authentication and authorization techniques. Re-
searchers utilized this vulnerability to demonstrate many
attacks.

6.2.1 Data Collection

Since existing dataset from vehicles lack enough sensor data
or are focused for image processing tasks, we collected a rich
dataset with data from 13 sensors, as described in table 2
from a car.

NSOk LN R

. accelerator_pedal_position
. door_status

. headlamp_status

. ignition_status

. steering_wheel_angle

. transmission_gear_position
. windshield_wiper_status

8. brake_pedal_status

9. engine_speed

10. high_beam_status

11. parking_brake_status
12. torque_at_transmission
13. vehicle_speed

TABLE 2: Components in the Automotive Dataset

Several techniques are available to collect data from
cars. It includes using chipsets like ELM 327, STN1100,
Arduino with CAN-BUS shield, etc. which captures raw
CAN bus messages [42] and tools like OpenXC from Ford,
Octane CAN bus sniffer [7], Komodo CAN bus sniffer?,
Vehicle Spy?, SavvyCAN*, 0200 Data logger®, etc. for their
collection and analysis. Each tool has their own advantages.
For example, Vehicle Spy helps us to view all the messages
in different CAN buses simultaneously. It also allows cap-
turing and replaying different captured sessions on to the
CAN bus. But it still shows raw CAN messages with raw
CAN bus ID’s which doesn’t give any clear intuition on the
semantics of different messages.

We used the OpenXC platform® for data collection from
cars. It allows developers to unlock the rich vehicular data
that can be easily exported to standard formats like JSON.
OpenXC supports different hardware, that are to be con-
nected to the OBD-II port of the vehicle, to tap data flowing
through CAN bus. Some of the supported hardware include
Ford Reference VI, CrossChasm C5 devices, Cross Chasm
C5 BT, OpenChasm C5 cellular, CrossChasm C5 BLE, DIY
chipKIT-based VI etc. In our setup, we chose to use Ford
Reference VI as hardware and Android API as software
for OpenXC. After choosing the vehicle specific firmware
for Reference VI, a nexus 7 tablet is used to aggregate
the JSON data. The collected data is a stream of discrete
JSON messages. Each JSON will carry information from a
specific sensor available at that time. Figure 7 shows the
structure of the actual data from the Nexus 7 device. After
necessary cleaning, we generated raw vectors that represent
the individual states of all sensors at that time instant.

,
{"value":
ke_status

Fig. 7: Automotive data from OpenXC VI

We collected about 25 hours of real driving data with a
total of close to 1000 miles of driving. We made sure that
the dataset contains data from different driving conditions
which include city drives, highway drives, short drives,
hill road drives, and short shopping drives as described in
table 3.

6.2.2 Test Setup

The main objective of using this automotive dataset with
ABATe is to study our technique’s capability to abstract
context from real-world cyber-physical system components.
Also, the study demonstrates its ability to adapt to varied

2. https:/ /www.totalphase.com/products/komodo-canduo/
3. http://store.intrepidcs.com/Vehicle-Spy-p/vspy-3-ent.htm
4. http:/ /www.savvycan.com/

5. https:/ /www.vanheusden.com/0200/

6. http:/ /openxcplatform.com/

10

Drive Condition | Miles Driven | Time Duration(hrs)
Hill Drive 268.51 5.51
Hiway Drive 609.06 14.24
Short/City Drive 109.11 5.67
Total 986.68 25.42

TABLE 3: Automotive Dataset Characterization

cyber-physical system settings. To evaluate ABATe, we pre-
processed the real driving data and converted the collected
JSON to raw vectors, rv;. We used the state similarity
threshold as 5% and we were able to generate 365 unique
states. We used the ABATe implementation pipeline with
the learning rate as 0.0001, context vector length as 100, and
used Adams optimizer for training the neural network to
generate the context model.

6.2.3 Context Abstraction Evaluation

The ability of ABATe to detect real-world attacks is demon-
strated using the SWaT dataset. In order to understand how
the generated ABATesq0re can identify deviations from
perceived normal using observed states, it is critical to un-
derstand what information is captured in the context vectors
and their semantics. In our evaluations with the automotive
dataset, we study, specifically, the capability of ABATe to
abstract contextual information into context vectors. We first
generated the event model and context model using the
hyper-parameters described in the test setup. On putting
the generated model against the existing training dataset,
the false positive was below 2%.

To test ABATe’s ability to abstract context, we mapped
the semantics of event sequences to context vectors in
our experiments with the automotive dataset. In our first
experiment, we chose 2 sets of logically dissimilar states.
The first set, Sjow_speed consisted of all those states which
have speed in the range of 0 to 10 miles per hour and the
second set, Spigh_speed cOmMprises the set of all states with
speeds above 60 miles per hour. Various laws of physics
constraints the speed behavior and will make sure any two
states (5; € Siow_speed aNd S € Shigh_speed), cannot occur in
the same context. We evaluate if ABATe can indeed capture
this knowledge in the context vectors using the training
data. Since we manually handpicked these states, we expect
the similarity of the context vectors, ContextSim to be very
low.

On running this experiment using the current setup, we
found 78 instances in the set Sjoy_speeq and 134 instances
in set Shigh_speea.- Out of the 10452 combinations in the
set Siow_speed X Shigh_speed, 98.9% of combinations had a
ContextSim score of larger than 0.8 where 2.0 is the max-
imum possible score and none of the combinations had a
ContextSim score of less than 0.6. This shows that ABATe
learned that the states from Sjgw_speca and Shigh_speea are
indeed contextually dissimilar.

Next experiment is to find the compliment of this test,
that is picking up 2 states from the same set (Shigh_speed X
Shigh_speed) and finding their anomaly score. However, only
1.6% had a ContextSim score less than 0.1. This implies
that only 1.6% of the instances are highly similar. The state
pair (s;, s;) with maximum dissimilar states (pair with max-

imum ContextSim score) is described in table 4. It indeed
shows that ABATe can discern the context because even
with a high similarity in the vehicle_speed, the two states
were deemed dissimilar because the steering_wheel_angle
of these two states are pointing to different directions
(negative value implies steering turned towards left and
positive value implies steering turned towards right) and
the transmission_gear_position is also different.

Component S; 55
vehicle_speed 72.839996 | 70.959999
door_status 0.0 0.0
accelerator_pedal_position | 35.200001 0.0
ignition_status 2.0 2.0
torque_at_transmission 251.0 75.0
steering_wheel_angle 0.400024 | -1.599976
parking_brake_status 0.0 0.0
high beam_status 0.0 0.0
brake_pedal_status 0.0 1.0
headlamp_status 1.0 1.0
windshield_wiper_status 1.0 0.0
engine_speed 2738.0 1386.0
transmission_gear_position 4.0 6.0

TABLE 4: Comparing s; € Shigh_speed and s; € Shigh_speed
with large ABAT escore

We performed one more experiment to testify the
above capability. In this experiment, we aggregated
two sets Sgeqr—1 Which is the set of all states where
transmission_gear_position is 1 and Sgeqr—¢ which is the
set of all states with transmission_gear_position is 6. Even
though a change from gear 1 to gear 6 technically possible,
while driving a car it is against the domain etiquette. In
this experiment, Sgeqr—1 had 129 states and Sgeqr—6 had
25 states. Among the unique 3225 state pairs, 99% have a
ContextSim greater than 0.8 and none of the state pairs
scored less than 0.7.

It should be noted that we use hot vectors before training
the context model which assume no relationships between
any 2 states. Thus, these experiments prove that ABATe
captures even complex contextual information involving
multiple sensors into context vectors using perceived nor-
mal data.

6.2.4 Simulated Attack Detection

In the SWaT dataset discussed earlier, real attacks were con-
ducted against the experimental setup of the sewage plant.
However, in this dataset, real attacks cannot be mounted —
the car cannot be driven in a way that would simulate an
attack. Considering the legality and danger of exposing a
real car to different attack scenarios, we simulated different
attack scenarios by injecting false data into the real data
collected from cars. In total, we simulated 11 different
attacks. Broadly, we simulated two classes of attacks. In the
first type, data from only one sensor is manipulated creating
sudden spikes in speed, RPM, etc. It created states which
can never occur during the normal operation of a car (single
point anomalies). The next type of attacks is more complex
in which existing states, but contextually dissimilar existing
states are randomly injected into the real data stream. In

11

Attack seqs detected

Swaps per Attack seq

———-Detection @ 0.5
—-—--Detection @ 0.8

—--—- Detection @ 0.6
Detection @ 0.9

————— Detection @ 0.7

Fig. 8: ABATe Injection Detection Performance

this class of attacks, the injected states are valid states but
are out of context. Figure 6 represents the corresponding
ROC curve and yielded very good results by detecting most
of the attacks with lesser false positive rates.

Another broad category of attacks common in cyber-
physical systems is FDIA (False Data Injection Attacks) in
which false data is injected into the system randomly. Some
of the FDIAs include the use of automated tools to inject
packets into the system rather than handcrafting them. To
simulate this scenario, we first extracted a normal sequence
from the real-world car data. Then, we used normal distri-
bution to choose 2 states from the subsequence randomly
and swapped them. The swapping is done k times to gener-
ate a single attack sequence. We generated 1000 such attack
sequences and tested it against the perceived normal ABATe
model. The number of attack sequences detected is plotted
against the number of swaps in Figure 8 when the 74n0maly
is varied. Each line represents a specific value for 74nomaiy- It
is observed that when the number of swaps increase, almost
all the attacks are detected which demonstrate ABATe’s
ability to detect such attacks.

6.3 Synthetic Dataset Evaluation

Sections 6.1 and 6.2 evaluated the performance of ABATe
against two real-world datasets. In this section, we use a
synthetically generated sequence of states with well-defined
probabilities to study the intricate effects of context window
used in the offline-learning phase of ABATe.

6.3.1 Synthetic Dataset Generation

HMM'’s (Hidden Markov Models) have been used to gen-
erate state sequences with fixed probabilities [12]. For the
generation of a known sequence, we developed an HMM
with 36 states and 36 different observations corresponding
to each of these states. Each state in our state diagram will
emit a fixed observation, its state number, with maximum
probability. The state diagram for the HMM model we cre-
ated is described in figure 10. There are 6 hexagons named A
to F' and each corner corresponds to 36 different states from
0 through 35. Each edge in the state diagram corresponds to
a non-zero bi-directional state transition probability. We use

State 0 - Context 1

12

State 0 - Context4

10} o

0.8

0.6 S

0.4

0.2

0.0 . I I I | I |
0 15 20 25

State Number

Fig. 9: Comparison of State 0 Anomaly Scores with Context 1 and Context 4

1.0 ° ® e00 0900 ,000000,000 0 ,000000
L]
L] L]
L]
7 3
L]
= 2
gl .
= =
1] [
E £
5 g
5 04} Z
0.2+
0.0
0 5 10 15 20 25 30 35
State Number
g + Sg
S5 s, S11 S,
A B
Sy s, S10 Ss
S3 Sg
S13 «—> Sig
Su 53 523 S1a
C D
51 S14 . 52 Sa
Sis Sn
S o S30
Sz Sis5 S35 Ssy
E F
Sas Sog S34 53
Say S33

Fig. 10: Synthetic Data Generation: State Diagram

three different probabilities for this network. A, represent-
ing the probability of each state to itself, A, representing
transition probability of moving to another state in the
same hexagon and A;, representing transition probabilities
for moving from one hexagon to another if there is an
edge connecting the corner to another hexagon’s corner.
For example, So — 51,5 — 57,530 — S31 etc. have
the same probability Ag,, and S1 — Si1, 514 — Sa2 etc.
have the transition probability A,. By tweaking these three
variables we generate different sequences. If there is no edge
connecting two vertices, they have zero probabilities. For
instance S7 — S3,54 — Sag, etc. have zero chance in the
sequence. We used Matlab’s HMM tool kit to generate the
sequence from the state transition probability matrix and
emission probability matrix.

For evaluations, we generated 3 sets of sequences; se-
quence with transition probabilities A;, = Az, = Ags,

sequence with A;, greater than A, and A, and se-
quence with A, greater than Ay, and Ag;. We trained
each of these sequences of states using ABATe with window
sizes 1 & 4, and generated 6 different models. To generate
anomalous sequence, we added more edges to the existing
state transition diagram and regenerated the sequence. For
example, adding an edge from s0 — s6 and regenerating the
sequence will produce a sequence with s0 — s6 in addition
to the previous state transitions. We trained ABATe using the
synthetic sequence and used the anomalous sequences to
evaluate its performance. We were able to detect anomalous
state transitions injected with 100% accuracy (since the num-
ber of states is small and their transitions are constrained).

6.3.2 Context Window Evaluation

In this section, we study the behavior of context win-
dows in ABATe. As we are using only existing states, the
point anomaly scores are irrelevant in Eqn: 7 and only
ContextSim value need to be considered. To understand
the semantics learned by ABATe when the context window
is modified, we first calculated the ContextSim score of
each state s; against all the states in .S for models generated
with context window as 1 and 4. When the context window
is 1 only the states immediately connected using the edges
should have ContextSim score below a specific threshold.
However, when we increase the windows size more states
should come into context.

End State | Path
S1 So — S1
S4 So — S5 — S4
S5 So — Ss
S6 80%814)511%56
510 So — 81 — S2 — S10
S11 So — S1 — S11

TABLE 5: Synthetic Dataset State transition path for State sy

Figure 9 presents the C'ontextSim scores for the state s
with context windows sizes 0 and 4. From the state diagram
in Figure 10, we can see that sg is only directly connected

to s; and s5. As a result, we can see the ContextSim
scores for sy, S5, and sy are below the threshold values.
However, when the context window size is 4, many other
states became non-anomalous. This is because many other
states which are 2, 3, and 4 edges from the current state
are also added into the context as a result of increasing
the context window size. For example, the states which
came into context clearly are sy, s4, S5, Sg, and sq19. The
states s11, s7, s12 , and si7 also just made the list. The
list of edges which put these states into the context of s
is presented in table 5. However, some other states like sg
did not come into context even though it is 4 edges away.
We believe that this should be because of the fact that the
intermediate edges s2 and sjo in the path from so — 59
have more branching options and hence when the normal
sequence was generated the number of instances which had
that sequence is much lower compared to others. From
these experiments, we can understand how the semantics of
ABATe’s training is altered with change in context window
size.

This will be an important feature to add robustness to
our technique in the real world. There would be many
cyber-physical systems where some states would be miss-
ing from the streaming input data. Such occurrences can
happen because of inherent noise or difference in sampling
intervals during training and monitoring. It is also shown
in Figure 3 from SWaT dataset evaluation that the false
positive rates are comparable when the window sizes are
modified. Hence, slightly adjusting the window size combat
such missing states without much increasing the FPR’s.

6.4 Time Complexity

In this section, we discuss the time complexity of using
ABATe in real-world systems. Since the offline learning
phase needs to be run only less often, we focus on the online
monitoring phase here. As discussed in section 4, the first
task is the generation of raw vector, 1, which is a straight
forward function with complexity of O(1) . The next task

is to choose a h_{); corresponding to it. Time complexity for
calculating EU; and choosing one state from itis O(|S|), (| S|
is the number of states used in the model) since the number
of states is a constant during online monitoring. Hence the
overall complexity of one decision making is O(]S|) and
makes ABATe practical for real-world applications.

7 CONCLUSION & FUTURE WORK

In this paper, we propose ABATe, a technique to detect
anomalies in smart cyber-physical systems. It abstracts the
normal working behavior of a CPS using the abundantly
available operational data into context vectors, and uses
them to detect various point and context anomalies in that
domain. Some of ABATe’s features include multi-domain
adaptability, domain context abstraction, and accommoda-
tion of occasional bad data in the training operational data.
ABATe detected around 32 out of 36 attacks with a false
positive rate of 1% with SWaT dataset, which consists of
data from 51 sensors from a scaled down sewage water
treatment plant. Apart from demonstrating ABATe’s ability
to detect attacks in real-world CPS, we aggregated a dataset

13

from cars and showed ABATe’s ability to abstract context by
comparing the anomaly scores of logically indifferent states.
However, the false positive rate of 1% is not considered low
enough in some specific cases where the frequency of states
is very high. In the future, several other research in the field
of anomaly detection could be coupled with ABATe to bring
down this false positive rate. One promising addition to
ABATe would be to use other popular techniques based on k-
nearest neighbor, local out-lier factor, etc. for point anomaly
detection. Learning state boundaries is another interesting
avenue to explore.

ACKNOWLEDGMENTS

We thank IBM for their gift that partly supported this
research.

REFERENCES

[1] S. Adepu and A. Mathur. Distributed attack detection in a water
treatment plant: Method and case study. IEEE Transactions on
Dependable and Secure Computing, 2018. doi: 10.1109/TDSC.2018.
2875008.

[2] Subutai Ahmad, Alexander Lavin, Scott Purdy, and Zuha Agha.
Unsupervised real-time anomaly detection for streaming data.
Neurocomputing, 2017.

[3] Victor Berger. Anomaly detection in user behavior of websites
using Hierarchical Temporal Memories: Using Machine Learning
to detect unusual behavior from users of a web service to quickly
detect possible security hazards. Master’s thesis, KTH, School of
Computer Science and Communication (CSC)., Stockholm Swe-
den, 2017.

[4] Anatolij Bezemskij, George Loukas, Richard] Anthony, and Diane
Gan. Behaviour-based anomaly detection of cyber-physical attacks
on a robotic vehicle. In 2016 15th International Conference on
Ubiquitous Computing and Communications and 2016 International
Symposium on Cyberspace and Security (IUCC-CSS), pages 61-68.
IEEE, 2016.

[5] Anatolij Bezemskij, George Loukas, Diane Gan, and Richard]
Anthony. Detecting cyber-physical threats in an autonomous
robotic vehicle using bayesian networks. In 2017 IEEE International
Conference on Internet of Things (iThings) and IEEE Green Computing
and Communications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (SmartData), pages 98—
103. IEEE, 2017.

[6] Christopher M Bishop. Pattern recognition and machine learning.
springer, 2006.

[7] P Borazjani, C Everett, and Damon McCoy. Octane: An extensible
open source car security testbed. In Proceedings of the Embedded
Security in Cars Conference, page 60, 2014.

[8] Suratna Budalakoti, Ashok N Srivastava, Ram Akella, and Eugene
Turkov. Anomaly detection in large sets of high-dimensional sym-
bol sequences. Technical report, NASA TM-2006-214553, NASA
Ames Research Center, 2006.

[9] Suratna Budalakoti, Ashok N Srivastava, and Matthew E Otey.
Anomaly detection and diagnosis algorithms for discrete symbol
sequences with applications to airline safety. IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
39(1):101-113, 2009.

[10] Soumen Chakrabarti, Sunita Sarawagi, and Byron Dom. Mining
surprising patterns using temporal description length. In VLDB,
volume 98, pages 606-617, 1998.

[11] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly
detection: A survey. ACM computing surveys (CSUR), 41(3):15,
2009.

[12] Varun Chandola, Varun Mithal, and Vipin Kumar. Comparative
evaluation of anomaly detection techniques for sequence data. In
Data Mining, 2008. ICDM'08. Eighth IEEE International Conference
on, pages 743-748. IEEE, 2008.

[13] Javier Alvarez Cid-Fuentes, Claudia Szabo, and Katrina Falkner.
Adaptive performance anomaly detection in distributed systems
using online svms. [EEE Transactions on Dependable and Secure
Computing, 2018.

[14]

[15]

[16]

[17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

Gyorgy Dan and Henrik Sandberg. Stealth attacks and protection
schemes for state estimators in power systems. In Smart Grid
Communications (SmartGridComm), 2010 First IEEE International
Conference on, pages 214-219. IEEE, 2010.

Robert] Daverman and Gerard Venema. Embeddings in manifolds,
volume 106. American Mathematical Soc., 2009.

German Florez-Larrahondo, Susan M Bridges, and Rayford
Vaughn. Efficient modeling of discrete events for anomaly de-
tection using hidden markov models. In International Conference
on Information Security, pages 506-514. Springer, 2005.

Jonathan Goh, Sridhar Adepu, Khurum Nazir Junejo, and Aditya
Mathur. A dataset to support research in the design of secure
water treatment systems. In International Conference on Critical
Information Infrastructures Security, pages 88-99. Springer, 2016.
Jonathan Goh, Sridhar Adepu, Marcus Tan, and Zi Shan Lee.
Anomaly detection in cyber physical systems using recurrent
neural networks. In High Assurance Systems Engineering (HASE),
2017 IEEE 18th International Symposium on, pages 140-145. IEEE,
2017.

Dieter Gollmann. Security for cyber-physical systems. In Interna-
tional doctoral workshop on Mathematical and Engineering Methods in
Computer Science, pages 12-14. Springer, 2012.

Dieter Gollmann, Pavel Gurikov, Alexander Isakov, Marina
Krotofil, Jason Larsen, and Alexander Winnicki. Cyber-physical
systems security: Experimental analysis of a vinyl acetate
monomer plant. In Proceedings of the 1st ACM Workshop on Cyber-
Physical System Security, pages 1-12. ACM, 2015.

Junho Hong, Chen-Ching Liu, and Manimaran Govindarasu. In-
tegrated anomaly detection for cyber security of the substations.
IEEE Transactions on Smart Grid, 5(4):1643-1653, 2014.

Tobias Hoppe and Jana Dittman. Sniffing/replay attacks on can
buses: A simulated attack on the electric window lift classified
using an adapted cert taxonomy. In Proceedings of the 2nd workshop
on embedded systems security (WESS), pages 1-6, 2007.

Jun Inoue, Yoriyuki Yamagata, Yuqgi Chen, Christopher M Poskitt,
and Jun Sun. Anomaly detection for a water treatment system
using unsupervised machine learning. In 2017 IEEE International
Conference on Data Mining Workshops (ICDMW), pages 1058-1065.
IEEE, 2017.

Austin Jones, Zhaodan Kong, and Calin Belta. Anomaly detection
in cyber-physical systems: A formal methods approach. In Decision
and Control (CDC), 2014 IEEE 53rd Annual Conference on, pages 848—
853. IEEE, 2014.

Eamonn Keogh, Jessica Lin, and Ada Fu. Hot sax: Efficiently
finding the most unusual time series subsequence. In Data mining,
fifth IEEE international conference on, pages 8-pp. leee, 2005.
Ansam Khraisat, Igbal Gondal, Peter Vamplew, and Joarder Kam-
ruzzaman. Survey of intrusion detection systems: techniques,
datasets and challenges. Cybersecurity, 2(1):20, 2019.

Louis Kratz and Ko Nishino. Anomaly detection in extremely
crowded scenes using spatio-temporal motion pattern models. In
Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on, pages 1446-1453. IEEE, 2009.

Moshe Kravchik and Asaf Shabtai. Detecting cyber attacks in
industrial control systems using convolutional neural networks. In
Proceedings of the 2018 Workshop on Cyber-Physical Systems Security
and PrivaCy, pages 72-83. ACM, 2018.

Marina Krotofil, Jason Larsen, and Dieter Gollmann. The process
matters: Ensuring data veracity in cyber-physical systems. In
Proceedings of the 10th ACM Symposium on Information, Computer
and Communications Security, pages 133-144. ACM, 2015.

Terran Lane, Carla E Brodley, et al. Sequence matching and
learning in anomaly detection for computer security. In AAAI
Workshop: Al Approaches to Fraud Detection and Risk Management,
pages 43-49, 1997.

Nikolay Laptev, Saeed Amizadeh, and Ian Flint. Generic and
scalable framework for automated time-series anomaly detection.
In Proceedings of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 1939-1947. ACM,
2015.

Pavel Laskov, Konrad Rieck, Christin Schifer, and Klaus-Robert
Miiller. Visualization of anomaly detection using prediction sen-
sitivity. In Hannes Federrath, editor, Sicherheit 2005: Sicherheit -
Schutz und Zuverlissigkeit, Beitriige der 2. Jahrestagung des Fachbere-
ichs Sicherheit der Gesellschaft fiir Informatik e.v. (GI), 5.-8. April 2005
in Regensburg, volume P-62 of LNI, pages 197-208. GI, 2005.

[33]

(34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

14

Beibei Li, Rongxing Lu, Wei Wang, and Kim-Kwang Raymond
Choo. Distributed host-based collaborative detection for false data
injection attacks in smart grid cyber-physical system. Journal of
Parallel and Distributed Computing, 103:32—41, 2017.

Dan Li, Dacheng Chen, Baihong Jin, Lei Shi, Jonathan Goh, and
See-Kiong Ng. Mad-gan: Multivariate anomaly detection for time
series data with generative adversarial networks. In International
Conference on Artificial Neural Networks, pages 703-716. Springer,
2019.

Qin Lin, Sridha Adepu, Sicco Verwer, and Aditya Mathur. Tabor: a
graphical model-based approach for anomaly detection in indus-
trial control systems. In Proceedings of the 2018 on Asia Conference on
Computer and Communications Security, pages 525-536. ACM, 2018.
Chao Liu, Sambuddha Ghosal, Zhanhong Jiang, and Soumik
Sarkar. An unsupervised spatiotemporal graphical modeling ap-
proach to anomaly detection in distributed cps. In Cyber-Physical
Systems (ICCPS), 2016 ACM/IEEE 7th International Conference on,
pages 1-10. IEEE, 2016.

Guoying Liu, Timothy K McDaniel, Stanley Falkow, and Samuel
Karlin. Sequence anomalies in the cag7 gene of the helicobacter
pylori pathogenicity island. Proceedings of the National Academy of
Sciences, 96(12):7011-7016, 1999.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and
Jeff Dean. Distributed representations of words and phrases and
their compositionality. In Advances in neural information processing
systems, pages 3111-3119, 2013.

Charlie Miller and Chris Valasek. Remote exploitation of an
unaltered passenger vehicle. Technical report, Blackhat 2015, 2015.
Robert Mitchell and Ing-Ray Chen. A survey of intrusion detection
techniques for cyber-physical systems. ACM Computing Surveys
(CSUR), 46(4):55, 2014.

Robert Mitchell and Ray Chen. Behavior rule specification-
based intrusion detection for safety critical medical cyber physical
systems. IEEE Transactions on Dependable and Secure Computing,
12(1):16-30, 2015.

S. N. Narayanan, S. Mittal, and A. Joshi. Obdsecurealert: An
anomaly detection system for vehicles. In 2016 IEEE International
Conference on Smart Computing (SMARTCOMP), pages 1-6, May
2016.

Clifford Neuman. Challenges in security for cyber-physical sys-
tems. In DHS workshop on future directions in cyber-physical systems
security, pages 22-24. Citeseer, 2009.

Timothy] O’Shea, T. Charles Clancy, and Robert W. McGwier.
Recurrent neural radio anomaly detection, 2016.

Miroslav Pajic, James Weimer, Nicola Bezzo, Paulo Tabuada, Oleg
Sokolsky, Insup Lee, and George] Pappas. Robustness of attack-
resilient state estimators. In ICCPS’14: ACM/IEEE 5th International
Conference on Cyber-Physical Systems (with CPS Week 2014), pages
163-174. IEEE Computer Society, 2014.

Kedar Potdar, Taher S Pardawala, and Chinmay D Pai. A compar-
ative study of categorical variable encoding techniques for neural
network classifiers. International journal of computer applications,
175(4):7-9, 2017.

Yan Qiao, XW Xin, Yang Bin, and S Ge. Anomaly intrusion
detection method based on hmm. Electronics letters, 38(13):663—
664, 2002.

Mohammad Sabokrou, Mohsen Fayyaz, Mahmood Fathy, Zahra.
Moayed, and Reinhard Klette. Deep-anomaly: Fully convolutional
neural network for fast anomaly detection in crowded scenes.
Computer Vision and Image Understanding, 172:88 — 97, 2018.
Markus Schneider, Wolfgang Ertel, and Fabio Ramos. Expected
similarity estimation for large-scale batch and streaming anomaly
detection. Machine Learning, 105(3):305-333, 2016.

Siddharth Sridhar, Adam Hahn, and Manimaran Govindarasu.
Cyber—physical system security for the electric power grid. Pro-
ceedings of the IEEE, 100(1):210-224, 2011.

Chris Valasek and Charlie Miller. Adventures in automotive
networks and control units. In IOActive, 2014.

Tuan Vuong, Avgoustinos Filippoupolitis, George Loukas, and
Diane Gan. Physical indicators of cyber attacks against a rescue
robot. In 2014 IEEE International Conference on Pervasive Computing
and Communication Workshops (PERCOM WORKSHOPS), pages
338-343. IEEE, 2014.

Christina Warrender, Stephanie Forrest, and Barak Pearlmutter.
Detecting intrusions using system calls: Alternative data models.
In Security and Privacy, 1999. Proceedings of the 1999 IEEE Sympo-
sium on, pages 133-145. IEEE, 1999.

[54]

[55]

[56]

Wang Wei. Casino gets hacked through its internet-connected
fish tank thermometer. https://thehackernews.com/2018/04/
iot-hacking-thermometer.html, 2018. Accessed: 2018-04-19.

Kim Zetter. Countdown to Zero Day: Stuxnet and the launch of the
world’s first digital weapon. Broadway books, 2014.

Xiaoqiang Zhang, Pingzhi Fan, and Zhongliang Zhu. A new
anomaly detection method based on hierarchical hmm. In Par-
allel and Distributed Computing, Applications and Technologies, 2003.
PDCAT’2003. Proceedings of the Fourth International Conference on,
pages 249-252. IEEE, 2003.

Sandeep Nair Narayanan Sandeep Nair
Narayanan received B.Tech. degree from
Cochin University of Science & Technology,
M.Tech. degree from National Institute of
Technology Karnataka, and Ph.D. degree from
University of Maryland Baltimore County. He had
worked for Oracle Corporation and is currently
with Cisco Systems. His research interests are
in network security, application security, and loT
security.

Anupam Joshi Anupam Joshi (Fellow, IEEE)
received the B.Tech. degree from IIT Delhi, in
1989, and the master’s and Ph.D. degrees from
Purdue University, in 1991 and 1993, respec-
tively. He is currently the Oros Family Profes-
sor and the Chair of the Computer Science and
Electrical Engineering Department, University of
Maryland, Baltimore County (UMBC). He is the
Director of the UMBC'’s Center for Cybersecurity.
His research interests are in the broad area of
networked computing and intelligent systems.

His primary focus has been on data management and security/privacy
in mobile/pervasive computing environments, and policy driven ap-
proaches to security and privacy. He has published over 250 technical
papers with an h-index of 83, filed and been granted several patents,
and has obtained research support from National Science Foundation
(NSF), NASA, Defense Advanced Research Projects Agency (DARPA),
US Dept of Defense (DoD), NIST, IBM, Microsoft, Qualcom, Northrop
Grumman, and Lockheed Martin amongst others. (Based on document
published on 8 September 2020).

pad

15

Ranjan Bose Ranjan Bose (Senior Member,
IEEE) received the B.Tech. degree in electrical
engineering from the Indian Institute of Technol-
ogy (lIT) Kanpur, Kanpur, India, in 1992, and the
M.S. and Ph.D. degrees in electrical engineering
from the University of Pennsylvania, Philadel-
phia, PA, USA, in 1993 and 1995, respectively.
From 1996 to 1997, he was with Alliance Semi-
conductor Inc., San Jose, CA, USA, as a Se-
nior Design Engineer. Since November 1997,
he has been with the Department of Electrical

Engineering, IIT Delhi, New Delhi, India. He is currently the Director of
the Indraprastha Institute of Information Technology Delhi. His current
research interests include physical-layer security and loT security.

