Using Knowledge Graphs and Reinforcement
Learning for Malware Analysis

Aritran Piplai*, Priyanka Ranade*, Anantaa Kotal*, Sudip Mittal, Sandeep Nair Narayanan!, Anupam Joshi*
*Dept. of Computer Science & Electrical Engineering, University of Maryland, Baltimore County,
Email: {apiplail, priyankaranade, anantakl, joshi} @umbc.edu
 Department of Computer Science, University of North Carolina, Wilmington, Email: mittals @uncw.edu
¥ Cisco Research and Development, sand7 @umbc.edu

Abstract—Machine learning algorithms used to detect attacks
are limited by the fact that they cannot incorporate the back-
ground knowledge that an analyst has. This limits their suitability
in detecting new attacks. Reinforcement learning is different from
traditional machine learning algorithms used in the cybersecurity
domain. Compared to traditional ML algorithms, reinforcement
learning does not need a mapping of the input-output space or
a specific user-defined metric to compare data points. This is
important for the cybersecurity domain, especially for malware
detection and mitigation, as not all problems have a single,
known, correct answer. Often, security researchers have to resort
to guided trial and error to understand the presence of a malware
and mitigate it.

In this paper, we incorporate prior knowledge, represented
as Cybersecurity Knowledge Graphs (CKGs), to guide the
exploration of an RL algorithm to detect malware. CKGs
capture semantic relationships between cyber-entities, including
that mined from open source. Instead of trying out random
guesses and observing the change in the environment, we aim to
take the help of verified knowledge about cyber-attack to guide
our reinforcement learning algorithm to effectively identify ways
to detect the presence of malicious filenames so that they can be
deleted to mitigate a cyber-attack. We show that such a guided
system outperforms a base RL system in detecting malware.

Index Terms—Reinforcement Learning, Knowledge Graphs,
Cybersecurity, Artificial Intelligence

I. INTRODUCTION

Cybersecurity aims to protect hardware and software com-
ponents in a computer system against malicious attacks. A
key part to protecting against malicious attacks is identifying
them, as early as possible in the Cyber Kill Chain [7]. The
most common approaches today are signature based, which of
course can be defeated by adversaries by minor modifications
of the malware or its dropper. Another approach is based
on behavioural anomalies. This can be done by observing
the system behavior over time and flagging any aberrant
behavior. However, such anomaly detection based approaches
often misidentify less frequently occurring legitimate system
actions as attacks. Another commonly used approach is to use
machine learning on network data to detect attacks [24]. In
2019 for instance, the IEEE Big Data conference organized
a competition on the use of machine learning algorithms to
detect attacks based on observed network data [8].

Machine learning is an important tool for recognising pat-
terns in data. In the cybersecurity space, this can be useful
to identify the behavior of a system under attack. However,

standard machine learning algorithms have limitations in the
cybersecurity space, especially in real deployments [28], [35].
In part, this is because the dataset is highly imbalanced — most
of the observed data in a real system is not attacks, and unless
a dataset is artificially curated to be balanced, it will mostly
have benign data. In other words, the base rate of an attack
is quite low. Hence, most machine learning algorithms tend
to overfit for the data points of non-attack scenarios. Such
learning algorithms are prone to weak performances in the
real world. They also struggle in their ability to generalize, to
unseen attacks.

There are also other problems in the cybersecurity space
for traditional ML approaches. In other domains like natural
language processing or computer vision, it is fairly simple
for a human, who is not necessarily an expert in the specific
task, to draw a conclusion the Artificial Intelligence (AI)
system is trying to reach with high confidence. For example,
a human may not need complicated background knowledge,
except what is in implicit in the image itself to differentiate the
image of a cat from a dog. However, looking at netflow data,
it is not easy for a person to decide if it represents an attack —
this requires significant expertise and background knowledge.
So when we are trying to mimic the way security professionals
reach a decision about a task, it is imperative that we consider
a way to incorporate their prior knowledge that is not in the
data itself into the machine learning system. This is because
their prior knowledge and experience, as opposed to common
knowledge, may dictate how they perform their tasks in their
profession. For example, a security professional might take
what they know about recent discussions in online forums
about vulnerabilities in identifying an attack on their system.
Also, in tasks like image recognition, there is not much scope
for subjectivity for reaching a conclusion. Usually, an image
is either a cat or not. However, what is an attack is not always
clear, and for sophisticated APTs, even experts may not even
recognize an attack as it is happening. It has been reported
that often a third party identifies and APT attack, not the in
house security team of the organization being attacked.

Reinforcement Learning (RL) mimics the way human be-
ings tend to process new information. RL does not require
sub-optimal actions to be explicitly corrected. Instead, it tries
to find a balance between exploration (of new knowledge)
and exploitation (of current knowledge). It does not assume

any prior mathematical modelling for the environment. This
gives the RL algorithm more flexibility in learning about a
new knowledge space.

In this paper, we make two key contributions. First, we
use reinforcement learning for malware detection. Second, we
also use knowledge mined from open information sources
describing the same or similar malware attacks to change
the behavior of the RL algorithm, automatically changing the
parameters of the RL algorithm to adapt its reward functions
and their initial probability distributions. This approach is
not only a way to solve the issue of having to rely on
pre-defined loss functions for traditional ML systems created
by individuals who may not be experts in cybersecurity, it
also helps to mimic how security professionals use their own
knowledge in identifying attacks.

We organize our paper as follows - Section II talks about
the key concepts of the different aspects of our algorithm. In
Section III, we discuss our core algorithm. We discuss our
findings in Section IV. We also discuss some of the relevant
work conducted in this area in Section V, and we finally
conclude our paper in Section VI.

II. BACKGROUND

In this section, we discuss key reinforcement learning
algorithm details and our general approach of representing
extracted open source text in a Cybersecurity Knowledge
Graph (CKG).

A. Reinforcement Learning

We utilize methods in model-free reinforcement learning
in our approach [30]. Model-free RL agents employ prior
experience and inductive reasoning to estimate, rather than
generate, the value of a particular action. There are many
kinds of model-free reinforcement learning models such as
SARSA, Monte Carlo Control, Actor-Critic and Q-learning.
We specifically utilize the Q-learning methods [30].

Q-learning agents learn an action-value function (policy),
which returns the reward of taking an action given a state.
Q-learning utilizes the Bellman equation in order to learn
expected future rewards. We calculate the maximum future
reward maz(Q(s’,a’)) given a set of multiple actions corre-
sponding to different rewards. Q(s,a) is the current policy
of an action a from state s, and ~ is the discount factor.
The discount factor is the total reward an agent will receive
from the current iteration until termination, and allows us to
value short term reward over long term reward. The goal is
to therefore maximize the discounted future reward at every
iteration [32].

Maximum predicted reward, given
new state and all possible actions

—_—
NewQ(s,a) = Q(s,a)+a[R(s,a) +ymax Q' (s',a' }Q(s, a)]

New Q-Value Reward

Learning Rate

Discount rate

We update a policy table, also known as a (-table for every
action taken from a state. A (-table is simply a lookup table
that preserves the maximum expected reward for an action
at each state. The columns represent actions and the rows
represent states. The ()-table is improved at each iteration and
is controlled by the learning rate « [32].

B. Cybersecurity Knowledge Graphs (CKGs)

Cybersecurity Knowledge Graphs have been widely used to
represent Cyber Threat Intelligence (CTI). We use CKG to
store CTI as semantic triples that helps in understanding how
different cyber entities are related. This representation allows
the users to query the system and reason over the information.
Knowledge graphs for cybersecurity have been used before to
represent various entities [23]. Open source CTI has been used
to build CKGs and other agents to aid cybersecurity analysts
working in an organization [16]-[18], [21], [27]. CKGs have
also been used to compare different malware by Liu et al. [13].
Some behavioral aspects have also been incorporated in CKGs,
where the authors used system call information [22]. Graph
based methods have also been post processed by machine
learning algorithms, as demonstrated by other approaches [2],
[91, [10].

III. METHODOLOGY

In this section, we discuss the principles of our proposed
algorithm. Figure 1, gives us an overview of the different
aspects of our system. We provide text describing a piece
of malware as an input to our cyber knowledge extraction
pipeline and we receive a set of semantic triples as an output.
We assert this set of triples to a CKG. We sometimes fuse
this CKG with data from other sources such as behavior
analysis [25]. This forms our knowledge base that will help
us identifying malicious activity in a system and also suggest
ways to mitigate them. The RL algorithm acts on the malware
behavior data. We tune the parameters of the RL algorithm
based on the information present in the CKGs that can be
retrieved by querying the CKG.

A. Cyber Knowledge Extraction (CKGs) from prior knowledge
sources

We have an established cyber knowledge extraction pipeline
that takes malware After Action Reports and automatically
populates CKGs [26]. The method uses a trained ‘Malware
Entity Extractor’ to detect cyber- named entities. Once the
malware entities have been detected, a deep neural network
is used to identify the relationships between them [23]. The
relationship extractor takes pairs of entities, generates their text
embedding using a trained word2vec [15] model, and produces
a relationship as an output for the pairs of entities. Finally the
entity-relationship set is asserted into a CKG.

We use these trained models on open-source text describing
the malware we use in our experiments, or similar malware.
In order to find open source text analysing the malware, we
use the known MDS5 Hash of the malware and perform a web
search to look for articles talking about the same malware.

Text sources
Extract cyber

describing

malware attacks knowledge
1 Cyber Knowledge Extraction
Fipeline
Populate

Cybersecurity
Knowledge Graphs

Other OSINT sources

Incorporate knowledge

into the RL algorithm's
knowledge parameters
Malware behavior) L
data(Environment) Reinforcement | Mitigation steps for
Observe Learning Algorithm Output " malware
reward

Fig. 1: An architecture diagram specifying the different steps of our proposed method

If we seek additional information about the malware samples,
we can also search for open-source articles about the malware
family if that is known. We produce the open-source text
that we gather from the web search as an input to the cyber
knowledge extraction pipeline. As a result, we get semantic
triples describing the malware asserted in the CKG. Querying
this CKG can result in entities that prove to be valuable
for modelling our RL algorithm. This CKG populated with
information about the malware acts as our prior knowledge
source.

B. Reinforcement Learning Algorithm

We detonated malware samples in an isolated environment
and observed some system parameters that represent the be-
havior of the malware sample. We used the same method to
collect the malware behavior data as described by Piplai et al.
[25]. The malware dataset comprises of samples downloaded
from VirusTotal'. The data was collected over a time period of
60 minutes for each malware. We refer to the first 30 minutes
the malware is not active, as the benign phase. The next 30
minutes form the malicious phase, where the malware is active
in the system. Traffic was generated artificially to simulate
multiple clients interacting with the malware infected system.
Table I, describes the different parameters that were collected
during the exercise. In our paper, we aim to use Reinforcement
Learning to identify a sequence of malicious processes that
may be created by the malware to perform the attack.

VirusTotal. https://www.virustotal.com/

Action: accounts-daemon

State 0:
Timestamp:t

Action: acpid

State 2:
Timestamp:t+2

Fig. 2: Diagram showing the state transformation with respect
to the actions in our dataset

We use Q-Learning for the purpose of identifying malicious
process names. The behavior data that we collected resulted
in data snapshots at a time interval of 10 seconds. For Q-
Learning problems, we define a state space and an action
space. To define a state-space we ideally need to look at key
identifiers that can be used to isolate a row in our data. We
use the ‘timestamp’ for this purpose, and that helps in creating
as many states as there are rows in our data. For a single
experiment, we have 26000 to 28000 rows. We define our
action space by the total number of distinct process names
that are getting created in a single experiment. Since this
number may vary per experiment, we take a superset of all
the processes that are created for all our experiments. In our
experiments, we see that a total of 99 distinct processes are
created over the course of the time of data collection. We use

TABLE I: Virtual machines performance metrics [1].

Metric Category

Description

Status

Process status

CPU information

CPU usage percent, CPU times in user space, CPU times in system/kernel space, CPU times of children processes in user
space, CPU times of children processes in system space.

Context switches

Number of context switches voluntary, Number of context switches involuntary

10 counters

Number of read requests, Number of write requests, Number of read bytes, Number of written bytes, Number of read chars,
Number of written chars

Memory information

Amount of memory swapped out to disk, Proportional set size (PSS), Resident set size (RSS), Unique set size (USS), Virtual
memory size (VMS), Number of dirty pages, Amount of physical memory, text resident set (TRS), Memory used by shared

libraries, memory that with other processes

Threads Number of used threads

File descriptors Number of opened file descriptors

Network information || Number of received bytes, Number of sent bytes

(a)

Just found a machine that was hit with this today. Looks like the initial infection took place back
in October. One interesting artifact of this is the 'nice' values for the associated processes (they
are high).

(b)

io_read_c io_read_c ctx_switck ctx_switck nice ionice_iocionice_val label

46097 277 a4 53 0 0 0 0
2569 10 4 12 0 0 0 0
0 0 0 2 -20 0 4 0
7719 20 8 8 0 0 0 0
11482 24 7 10 0 0 0 0
0 0 0 2 -20 0 4 0
11116 20 2 4 0 0 0 0
8488 19 6 137 -4 0 0 0
0 0 [} 2 -20 o 4 [

0 0 0 2 -20 0 a4 0

0 0 0 2 20 0 4 0

0 0 0 2 -20 0 4 0

0 0 0 2 -20 0 4 0

0 0 0 2 -20 0 4 0

0 0 0o 2 -20 0 4 0

0 0 0 2 -20 0 4 0

0 0 0 2 -20 o 4 0

0 0 0 2 -20 0 4 0

0 0 0o 2 -20 0 4 0

0 0 0 2 -20 0 4 0

Fig. 3: Diagram showing a knowledge source (a) describing
a similar malware and the time series data we collected after
detonating a malware (b).

99 as the action space for our experiments.

Intuitively, we can think of a single process created at
timestamp ‘t’ is changing the state of the system. The new state
is identified with the timestamp ‘t+1°. The system features
change as the new process is created, and we aim to identify
the set of processes responsible for state changes that might
signify a malicious attack. Figure 2, demonstrates an example
how we model process names as action spaces and identify
different states with timestamps. We use this intuition to
create reward functions that may help us identify malicious
processes. For example, a high deviation from restful network
activity after the creation of a process may signify the presence
of a malware in the system. A surge in Input/Output (I/O)
read/write bytes may also mean the same. We use this intuition
to form reward functions.

C. Utilizing CKGs in the RL algorithm

As stated in Section I, in a system that calls for complicated
analysis to reach a conclusion, we need to consider expert
knowledge that may help us better identify or mitigate ma-

licious process names. In Figure 3, we can see a screenshot
of an open source text description of a malware sample that
an expert has provided. Instead of relying on hand-crafted
reward functions to evaluate the quality of a state, we can
use the knowledge extracted from open source text and use
them directly in the reward function. In Figure 3, the text
description serves as input to a CKG that captures the semantic
relationship between the malware and the ‘high nice values’.
The ‘high nice values’ are an indicator for the malware
referenced. The CKG establishes a relationship between the
Malware and the Indicator. When we query the knowledge
graph about the indicator, it returns ‘high nice values’ as a
result. We can map this entity to features of our behavior data
and incorporate them into the parameters of our RL algorithm.

There are two ways we incorporate prior knowledge into our
RL algorithm. The first method are inspired on some of the
concepts mentioned by Moreno et al. [19] In Q-Learning, we
have an exploration phase and an exploitation phase. In vanilla
Q-Learning, exploration phases, we try random actions and
observe the reward. During the exploitation phase, we choose
the action that maximizes the Q-value for the state-action pair.
Moreno et al. [19] demonstrate a method of using existing Q-
values of a given state action pair for exploration leading to
a faster convergence. We can see this in Equation 1. We can
also manipulate the exploration probabilities with the help of
the T{(s) value.

exp(Q(s, ai)/T(s))
.5 exp(Q(s, a5)/T(s))

In our algorithm, we use the extracted knowledge to tune
the probability distribution for exploration of a state-action
pair. For example, Equation 2 will change the probability
distribution, into assigning higher probabilities for actions
associated with a ‘nice value’ of -20. The extracted knowledge
from expert sources show us ‘nice values’ are important while
searching for malicious processes.

P(s,a;) = (D

(nicevalue(a;) 4 20)

P s Qg) = 1- .
(5, ;) 2. | max; nicevalue(a;) |

2

The second method is incorporating the extracted knowl-
edge into our reward functions to identify the malicious
processes. For example, if a knowledge source indicates that

the processes create multiple threads, we can use that as an
additional parameter for our reward function. We will discuss
the different reward functions that we have constructed from
the knowledge sources and their performance in Section IV.

IV. EXPERIMENTAL RESULTS

In this section, we discuss the preliminary results from
our experiments. Most of the malware analysis and machine
learning research concentrates on evaluating the performance
of the machine learning algorithm on a dataset of malware
samples. For example, Gavrilut et al. [6], discuss multiple
machine learning algorithms to detect malware files using
perceptrons and kernelized perceptrons and they evaluate the
performance of their trained algorithm on a test set. Since
our approach is aimed at discovering a sequence of process
names that we suspect to be malicious, we aim to rank the
actions (processes) with respect to their g-values after some
episodes of training. To be precise, we use 140 episodes for
training with 10,000 steps in each of them. The high number
of step count compared to the number of episodes is because
the time series data consists of 26,000 to 28,000 states. If we
use a small value for the step count, we would be able to cover
only a small portion of the state space in one episode. Hence,
we keep the step count high and the episode count relatively
low. We aim to calculate as much g-values as possible in one
episode itself. We then record how our RL system scores the
known malicious processes with respect to other processes that
are benign.

We use a combination of reward functions from Equations
3, 4, and 5. The first reward function is constructed based on
common knowledge and intuition. If the I/O activity decreases
or the network activity after a process creation, we can make
an educated assumption that the process could be benign. We
assign a reward value of ‘+1° if the I/O or network activity
decreases after a process creation. For this we calculate the
average of I/O read/write bytes for 5 time-steps before a
process creation and 5 time steps after a process creation.
The same approach is used for KiloBytes (KB) Sent/Received.
This is done because the effect of a process creation may not
be immediate. In our first experiment (Exp 1) we simply use
Equation 3 and Equation 4 as our reward function.

In our second experiment (Exp 2), we keep the reward func-
tions constant. However, we change the exploration criteria for
our RL algorithm based on prior knowledge. The exploration
probability distribution is stated in Equation 2. This helps
the RL algorithm to explore state-action pairs that have high
priority nice values leading to a faster convergence.

Reward(s,a) + =1 (if I/O write/read decreases

or KB sent/recieved decreases)

Reward(s,a) — =1 (otherwise) %)

nicevalue

20
+ w2 - (numthreads(state, action)

Reward(s,a) = wl -

— numthreads(state — 1, previousaction))

&)

In the third experiment (Exp 3), we incorporate the prior
knowledge source in our reward function. The prior knowledge
source states that the nice values of the associated processes
are high priority. We use Equation 5 with the value of ‘w2’
set to 0. A high priority nice value will be close to -20. So, a
state-action pair for which the nice value is close to -20, will
have a negative reward associated with it if the value of ‘w1’
is set to 1.

In the last experiment (Exp 4), we select another source
of information describing the Bill Gates Botnet family. The
source tells us that this malware family spawns a significantly
higher number of threads. We use Equations 3, 4, and 5 for this
experiment. We use a weighted sum of the two prior sources
in this experiment.

Type Exp-1 | Exp-2 | Exp-3 | Exp-4
Q-value -5.1 -5.7 -7 -16.99
Rank 9(99) | 11(99) | 8(99) 1(99)

TABLE II: Ranking and Q-values of the known malicious
process

In Table II we can see that the reward function using the
weighted mean of prior information sources is able to identify
the known malicious process as the highest ranked process.
The Q-values are greater in magnitude because the reward
functions have more parameters included in them. This shows
that including more knowledge sources in our RL algorithm
yields better results.

In Figure 4, we can see the comparison of time required to
complete each episode that consists of 10,000 steps. We argued
previously that tuning the exploration probability distribution
would lead to a faster convergence. We observe that this is
partly true. In sharp dips signify the exploitation phase of
the RL algorithm, when the algorithm knows what it looks
for. The surge signifies more time to find ‘actions’ during
exploration that fit the state-transition. Although the average
time is lower in Figure 4a than in Figure 4b, this is because
in the beginning the environment is benign. So, the tuned
probability distribution that is supposed to aid in the process of
finding malicious processes hinders the RL algorithm to find
processes or actions, that are benign in the beginning, that
fits the state transformation. However, we do observe some
sharp peaks in Figure 4a, as the RL algorithm’s episodes move
to the malicious phase. In contrast, the time per episode is
more consistent in Figure 4b. This is the result of the changed
probability distribution that helps the RL algorithm in finding
processes faster in the malicious phase.

Time (in Seconds)

0 20 40 60 80 100 120 140

Episodes

Time (in Seconds)
o < © © s =

v
L

&
i

0 20 40 60 80 100 120 140
Episodes

(a) For Exp 1 (user-defined reward functions)

(b) For Exp 2 (tuned exploration probabilities)

Fig. 4: Comparison of time required to complete each episode for two experiments

V. RELATED WORK

Security is critical in maintaining the integrity of cyber
systems. Technological innovations have lead to complex
system architectures that are increasingly hard to protect. Pre-
emptively identifying attack scenarios and taking mitigating
actions is a complex task. There is no perfect solution to it
yet. Al, especially ML, can be helpful in answering questions
to which there is no easy answer. ML techniques have been
previously used in the domain of cybersecurity for intrusion
detection [3], malware detection [31], and cyberphysical at-
tacks [4]. However, traditional ML techniques are not ideal
for to emulate how a security researcher conducts malware
analysis. The shortcomings of traditional ML techniques in
the domain of cyber-security have been discussed in Section
L

RL is an alternate strategy for automatic resolution of tasks
in domains where the correct answer is not known. This
technique is popular in the field of game playing [12], robotics
[11] and even for biological data [14]. There are similarities
in the problem space of game playing and attack identification
and mitigation in the cybersecurity domain. Previous literature
explore how applications of RL can be applied to various
aspects of cyber security. The 2016 study by Feng et al. [5]
characterises cyber state dynamics as a function of physical
state, control inputs, disturbances, and current cyber attacks
and defenses. The cyber defense problem was then modeled
as a two-player zero-sum game. An RL algorithm was used
to efficiently learn the optimal cyber defense strategy in the
problem space. Some of these models generate adversaries to
train the RL algorithm by changing some of the parameters of
the malware sample that may make it lose its potency. In our
experiments, we use the behavior of actual malware samples.
We do not automatically generate adversaries yet as there are
challenges to preserve the malware potency.

Robustness in the cyber-physical space measures the re-
siliency of a given specification being satisfied. The secu-
rity problem is to find candidates with minimal robustness
(counterexample) by falsification or changing of input and
parameters of the system. Conventional methods, such as
simulated annealing and cross entropy, require a large number
of simulation runs to the minimize robustness. Akazaki et al.
[34] proposed the use of RL techniques, i.e., Asynchronous
Advantage Actor-Critic (A3C) and Double Deep Q Network
(DDQN), to reduce the number of simulation runs required
to find such counterexamples. Intrusion detection is also an
important defense technique and current techniques leave
room for improvement. Xu et al. [33] proposed a kernel-
based RL approach using Least-Squares Temporal-Difference
(LS-TD) for intrusion detection that showed better accuracy
than Hidden Markov Model and and linear TD algorithms.
Shamshirband et al. [29] discuss the challenges in detecting
malicious behavior in Wireless Sensor Networks (WSNs).
They explain why traditional intrusion detection methods fail
in to detect distributed denial-of-service attacks and propose a
Game-based Fuzzy Q-learning (G-FQL) algorithm that com-
bines game theoretic approach and the fuzzy Q-learning for
intrusion detection in WSN.

Although these papers use RL for malware analysis, these
approaches do not take advantage of prior knowledge about
the domain when developing an attack detection and mitigation
strategy. The inability to use pre-existing knowledge, puts prior
RL algorithms for cyber-security at a significant disadvantage.
The Al has very limited idea in the beginning about the
environment the malware is acting on, and the possible actions
that a human, who is an expert in this domain, would take.
The same disadvantage burdened the RL algorithms for mobile
robotics. In 2004, Moreno et al. [20] proposed a supervised re-
inforcement learning for mobile robotics that takes advantage
of external knowledge and validates it in a “wall-following”

behaviour. Although the paper broadly discussed about ranking
the ‘prior human knowledge sources’ by changing the explo-
ration probability distribution, it also briefly discussed about
how it can be used to improve performance. In our study, we
use a variant of this technique in one of our experiments. The
key difference is that we are utilizing CKGs that already hold
knowledge about cybersecurity and we do not have to rely on
expensive human inputs.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose using RLs to detect malware, and
incorporating prior knowledge from CKGs into the RL based
detection system. This separates our approach from traditional
use of ML approaches to detect attacks. Our approach mimics
the way cybersecurity professionals in a SoC analyze the
reported sensor data based on their backgroud knowledge to
see if the system is currently under attack by a malware. Some-
times they resort to guided trial and error method (manifested
in this case by the RL algorithm), and in some cases they use
their own knowledge and experience to derive conclusions.

Specifically, in our experiments, we show how prior knowl-
edge taken from text sources describing a malware activity
can be used in an RL algorithm to detect malicious process.
We suggest that deleting these processes may prove to be
an acceptable mitigation strategy. However, the knowledge
stored in the CKGs can actually provide multiple mitigation
strategies that can be used as a malware executes. In ongoing
work, we are using multiple known mitigation strategies
after detonating a malware sample. This can produce better
mitigation strategies for a malicious sample. We are also using
the malware features to identify the malware family that a
new malware sample belongs to. We can the use open source
intelligence about that malware family to formulate candidate
mitigation steps. This will help us build a robust mitigation
strategy generator that will be able to use and integrate the
knowledge of security researchers with RL, to yield the best
sequence of steps needed for a particular malware attack to be
defeated.

ACKNOWLEDGEMENT

The authors would like to thank Dr. Mahmoud Abdelsalam
and Dr. Maanak Gupta for the dataset used in this work.

This work was supported by a United States Department
of Defense grant, a gift from IBM research, and a National
Science Foundation (NSF) grant, award number 2025685.

REFERENCES

[1] Mahmoud Abdelsalam, Ram Krishnan, Yufei Huang, and Ravi Sandhu.
Malware detection in cloud infrastructures using convolutional neural
networks. In /1th Int. Conf. on Cloud Computing. IEEE, 2018.

[2] Blake Anderson, Daniel Quist, Joshua Neil, Curtis Storlie, and Terran
Lane. Graph-based malware detection using dynamic analysis. Journal
in Computer Virology, 7(1):247-258, 2011.

[3] Kelton AP da Costa, Jodo P Papa, Celso O Lisboa, Roberto Munoz,
and Victor Hugo C de Albuquerque. Internet of things: A survey
on machine learning-based intrusion detection approaches. Computer
Networks, 151:147-157, 2019.

[4] Derui Ding, Qing-Long Han, Yang Xiang, Xiaohua Ge, and Xian-Ming
Zhang. A survey on security control and attack detection for industrial
cyber-physical systems. Neurocomputing, 275:1674—1683, 2018.

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

(22]

(23]

[24]

Ming Feng and Hao Xu. Deep reinforecement learning based optimal
defense for cyber-physical system in presence of unknown cyber-attack.
In 2017 IEEE Symposium Series on Computational Intelligence (SSCI),
pages 1-8. IEEE, 2017.

D. Gavrilut, M. Cimpoesu, D. Anton, and L. Ciortuz. Malware detection
using machine learning. In 2009 International Multiconference on
Computer Science and Information Technology, pages 735-741, 2009.

Eric Hutchins, Michael Cloppert, and Rohan Amin.
Intelligence-driven computer network defense informed
by analysis of adversary campaigns and intrusion kill

chains. https://www.lockheedmartin.com/content/dam/lockheed-
martin/rms/documents/cyber/LM-White-Paper-Intel-Driven-
Defense.pdf.

A. Janusz, D. Katuza, A. Chadzyniska-Krasowska, B. Konarski, J. Hol-
land, and D. Slezak. Ieee bigdata 2019 cup: Suspicious network event
recognition. In 2019 IEEE International Conference on Big Data (Big
Data), pages 5881-5887, 2019.

Karuna P Joshi, Aditi Gupta, Sudip Mittal, Claudia Pearce, and Tim
Finin. Alda: Cognitive assistant for legal document analytics. In AAAI
Fall Symposium on Cognitive Assistance in Government and Public
Sector Applications. AAAI Press, 2016.

Maithilee Joshi, Sudip Mittal, Karuna P Joshi, and Tim Finin. Semanti-
cally rich, oblivious access control using abac for secure cloud storage.
In Int. conf. on edge computing, pages 142-149. IEEE, 2017.

Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning
in robotics: A survey. The International Journal of Robotics Research,
32(11):1238-1274, 2013.

Robert Levinson. General game-playing and reinforcement learning.
Computational Intelligence, 12(1):155-176, 1996.

Jing Liu, Yuan Wang, and Yongjun Wang. The similarity analysis of
malicious software. In Int. Conf. on Data Science in Cyberspace. IEEE,
2016.

Mufti Mahmud, Mohammed Shamim Kaiser, Amir Hussain, and Stefano
Vassanelli. Applications of deep learning and reinforcement learning to
biological data. IEEE transactions on neural networks and learning
systems, 29(6):2063-2079, 2018.

Tomas Mikolov, Ilya Sutskevarand Kai Chen, Greg Corrado, and Jeffrey
Dean. Distributed representations of words and phrases and their com-
positionality. In 26th International Conference on Neural Information
Processing Systems - Vol. 2, pages 3111-3119. ACM, 2013.

Sudip Mittal, Prajit Das, Varish Mulwad, Anupam Joshi, and Tim Finin.
Cybertwitter: Using twitter to generate alerts for cybersecurity threats
and vulnerabilities. In IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining. IEEE Press, 2016.

Sudip Mittal, Anupam Joshi, and Tim Finin. Thinking, fast and
slow: Combining vector spaces and knowledge graphs. arXiv preprint
arXiv:1708.03310, 2017.

Sudip Mittal, Anupam Joshi, and Tim Finin. Cyber-all-intel: An ai for
security related threat intelligence. preprint arXiv:1905.02895, 2019.
D. Moreno, Carlos V. Regueiro, R. Iglesias, and S. Barro. Using prior
knowledge to improve reinforcement learning in mobile robotics. 2004.
David L Moreno, Carlos V Regueiro, Roberto Iglesias, and Senén Barro.
Using prior knowledge to improve reinforcement learning in mobile
robotics. Proc. Towards Autonomous Robotics Systems. Univ. of Essex,
UK, 2004.

Lorenzo Neil, Sudip Mittal, and Anupam Joshi. Mining threat intel-
ligence about open-source projects and libraries from code repository
issues and bug reports. In Int. Conf. on Intelligence and Security
Informatics. 1IEEE, 2018.

Younghee Park, Douglas Reeves, Vikram Mulukutla, and Balaji Sun-
daravel. Fast malware classification by automated behavioral graph
matching. In 6th Annual Workshop on Cyber Security and Information
Intelligence Research. ACM, 2010.

Aditya Pingle, Aritran Piplai, Sudip Mittal, Anupam Joshi, James Holt,
and Richard Zak. Relext: Relation extraction using deep learning
approaches for cybersecurity knowledge graph improvement. In Int.
Conf. on Advances in Social Networks Analysis and Mining. IEEE, 2019.
A. Piplai, S. S. L. Chukkapalli, and A. Joshi. Nattack! adversarial attacks
to bypass a gan based classifier trained to detect network intrusion.
In 2020 IEEE 6th Intl Conference on Big Data Security on Cloud
(BigDataSecurity), IEEE Intl Conference on High Performance and
Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data
and Security (IDS), pages 49-54, 2020.

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

Aritran Piplai, Sudip Mittal, Mahmoud Abdelsalam, Maanak Gupta,
Anupam Joshi, and Tim Finin. Knowledge enrichment by fusing
representations for malware threat intelligence and behavior. IEEE
International Conference on Intelligence and Security Informatics (ISI),
2020.

Aritran Piplai, Sudip Mittal, Anupam Joshi, Tim Finin, James Holt, and
Richard Zak. Creating cybersecurity knowledge graphs from malware
after action reports. I[EEE Access 2020, 2020.

Priyanka Ranade, Sudip Mittal, Anupam Joshi, and Karuna Joshi. Using
deep neural networks to translate multi-lingual threat intelligence. In Int.
Conf. on Intelligence and Security Informatics. IEEE, 2018.
Maheshkumar Sabhnani and Gursel Serpen. Why machine learning
algorithms fail in misuse detection on kdd intrusion detection data set.
Intelligent Data Analysis, 2004.

Shahaboddin Shamshirband, Ahmed Patel, Nor Badrul Anuar, Miss
Laiha Mat Kiah, and Ajith Abraham. Cooperative game theoretic
approach using fuzzy g-learning for detecting and preventing intrusions
in wireless sensor networks. Engineering Applications of Artificial
Intelligence, 32:228-241, 2014.

Sutton and Barto. Reinforcement learning: An introduction. MIT press,
2018.

Daniele Ucci, Leonardo Aniello, and Roberto Baldoni. Survey of
machine learning techniques for malware analysis. Computers &
Security, 81:123-147, 2019.

Watkins and Dayan. Q-learning. In Machine Learning), pages 279-292,
1992.

Xin Xu and Yirong Luo. A kernel-based reinforcement learning
approach to dynamic behavior modeling of intrusion detection. In
International Symposium on Neural Networks, pages 455-464. Springer,
2007.

Yoriyuki Yamagata, Shuang Liu, Takumi Akazaki, Yihai Duan, and
Jianye Hao. Falsification of cyber-physical systems using deep rein-
forcement learning. IEEE Transactions on Software Engineering, 2020.
Roman V. Yampolskiy. Artificial intelligence safety and cybersecurity:
a timeline of ai failures. arxiv, 2016.

