
Using Knowledge Graphs and Reinforcement
Learning for Malware Analysis

Aritran Piplai∗, Priyanka Ranade∗, Anantaa Kotal∗, Sudip Mittal†, Sandeep Nair Narayanan‡, Anupam Joshi∗
∗Dept. of Computer Science & Electrical Engineering, University of Maryland, Baltimore County,

Email: {apiplai1, priyankaranade, anantak1, joshi}@umbc.edu
† Department of Computer Science, University of North Carolina, Wilmington, Email: mittals@uncw.edu

‡ Cisco Research and Development, sand7@umbc.edu

Abstract—Machine learning algorithms used to detect attacks
are limited by the fact that they cannot incorporate the back-
ground knowledge that an analyst has. This limits their suitability
in detecting new attacks. Reinforcement learning is different from
traditional machine learning algorithms used in the cybersecurity
domain. Compared to traditional ML algorithms, reinforcement
learning does not need a mapping of the input-output space or
a specific user-defined metric to compare data points. This is
important for the cybersecurity domain, especially for malware
detection and mitigation, as not all problems have a single,
known, correct answer. Often, security researchers have to resort
to guided trial and error to understand the presence of a malware
and mitigate it.

In this paper, we incorporate prior knowledge, represented
as Cybersecurity Knowledge Graphs (CKGs), to guide the
exploration of an RL algorithm to detect malware. CKGs
capture semantic relationships between cyber-entities, including
that mined from open source. Instead of trying out random
guesses and observing the change in the environment, we aim to
take the help of verified knowledge about cyber-attack to guide
our reinforcement learning algorithm to effectively identify ways
to detect the presence of malicious filenames so that they can be
deleted to mitigate a cyber-attack. We show that such a guided
system outperforms a base RL system in detecting malware.

Index Terms—Reinforcement Learning, Knowledge Graphs,
Cybersecurity, Artificial Intelligence

I. INTRODUCTION

Cybersecurity aims to protect hardware and software com-
ponents in a computer system against malicious attacks. A
key part to protecting against malicious attacks is identifying
them, as early as possible in the Cyber Kill Chain [7]. The
most common approaches today are signature based, which of
course can be defeated by adversaries by minor modifications
of the malware or its dropper. Another approach is based
on behavioural anomalies. This can be done by observing
the system behavior over time and flagging any aberrant
behavior. However, such anomaly detection based approaches
often misidentify less frequently occurring legitimate system
actions as attacks. Another commonly used approach is to use
machine learning on network data to detect attacks [24]. In
2019 for instance, the IEEE Big Data conference organized
a competition on the use of machine learning algorithms to
detect attacks based on observed network data [8].

Machine learning is an important tool for recognising pat-
terns in data. In the cybersecurity space, this can be useful
to identify the behavior of a system under attack. However,

standard machine learning algorithms have limitations in the
cybersecurity space, especially in real deployments [28], [35].
In part, this is because the dataset is highly imbalanced – most
of the observed data in a real system is not attacks, and unless
a dataset is artificially curated to be balanced, it will mostly
have benign data. In other words, the base rate of an attack
is quite low. Hence, most machine learning algorithms tend
to overfit for the data points of non-attack scenarios. Such
learning algorithms are prone to weak performances in the
real world. They also struggle in their ability to generalize, to
unseen attacks.

There are also other problems in the cybersecurity space
for traditional ML approaches. In other domains like natural
language processing or computer vision, it is fairly simple
for a human, who is not necessarily an expert in the specific
task, to draw a conclusion the Artificial Intelligence (AI)
system is trying to reach with high confidence. For example,
a human may not need complicated background knowledge,
except what is in implicit in the image itself to differentiate the
image of a cat from a dog. However, looking at netflow data,
it is not easy for a person to decide if it represents an attack –
this requires significant expertise and background knowledge.
So when we are trying to mimic the way security professionals
reach a decision about a task, it is imperative that we consider
a way to incorporate their prior knowledge that is not in the
data itself into the machine learning system. This is because
their prior knowledge and experience, as opposed to common
knowledge, may dictate how they perform their tasks in their
profession. For example, a security professional might take
what they know about recent discussions in online forums
about vulnerabilities in identifying an attack on their system.
Also, in tasks like image recognition, there is not much scope
for subjectivity for reaching a conclusion. Usually, an image
is either a cat or not. However, what is an attack is not always
clear, and for sophisticated APTs, even experts may not even
recognize an attack as it is happening. It has been reported
that often a third party identifies and APT attack, not the in
house security team of the organization being attacked.

Reinforcement Learning (RL) mimics the way human be-
ings tend to process new information. RL does not require
sub-optimal actions to be explicitly corrected. Instead, it tries
to find a balance between exploration (of new knowledge)
and exploitation (of current knowledge). It does not assume

any prior mathematical modelling for the environment. This
gives the RL algorithm more flexibility in learning about a
new knowledge space.

In this paper, we make two key contributions. First, we
use reinforcement learning for malware detection. Second, we
also use knowledge mined from open information sources
describing the same or similar malware attacks to change
the behavior of the RL algorithm, automatically changing the
parameters of the RL algorithm to adapt its reward functions
and their initial probability distributions. This approach is
not only a way to solve the issue of having to rely on
pre-defined loss functions for traditional ML systems created
by individuals who may not be experts in cybersecurity, it
also helps to mimic how security professionals use their own
knowledge in identifying attacks.

We organize our paper as follows - Section II talks about
the key concepts of the different aspects of our algorithm. In
Section III, we discuss our core algorithm. We discuss our
findings in Section IV. We also discuss some of the relevant
work conducted in this area in Section V, and we finally
conclude our paper in Section VI.

II. BACKGROUND

In this section, we discuss key reinforcement learning
algorithm details and our general approach of representing
extracted open source text in a Cybersecurity Knowledge
Graph (CKG).

A. Reinforcement Learning

We utilize methods in model-free reinforcement learning
in our approach [30]. Model-free RL agents employ prior
experience and inductive reasoning to estimate, rather than
generate, the value of a particular action. There are many
kinds of model-free reinforcement learning models such as
SARSA, Monte Carlo Control, Actor-Critic and Q-learning.
We specifically utilize the Q-learning methods [30].

Q-learning agents learn an action-value function (policy),
which returns the reward of taking an action given a state.
Q-learning utilizes the Bellman equation in order to learn
expected future rewards. We calculate the maximum future
reward max(Q(s′; a′)) given a set of multiple actions corre-
sponding to different rewards. Q(s; a) is the current policy
of an action a from state s, and is the discount factor.
The discount factor is the total reward an agent will receive
from the current iteration until termination, and allows us to
value short term reward over long term reward. The goal is
to therefore maximize the discounted future reward at every
iteration [32].

NewQ(s; a)| {z }
New Q-Value

= Q(s; a)+����
Learning Rate

[R(s; a)| {z }
Reward

+�����
Discount rate

Maximum predicted reward, given
new state and all possible actionsz }| {

maxQ′(s′; a′)−Q(s; a)]

We update a policy table, also known as a Q-table for every
action taken from a state. A Q-table is simply a lookup table
that preserves the maximum expected reward for an action
at each state. The columns represent actions and the rows
represent states. The Q-table is improved at each iteration and
is controlled by the learning rate � [32].

B. Cybersecurity Knowledge Graphs (CKGs)

Cybersecurity Knowledge Graphs have been widely used to
represent Cyber Threat Intelligence (CTI). We use CKG to
store CTI as semantic triples that helps in understanding how
different cyber entities are related. This representation allows
the users to query the system and reason over the information.
Knowledge graphs for cybersecurity have been used before to
represent various entities [23]. Open source CTI has been used
to build CKGs and other agents to aid cybersecurity analysts
working in an organization [16]–[18], [21], [27]. CKGs have
also been used to compare different malware by Liu et al. [13].
Some behavioral aspects have also been incorporated in CKGs,
where the authors used system call information [22]. Graph
based methods have also been post processed by machine
learning algorithms, as demonstrated by other approaches [2],
[9], [10].

III. METHODOLOGY

In this section, we discuss the principles of our proposed
algorithm. Figure 1, gives us an overview of the different
aspects of our system. We provide text describing a piece
of malware as an input to our cyber knowledge extraction
pipeline and we receive a set of semantic triples as an output.
We assert this set of triples to a CKG. We sometimes fuse
this CKG with data from other sources such as behavior
analysis [25]. This forms our knowledge base that will help
us identifying malicious activity in a system and also suggest
ways to mitigate them. The RL algorithm acts on the malware
behavior data. We tune the parameters of the RL algorithm
based on the information present in the CKGs that can be
retrieved by querying the CKG.

A. Cyber Knowledge Extraction (CKGs) from prior knowledge
sources

We have an established cyber knowledge extraction pipeline
that takes malware After Action Reports and automatically
populates CKGs [26]. The method uses a trained ‘Malware
Entity Extractor’ to detect cyber- named entities. Once the
malware entities have been detected, a deep neural network
is used to identify the relationships between them [23]. The
relationship extractor takes pairs of entities, generates their text
embedding using a trained word2vec [15] model, and produces
a relationship as an output for the pairs of entities. Finally the
entity-relationship set is asserted into a CKG.

We use these trained models on open-source text describing
the malware we use in our experiments, or similar malware.
In order to find open source text analysing the malware, we
use the known MD5 Hash of the malware and perform a web
search to look for articles talking about the same malware.

Fig. 1: An architecture diagram specifying the different steps of our proposed method

If we seek additional information about the malware samples,
we can also search for open-source articles about the malware
family if that is known. We produce the open-source text
that we gather from the web search as an input to the cyber
knowledge extraction pipeline. As a result, we get semantic
triples describing the malware asserted in the CKG. Querying
this CKG can result in entities that prove to be valuable
for modelling our RL algorithm. This CKG populated with
information about the malware acts as our prior knowledge
source.

B. Reinforcement Learning Algorithm

We detonated malware samples in an isolated environment
and observed some system parameters that represent the be-
havior of the malware sample. We used the same method to
collect the malware behavior data as described by Piplai et al.
[25]. The malware dataset comprises of samples downloaded
from VirusTotal1. The data was collected over a time period of
60 minutes for each malware. We refer to the first 30 minutes
the malware is not active, as the benign phase. The next 30
minutes form the malicious phase, where the malware is active
in the system. Traffic was generated artificially to simulate
multiple clients interacting with the malware infected system.
Table I, describes the different parameters that were collected
during the exercise. In our paper, we aim to use Reinforcement
Learning to identify a sequence of malicious processes that
may be created by the malware to perform the attack.

1VirusTotal. https://www.virustotal.com/

Fig. 2: Diagram showing the state transformation with respect
to the actions in our dataset

We use Q-Learning for the purpose of identifying malicious
process names. The behavior data that we collected resulted
in data snapshots at a time interval of 10 seconds. For Q-
Learning problems, we define a state space and an action
space. To define a state-space we ideally need to look at key
identifiers that can be used to isolate a row in our data. We
use the ‘timestamp’ for this purpose, and that helps in creating
as many states as there are rows in our data. For a single
experiment, we have 26000 to 28000 rows. We define our
action space by the total number of distinct process names
that are getting created in a single experiment. Since this
number may vary per experiment, we take a superset of all
the processes that are created for all our experiments. In our
experiments, we see that a total of 99 distinct processes are
created over the course of the time of data collection. We use

