
THE PLANES SYSTEM: NATURAL LANGUAGE ACCESS
TO A LARGE DATA BASE

Annual Progress Report

by

David L. Waltz, Timothy Finin, Fred Green,
Forrest Conrad, Bradley Goodman, and George Hadden

Coordinated Science Laboratory
University of Illinois
Urbana, Illinois 61801

The work described in this report was supported
by the Office of Naval Research under Contract
Number N00014-67-A-0305-0026.

i

TABLE OF CONTENTS

Chapter Page

1. PLANES - A Natural Language Front End For a Large Data Base... 1

1.1 The Goal of PLANES...................................... 1
1.1.1 Subgoals of PLANES............................... 2
1.1.2 Example of PLANES’ Operation..................... 3

1.2 The PLANES World.. 6
1.2.1 The PLANES Data Base............................. 6
1.2.2 Helpful Factors in the PLANES World.............. 10
1.2.3 Not-So-Helpful Factors in The PLANES World....... 11

1.3 Operations of PLANES.................................... 12
1.3.1 Parsing.. 14
1.3.2 Putting Words and Phases in Canonical Form and

Correcting Spelling............................ 15
1.3.3 Matching Against Prestored Request Patterns and

Setting Context Registers...................... 16
1.3.4 Implementation of Prestored Request Patterns

and Subnets.................................... 21
1.3.5 Translation Into Query Language.................. 24
1.3.6 Execution of Query Expression on the Relational

Data Base...................................... 26
1.3.7 Returning Answers................................ 28

1.4 Other Work and Summary.................................. 29

2. The Language Understanding Phase.............................. 30
2.1 The Network... 30

2.1.1 The Specialist Sub-Networks...................... 30
2.1.2 An Example of a Network.......................... 33

2.2 The Parser.. 33
2.2.1 Advantages of a Semantic Grammar................. 35
2.2.2 Disadvantages of a Semantic Grammar.............. 36

2.3 Context Registers and Subnets........................... 39
2.4 Pronoun Reference and Ellipsis.......................... 43
2.5 NETEDI: The Augmented Transition Network Editor........ 48

3. Implementation of a Query Language Based on the Relational
Calculus... 60

3.1 Introduction - The Relational View of Data.............. 60
3.2 A Relational View of the 3-M PLANES Data Base........... 61
3.3 The Data Sublanguage ALPHA.............................. 61
3.4 Optimization.. 66
3.5 The Implementation....... .'.............................. 67
3.6 Simple Search... 69
3.7 Complex Search.. 70
3 .8 The Future.. 74

ii

Chapter Page
4. Elements of the System.. 75

4.1 The Lexicon.. 75
4.1.1 The Dictionary.................................. 75
4.1.2 The Dictionary Manager.......................... 77

4.2 Spelling Correction..................................... 78
4.2.1 The Problem...................................... - 78
4.2.2 Solution Methods................................. 79
4.2.3 The Spelling Correction Algorithm........... 80
4.2.4 Future Improvements.............................. 82

4.3 The Translator.. 82
4.4 Help Files........................ *..................... 87

5. BROWSER.. 88

5.1 Modes of Operation...................................... 88
5.2 The System Configuration............................... 90

5.2.1 The Supervisor.................................. 92
5.2.2 Query Management................................. 93
5.2.3 The Modules..................................... 96
5.2.4 The Domains..................................... 98
5.2.5 The Notebook............... 99
5.2.6 The Libraries................................... 101
5.2.7 The Data Base................... 102

5.3 Coded Examples.. 103
5.4 Conclusion.. 107

APPENDIX A: Augmented Transition Networks......................... 108

APPENDIX B: Proposed Sample Dialogue for the PLANES System......... 113
APPENDIX C: Code for the AMOUNT Network (from section 2.1.2.)...... 116

APPENDIX D: The PLANES Data Base............. 117

APPENDIX E: 3-M Summary Data and Typical Values for F-14A Aircraft.. 120
E.l Monthly Summary Data by Tail Number..................... 120
E.2 Daily Summary of Flights by Tail Number................. 120
E.3 Daily Summary of Maintenance by Tail Number............. 121
E.4 Maintenance Summary by Aircraft Series................ 121
E. 5 A Typical Summary for F-14A Aircraft................... 122

APPENDIX F: Real-World Data on the 3-M Data Base.................... 123

F. l Categories of Concern (Frequently Investigated)......... 124
F.2 Types of Sentences System Must Handle................... 125
F.3 Commonly Used Abbreviations............................. 130

REFERENCES.. 134

- 1 -

1. PLANES - A Natural Language Front End For a Large Data Base

A prime obstacle for non-technical people who wish to use computers
has been the need to either learn a special language for communicating
with the machine or communicate via an intermediary. We feel that the
time is ripe for computers to be equipped for natural language systems
which can be used by persons who are not trained in any special computer
language. In order for such systems to be of value to a casual user, the
systems must tolerate simple errors, must embody a degree of "common sense,"
must have a relatively large and complete vocabulary for the subject matter
to be treated, must accept a wide range of grammatical constructions, and
of course must be capable of providing the information and computations
requested by the user.

We are developing such a system called PLANES (for Programmed
LANguage-Based Enquiry System) at the University of Illinois Coordinated
Science Laboratory [Gabriel and Waltz (1974), Waltz (1975a), Waltz (1976)].
PLANES includes an English language front end with the ability to understand
and explicitly answer user requests and to carry on clarifying dialogues
with him, as well as the ability to answer vague or poorly defined
questions. We are also building a library of associated programs which
includes functions for recognizing patterns within the data base and
for alerting a user when certain patterns of data occur which are of
interest to him. This work is being carried out using a subset of the
U.S. Navy 3-M data base of aircraft maintenance and flight data, although
the ideas can be directly applied to other record-based data bases, both
military and non-military.

i. 1 The Goal of PLANES

Our main goal is to allow a non-programmer to obtain information
from a large data base with no prior training or experience. A system
to realize this goal (1) must be able to understand to a substantial
degree a user’s natural language and (2) must be able to help guide and
educate the user to formulate requests in a form that the system can
understand (see Codd [l974]).

- 2 -

1.1.1 Subgoals of PLANES

We have formulated a number of subgoals which we feel are important
for realizing our main goal:

(1) The system must accept a user's "natural" English input,
possibly including complex syntactic constructions, abbreviations, pronoun
reference, and ellipsis (i.e. omission of one or more words that can be
obviously understood in context).

(2) The system must provide explicit answers to questions, and
not merely retrieve a file which somewhere contains the answer. The
system should phrase its answer in a clear manner, including units or
dimensions of numerical answers and a description of the answer values.
Whenever possible, graphical output is desirable.

(3) The system must be tolerant of minor errors, e.g. spelling
and grammatical errors; it should suggest corrections for user approval
whenever possible, and should in general be able to continue processing
of the corrected request without requiring a complete retyping of the
request.

(4) The system should use clarifying dialogues for several purposes
(a) to feed back its understanding of the user's request,
so that the user can feel confident that the system has
understood his request.
(b) to ask the user pointed questions about portions of
a request which it does not understand, in the hope of
evoking a paraphrase it can understand.
(c) to add new words, phrases and sentences to the system's
knowledge base.
(d) to provide appropriate HELP file information in the
event of user errors or direct requests for help.
(e) to provide information about the system's capabilities,
abbreviations it knows, general contents of the data base,
and other such information to help orient a new user.

-3-
(5) Such a system should be convenient to use:

(a) it should be interactive and on-line,
(b) it should operate rapidly. One minute seems to us to
be a critical length of time: if one in general gets
answers in less than a minute, one retains a level of
involvement and interest in the interactive process; past
a minute, interest begins to wane, and boredom or impatience
sets in.
(c) the system should require a minimum of typing; abbre­
viations and ellipsis should be routinely handled.

(6) The system should be relatively easy to extend, both within
its own world, and to new data bases and domains of discourse.

It is unlikely that any design can simultaneously satisfy all
these subgoals in an optimum manner. The first version of PLANES,
described in the bulk of this report, was not particularly easy to extend,
either within our world or to a new world. The second version, on which
we are currently working, is vastly easier to extend. We have not yet
achieved completely satisfying solutions either for the subgoal of provid­
ing good dialogue capability, nor for the subgoal or being able to grace­
fully continue from a partially understood sentence. Overall, our system
will at this point (May 1976) answer probably no more than 25% of a
novice user's questions. We expect this figure to improve dramatically
over the next few months.

1.1.2 Examples of PLANES1 Operation
All examples in this section are taken from actual transcripts

of PLANES' operation. Figure 1.1 is a complete transcript of the operation
of the current planes system on a single question. Note that the para­
phrase and answer are expressed in a form which is not as intelligible as
an English form would be. We intend to soon augment the system to provide
English paraphrase and answer forms.

Figure 1.2 shows an extended session, with all but the question and
answer suppressed. Figure 1.2 illustrates the ability of the system to
handle ellipsis (i.e. information omitted which is to be understood in
context).

-4-

Please enter your question....
HOW MANY FLIGHTS HOURS DID PLANE 0003 LOG IN JAN 73

parsing.....
{cpu time was 1.74 seconds, real time was 5.95 seconds.

I have understood your request as:
(COUNT TIME

(NET NIL)
(FLY (PLANE (PRONOUN NIL)

(TYPE PLANE)
(BUSER 3.)
(PLNEG NIL)
(PLDAM NIL)
(PLMAI NIL))

NIL)
(TIME (DATE (MONTH (1. 0. 0.))

(DAY NIL) (YEAR 73.)) NIL))
Interpreting....
[cpu time was 0.29 seconds, real time was 3.71 seconds.

I have interpreted your request as follows:
(FIND ALL

((V 0))
((SUM (V TOTHRS)))
(AND (EQU (V ACTDATE) 301.) (EQU (V BUSER) 3.))
NIL)

Evaluating....
{cpu time was 6.29 seconds, real time was 16.9 seconds.

((SUM TOTHRS) =33.)

Figure 1.1 Complete transcript of PLANES * answer
to a user query

-5-

)> How many flights did the A7 with tail number 003 make in January, 1973?
((SUM TOTFLTS) =17.)

>) How many flights did plane 003 make in Feb. 73?
((SUM TOTFLTS) =1.)

)) During,April?
((SUM TOTFLTS) = 8.)

)) March?
((SUM TOTFLTS) =13.)

>> All of 1973?
((SUM TOTFLTS) =39.)

Figure 1.2 Partial transcript of dialogue showing
PLANES' handling of ellipsis

- 6 -

Figure 1.3 shows PLANES’ ability to provide answers in a graphical
form. NORHRS stands for "Not Operationally Ready HouRS”; ACTDATE stands
for "ACTion DATE”; 2001 is the first day of the year 1972.

Figure 1.4 shows a short dialogue. PLANES first asks for time
period information necessary for performing its data base search. It
then detects a misspelling and suggests two plausible corrections to the
user. Once the user selects the appropriate correction by typing "2",
the system is able to continue processing without requiring further typing.

Figure 1.5 shows PLANES’ ability to answer general questions about
its contents.

Further examples of PLANES' performance are given in the following
sections, and an example of what we expect PLANES to do eventually is
given in Appendix B.

1.2 The PLANES World

In this section I describe the general environment in which the
language understanding programs operate. This environment includes the
data base, the user, and the user's range of queries.

1.2.1 The PLANES Data Base

We have obtained a data base from the Navy 3-M Data Base for
Aircraft, Mechanicsburg, PA., consisting of complete records of aircraft
maintenance and flight information for 48 A7 and F4 aircraft, extending
over a period of two years. Each time a plane is serviced, a record is
made including such information as the time and duration of the mainte­
nance, who performed it, what action was taken, which parts were used,
the manufacturers of these parts, whether or not the service was scheduled
or unscheduled, and so on. Records on the number of flights and the
number of hours in the air are also kept for each plane. There are
roughly forty different record formats which occur in the data base, each
containing between ten and twenty separate fields, where each field encodes
information like the date of the action, type of aircraft, serial number
of the aircraft, type of malfunction, component serviced, the work station
performing maintenance and so on. Our data base is described in detail in
Appendices D, E, and F.

>) Plot how much maintenance occurred to plane 2 between Jan. 1 and
Jan. 12, '72.

Evaluating....
[cpu time was 29.32 seconds, real time was 38.11 seconds.

24 ; X X X X X
i X X X X X

N 1 X X X X X
0 i X X X X X
R 18 ■ X X X X X
H 1 X X X X X X
R 1 X X X X X X X
S 12 * X X • X X X X X

1 X X X X X X X
i X X X X X X X

6 ! X X X X X X X X X
I X X X X X X X X X X X• X X X X X X X X X X X Xj.

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

ACTDATE

MIN = 1.0 AVERAGE = 14.0 MAX = 24.0

Figure 1.3 PLANES 1 graphical presentation
of an answer

- 8 -

)) Which Skyhawks logged less than 10 hours
PLEASE ENTER A SPECIFIC TIME PERIOD:

)) between Jan. 1 and Jule 1 '73.
I DON'T KNOW THE MEANING OF JULE
PERHAPS IT'S MISSPELLED?
PLEASE ENTER A NUMBER CORRESPONDING TO ONE OF THE FOLLOWING
1. JUNE
2. JULY
3. NONE OF THE ABOVE

» 2 .
OK

(Answers question)

Figure 1.4 Example of PLANES' dialogue
and spelling correction abilities

-9-

Please enter your question....
)) What types of aircraft are there.

parsing.....

THE FOLLOWING PLANES WILL BE RECOGNIZED BY THE SEMANTIC NET:

(1) A3
(2) A7
(3) F4
(4) Fll
(5) CHEROKEE
(6) PHANTOM
(7) SKYHAWK

The above planes may be further specified by giving the
"tail number" (i.e. BUSER, BUNO, Bureau Serial Number, etc.)
along with the name of the series.

{cpu time was 2.59 seconds, real time was 5.75 seconds.

Figure 1.5 PLANES' ability to answer questions
about its contents.

- 10-

The 48 aircraft in our data base are divided into three groups:
(1) 24 planes which crashed or sustained major damage in

accidents involving mechanical failures;
(2) 12 planes with bad maintenance records; and
(3) 12 planes with good maintenance records.

"Good" and "bad" records were judged by comparing the ratio of the number
of NOR (Not Operationally Ready) hours to the number of flight hours.
A high ratio represents a bad record while a low ratio corresponds to a
good record.

In addition, we have summaries of maintenance and flight data
for all F4 and A7 aircraft for the same two year period, so that we can
have some basis for classifying events as "normal" or "unusual."

The PLANES data base contains on the order of 10^ bits, and
occupies about one third of a DEC RP04 disc pack in compressed form.
This data base, while quite large, represents only a fraction of the entire
3-M data base, which now contains on the order of 1011 bits (10 years'
complete data on all U.S. Navy aircraft, plus summaries).

1.2.2 Helpful Factors in the PLANES World

A number of factors contribute to making our problem much easier
to solve than the general problem of understanding unconstrained natural
language.

(1) Lack of ambiguity - Relatively few words and virtually no
sentences in the PLANES world are ambiguous. The only ambiguous words
we have been able to find are "wing" (meaning "a squadron" or "part of
a plane") and "flight" (meaning "a flying event" or an adjective, as in
"flight computer" or "flight director"). This means that if PLANES can
find any interpretation at all for a request, it is in all likelihood
to correct interpretation.

(2) Small vocabulary - Our current system has about 1100 words.
We estimate that 2000 words will cover 90% or more of all requests made
by users with at least a little prior experience with PLANES.

- 11-

(3) Only two modes - PLANES is always either answering a question
from the data base or attempting to help a user express his request in a
form PLANES can understand. In general the system need not deal with
declarative sentences.

(4) People do not type complex sentences - The increasing like­
lihood of making typing errors in lengthy requests, the increasing like­
lihood that long requests will baffle a program in some aspect, and general
laziness all contribute to keeping input requests short and simple in
construction. Malhotra (1975) performed an experiment in which non­
programmers thought that they were communicating with an intelligent program,
when in fact they were interacting with another person who would respond
appropriately to any input. He found that 10 simple sentence types covered
78% of all input requests, and that another 10 would handle all but 10%
of the requests.

(5) Less than 100% answer rate is acceptable - We feel that a
90% answer rate without rephrasing would be adequate to keep a user's
interest and provide a practical and useful system. It is possible that
even a lower rate might be acceptable.

(6) We have a good idea of what potential users would like to
know - The Navy has a made a study [NALDA/NAILSC (1974)] of all the
requests made to 3-M data base during a one month period, and the fre­
quency with which various requests were made. We thus had a good idea
about where to concentrate our initial efforts, and the order in which
to proceed. A summary of this study is given in Appendix F.

1*2.3 Not-So-Helpful Factors in The PLANES World

(1) The System must contain a great deal of specialized knowledge -
one of our major realizations has been that a small number of general
rules cannot suffice to "translate" natural English requests into data
base queries. Consider the sentences:

(SI) "Which A7 has the worst maintenance record?

(S2) "Find any common factors of plane numbers 37 and 78."

- 12-

Clearly the system must contain special programs to compile a "maintenance
record", and special knowledge to judge its "goodness"; the system must
know that having the same digit as the fourth element of their serial
numbers does not constitute a "common factor", but that similar event
sequences are important.

(2) Each request may be expressed in a great many different ways -
Clearly, if users are encouraged to sit at a console with little or no
prior training or instruction, and if the system is expected to under­
stand enough of a user's input to keep his interest and perform useful
actions from the beginning, then the system must be able to make some
sense of a large number of types of queries, and a wide range of syntactic
constructions.

1.3 Operation of PLANES

The processing of a user's request is divided into four main
phases: parsing, interpretation, evaluation, and response (see Figure
1 .6).

(1) The first phase, the parsing, is accomplished by matching the
input against request patterns stored in a large ATN network [woods
(1970)]. This network defines a "semantic grammar" [Brown and Burton
(1975)] which maps the users request into an internal representation, the
paraphrase language. The grammar is "semantic" in that it encorporates
semantic and pragmatic knowledge as well as syntactic knowledge.

(2) In the interpretation phase, the paraphrase language repre­
sentation of the user's request is translated into a 'program' to generate
the data to answer the request. This stage contains specific knowledge
about the data bases. It knows, for example, which sub-parts of the data
base contain certain relations and the particular codes used to represent
certain facts. The program is constructed out of primitives of the query
language.

(3) The evaluation phase uses the program generated in the previous
stage to search the data base and construct an answer. This portion is

C
on

te
xt

 R
eg

is
te

rs

-13-

User's Request

FP-5041

Figure 1.6 An overview of the PLANES system

-14-

based on a relational data model [Codd (1970), Date (1975)], and is
implemented along lines described by Palermo (1972).

(4) The evaluation portion passes the resulting data to the
response generator. This module can display the answer in one of three
forms: as a simple number or list, as a graph, or as a table. The
choice of output form can be determined by the user through a direct
request (e.g. "Draw a graph of...) or by a set of heuristics which attempt
to find the most "natural" form. A graph, for example, will be generated
only if the data consists of a set of tuples which can be interpreted as
a function of two variables. Furthermore, the number of tuples must lie
within certain bounds, so that the entire result will fit on a CRT screen.

At each stage of the process, the results are sent to the
history keeper which manages a set of stacks of relevant information.
These stacks contain the results of each stage (e.g. user’s request, para­
phrase, etc.), syntactic components (e.g. subject, object, etc.), and
semantic/contextual information (e.g. time specifications, plane specifi­
cations, etc.). This information is made available for resolving anaphoric
reference, supplying phrases deleted through ellipsis, and generating
responses.

The entire process can be aborted by any of the major stages.
If this is done, a suitable error message is generated and the user is
asked to reform either part or all of his request.

Each of the main phases is described in detail in the following
sections. For greater clarity, we will trace a request through all phases
of processing. Assume that the system has already successfully answered
the question:

(Ql.3.0) "Which A7s logged less than 5 flight hours in February 1973?"

We then give PLANES the following request:

(Ql.3.1) "Which ones logged betwen 10 and 20 flight hours in Jan?".

1.3.1 Parsing

In the PLANES system, "parsing" involves three operations:
(1) putting all words and phrases in canonical form and
correcting spelling;

-15-

(2) matching against prestored request patterns and setting
context registers (history keepers); and
(3) constructing a paraphrase of the input request. These opera­
tions are explained in more detail in the following sections.

1*3.2 Putting Words and Phases in Canonical Form and Correcting Spelling

The parser first checks to make sure that each word of the input
is known by the system. Roots and inflection markers are substituted
for inflected words, canonical words are substituted for synonyms, and
single words are substituted for certain phrases (i.e. "USA" for "the
United States of America"). If a given input word cannot be found in the
dictionary, then the spelling correction module is called. This module
attempts to find dictionary entries "close" to the input word (see section
4.2 for a description of the spelling correction module); if one or more
candidates are found, the user is given an appropriate message, and if
one of the system's guesses is correct, it is inserted in place of the
misspelled word. If no candidate words are found, or if none of the
candidates is the properly spelled word, the system calls a word adding
module to try to add the user's word to the dictionary.

Example 1.3.2 Given our question:

(Ql.3.1) "Which ones logged betwen 10 and 20 flight hours in Jan?"

the parser first notes that "betwen" is not in the dictionary; the spelling
corrector finds that "between" is the most similar dictionary entry, and
types back:

(Al.3.1) Is betwen a misspelling of between? Type y or n.

Once the user types "y", the system substitutes "between" for
"betwen", and proceeds. "(Log past)" is substituted for "logged",

s

-16-
"flighthours" is substituted for "flight hours", and "January" is
substituted for "Jan." Thus the output of this first operation is:

(Ql.3.2) Which ones (log past) between 10 and 20 flighthours in
January?

1.3.3 Matching Against Prestored Request Patterns and Setting Context
Registers
This phase comprises the heart of the language understanding

process. It is here that pronoun reference and ellipsis are resolved, and
here too that much of the overall programming effort for the system has
been expended.

These are three large program portions of interest here:
(1) the prestored request network;
(2) the subnets; and
(3) the context registers.
The prestored request network is made up of pattern-action pairs,

some simplified examples of which are shown in Figure 1.7. If the input
matches a pattern, then the action corresponding to that pattern is
executed. The action can be a data base search, the selection of a HELP
file, or any other program we wish to associate with an input pattern.
Many different patterns can point to a single action (as is the case
with A1 in figure 1.7.).

Each of the starred pattern elements in Figure 1.7 (e.g. *planetype)
must match a noun, verb or prepositional phrase which has a specific
meaning (e.g. a type of aircraft, a period of time, etc.). Pattern
elements preceded by a number sign (#Log) match any synonymous word or
phrase (e.g. logged, had, recorded, etc.).

The matching of starred elements of the patterns with phrases in
the input is handled by subnets. Each subnet is a phrase parser which
matches only phrases with a specific meaning. Some examples of phrases
which the subnet for *planetype would match are: "A7", "phantom",
"phantom or skyhawk", "ones" (where some type of aircraft is an appropriate
referent of "ones") and "A7s which crashed in May".

-17-

Pattern

(PI) Which *planetype
#log *flighthours

(P2) Which *planetype
#log ^flights

(P3) How many *flighthours
#log by *planetype

(P4) Which kinds of *data-
iterns #exist

Matching Sentence

(Si) Which A7s logged between
10 and 20 flight hours
in Jan 1973?

(S2) Please tell me which
planes had 20 or more
flights?

(S3) Find the number of flight
hours logged by plane 76
during Feb. 1974.

(S4) Which kinds of planes
do you know about?

Action

(Al) Generate para­
phrase from
context register
values

(Al)

(Al)

(A2) List *data-
iterns from
HELP files.

Figure 1.7 Sample pattern-action pairs

>'* rV
-18-

Some of the sentences (besides Ql.3.1) which match pattern PI
of Figure 1.7 are:

(Ql.3.3) Find which phantoms had fewer than 15 flight hours in
Feb. 1974.

(Ql.3.4) Please tell me which skyhawks and F4s logged no flight hours.

(Ql.3.5) Which A7s that crashed in May had 50 or more flight hours
in April?

Whenever a subnet matches a phrase, it sets the values of its
corresponding context register, which acts as' a history keeper. Context
registers are used for pronoun reference and ellipsis; if some item(s)
in a request have been left unspecified or replaced by pronouns, the con­
text register values from the previous request are used to supply the
missing information or the referent of a pronoun (see example 1.3.3).
There are also context registers for the last request, last paraphrase,
last query language form, and last answer. Context registers are imple­
mented as stacks which are pushed down with each new request. While we
have not yet done so, PLANES could conceivably retrieve an earlier context
by saying something like:
(Ql»3 .6) Earlier we were talking about skyhawks.

Time is handled in a special manner. Since time phrases can occur
in any question, time phrases are not considered part of the patterns
(see Fig. 1.7) but are searched for at the beginning or end of a request,
or after the verb. There are special subnets and context registers for
time phrases.

Quantifiers (e.g. "first", "rest", "more than", "largest", etc.)
are handled by a special subnet as are qualifiers (e.g. the underlined
words in "A7s which crashed in May").

-19-

"Noise words" are matched and essentially discarded. By "noise
words", we mean phrases like "please tell me", "can you tell me", '*would
you let me know", "could you find", etc. The next section includes a
description of the processing of such phrases.

A paraphrase of the first pattern found which matches the input
is fed back to the user for his approval, and if the match is correct,
the action associated with this pattern is executed. If the first match
is incorrect, PLANES currently fails; eventually a more sophisticated
presentation to the user of alternative interpretations will be imple-

Example 1.3.3
Let us now follow our example through; the input to the matching

portion from the previous portion is:

(Ql.3.2) Which ones (log past) between 10 and 20 flighthours in January?

This request matches pattern PI in Figure 1.7, and causes context registers
to be set as follows:

There is an important thing to note here: the system has solved
the pronoun reference problem for the phrase "which ones" by finding the
phrase type (i.e. *planetype) which makes sense in the context of the
given sentence. There is only one pattern which matches ’‘which ?X log
flighthours": the pattern ’'which *planetype #log ^flighthours." This
allows us to conclude that ?X refers to *planetype. (While pilots could
log flight hours, there is no pilot data in our world.) Each pattern
can thus be viewed as representing a simple meaningful "concept" which
the system knows. Thus whenever constituents of a sentence are missing

mented.

register
*oper
*planetype
*obj
*quant-obj
*time-period

flighthours
(>10 , <20)
January

value
FINDALL (due to which)
(pronoun ones)

- 20 -

(as in ellipsis) or replaced by pronouns or referential phrases, the system
is able to suggest what type of phrase is necessary to complete the concept
by finding all the patterns which match the rest of the sentence. If
only one matches, we are done; if more than one matches, then reference
to which constituents were present in the previous sentence is usually
adequate to decide; otherwise, the user can be given a set of possibilities
from which to choose the appropriate referents for each phrase. The
system can conclude that sentences like "How many malfunctions logged more
than 10 flight hours." are meaningless because all phrases are recognized
but no matching pattern exists.

Any system for answering questions which is to distinguish meaning­
ful from meaningless requests must store information about which concepts
are possible, whether by patterns (as in PLANES or in PARRY [Colby et al.
(1974)]), by verb meaning structures as in case grammars [Fillmore (1968),
Celce-Murcia (1972), Bruce (1975)], by conceptual dependency diagrams
[Schank (1973)] or by preference semantics systems [Wilks (1975)].

Continuing with the example, once pattern PI has been matched,
the action Al associated with PI is retrieved. Al in this case merely
says to construct a paraphrase expression from the context register values,
using the translator. The result is shown in figure 1.8.

(FINDALL (PLANE (PRONOUN T)
(TYPE A7)
(BUSER NIL))

(NEG NIL)
(FLY HOURS ((<20.)(>10.)))
(TIME (DATE (MONTH (1. 0. 0.))

(DAY NIL)
(YEAR 73.))))

Figure 1.8 Paraphrase language representation of Ql.3.1.

- 21 -

This expression can be read as follows:
(1) FINDALL is a search function which means ’’find all items in the data

base satisfying the specifications following." The context register
*oper is set to FINDALL when the word "which" is matched in the original
question.

(2) The three lines beginning with "PLANE ..." specify the item to be
searched for and returned as a value, in this case A7s. (PRONOUN T)
means that pronoun (or phrase) reference occurred in the request.
Note that the value "A7” has been inserted for plane type. This
value was obtained from the context register values from the previous
sentence, and thus completes the handling of pronoun reference for
the phrase "which ones". (BUSER NIL) means that no specific serial
numbers of planes appeared in the request.

(3) (NEG NIL) means that the sentence is not negated.
(4) The three lines beginning "(TIME ...") specify that the entire first

month of 1973 is to be considered. Here again the value of the year
(1973) was not specified in the request, and so had to be obtained
from the *time-period context register value of the previous request.
This is another example of the handling of ellipsis (or automatic
filling in of information understood in the context of the question)
where the relevant context here is the preceding dialogue. It should
be clear that similar mechanisms are used to handle both ellipsis and
pronoun reference problems.

In our current system, the entire "paraphrase" is fed back to the
user. In the near future, we intend to feed back an English version of
this information, e.g. "Find all planes which had less than 20 and more
than 10 flight hours during January 1973."

1.3.4 Implementation of Prestored Request Patterns and Subnets
Noun phrase parsing is based on Winograd's (1972) analysis of

noun phrases. Both prestored request networks and subnets are stored as
ATNs (Augmented Transition Networks) [Woods (1970)]. See Appendix A for
a summary description of the use and implementation of ATNs.

- 22 -

Ins tead of storing and matching against a list of patterns (like
the arrangement shown in Figure 1.7), the patterns are actually organized
into a network structure, a portion of which is shown in Figure 1.9. The
network structure (most of which is a tree) allows the initial portions
of similar patterns to be merged; at the point where two patterns differ,
the network branches into separate paths. The ends of these paths point
to the appropriate actions.

The network portion of which Figure 1.9 is a part, is called the
SENTENCE network. It guides the overall processing and calls the various
subnets as specialists on various phrase types. Currently the entire
network consists of approximately 700 states.

While this report was in preparation, we began testing a new idea,
which allows us to achieve substantial simplification of the SENTENCE
network. As things are now, nearly all variations of phrase orderings
possible for expressing a request must be stored explicitly in the sentence
network (time phrases are an exception). This means, for example, that
there must be separate patterns for active and passive forms of each request.

We conjectured that a set of context register values may uniquely
specify an action, independent of the order of the phrases in the requests.
If this conjecture were true, we could replace all the ordered patterns
which point to a single action with a single unordered pattern. In imple­
mentation terms, it means that we can replace the SENTENCE network with
(1) a simple program to parse all the phrases in a request, and (2) a table
of pattern-action pairs, where each "pattern" is a specific set of context
registers with values.

In addition, this would also greatly simplify extending the program
within our domain--each pattern/action pair would only need to be coded
once, and would thenceforth handle many variations for expressing a request.
If the conjecture is true, it will (1) show that natural language requests
are redundant, and show (2) that it is possible to exploit this redundancy
to make our system simpler and easier to extend. Our preliminary results
indicate that the conjecture is true.

-23-

1 / N : 4
of re quire #log #log
i N 1*detaitems ^flights *flighthours by

Figure 1.9 Simplified portion of the prestored
request network.

We are currently working out details for handling ellipsis and
pronoun reference (which must be done somewhat differently) and for dealing
with requests involving conjunctions (e.g. or, and, but) and comparatives
(e.g. greater than, more than), using this new processing model.

1.3.5 Translation Into Query Language
The paraphrase language expression is next translated into a

formal query expression for use with our relational data base system. The
translation involves:
(1) Deciding which card types to look at to retrieve the information necessary

for answering the user's request;
(2) Deciding what data fields to return from the cards which are searched.

(In general, more fields are returned than are actually asked for.
For example, if asked about which planes had engine maintenance during
some time period, the system returns not only the plane identification
numbers, but also the dates of maintenance and codes for the exact type
of maintenance.);

(3) Deciding how to arrange the output data. Typical orderings are
by increasing or decreasing size of some field value (like number of
hours down time) or sequentially by date.

(4) Deciding which operations should be performed on the fields returned.
Examples of operations include list, count, average, sum, and find
largest;

(5) Translating field values (e.g. for dates, plane types, or actions)
into internal data base codes.

The translator produces an expression in the relational calculus
[Codd 1971b, Date 1975] which can be used to implement the actual data base
search.

Example 1.3.4
Following through with our example, the translator changes the

paraphrase language form given in Figure 1.8 to the query language
(relational calculus) expression given in Figure 1.10.

-25-
(FIND 'ALL

’((V 0))
'((V BUSER (V TOTHRS))
'(AND (EQU (V ACTDATEYR 3.)

(EQU (V ACTDATEMON 1.)
(EQU (V PLANETYPE) 'A7)
(LT (V TOTHRS) 20.)
(GT (V TOTHRS) 10.))

'(BUSER UP))

Figure 1.10 Query language expression representing Ql.4.1,
obtained from paraphrase expression, shown in
Figure 1.8.

The meaning of this expression is as follows:
(1) "FIND ’ALL" means that all items satisfying the criteria following

should be searched for. In contrast, "FIND 'ONE" would return as soon
as any item satisfied the rest of the query expression. Still other
forms are possible.

(2) V is a variable name;
(3) 0 specifies a relation. In this case the relation 0 is in turn associated

with the data base files in which daily flight data summaries are stored;
(4) '((V BUSER) (V TOTHRS)) specifies what is to be returned as output,

in this case a table with columns for BUSER (BUreau SERial number - a
plane identification number) and for TOTHRS, the total number of flight
hours for that plane;

(5) The five lines beginning with '(AND... specify the predicate which must
be true of each entry recorded in the answer table, namely that the
year must be 3 (1973), the month must be 1 (January), the plane type
must be A7, and the total number of flight hours (given in the card
field TOTHRS) must be less than 20 but greater than 10.

(6) '(BUSER UP) means that the output table is to be ordered by BUSER
number, with the smallest BUSER number first and the largest BUSER
number last.

>
- 26-

1.3.6 Execution of Query Expression on the Relational Data Base
In the relational model [Codd (1970, 1971a), Date (1975)] data

is viewed as being divided into relations which correspond to files or
sets of files in conventional data base terminology. Each relation
contains a collection of tuples which correspond to records; each tuple
contains one or more domains or fields. A relation can conveniently be
thought of as a table, with each row being a tuple and each column a
domain.

For our purposes the relational approach has two important
advantages:
(1) The relational approach stresses data independence. This means that

the user and front end programs are effectively isolated from the
actual data base organization. We are now working with only a small
subset of the entire 3-M data base; if we were to use our front end
with the entire 3-M data base, the data accessing programs would
have to be modified, but, using the relational model, these changes
need not affect the "data model" seen by users and the natural
language front end.

(2) The 3-M data base is already internally organized in a tabular form,
and is thus ideally suited to a relational data model.

In the last section, we showed the sort of expression' generated
by the translator. This expression is given in the data sublanguage
Alpha (DSL Alpha [Codd, 1971b)] , as implemented in LISP by Fred Green
(1976). This expression is used by the relational data base system to
construct the actual program used to retrieve the data, along lines
suggested in Palermo (1975). In order to construct the search program,
the system must:
(1) Select the files to be searched;
(2) Select an order for searching these files;
(3) Generate an expression for testing and selecting tuples values to

return while searching;
(4) Generate a program to combine data, possibly from a number of different

relations, so that the proper answer will be returned.

-27-

(5) Decide when to save the results of a search for future use. This is
important in interactive querying, since interesting results can be
expected to evoke follow-up queries from a user, and such a query
is likely to reference tuples just retrieved.

(In this chapter we will deal only with the first three items above;
see chapter 3 of this report for more details on the other two portions
of the system.)

Our data base is physically organized into files, where each
file contains one type of data (e.g. flight data, failed parts, installed
parts, etc.) for a single plane for a one year period. Each file also con­
tains statistical information (including the number of unique values of
a domain, the range of values for a numerical domain, and the number of
tuples in the file) which is used in planning the order for searching
files (step (2) above). Continuing our example should help in understanding
this portion of the processing.

Example 1.3.5
By looking at the expression given in Figure 1.10, the execution

program first finds the files to be searched. In this case the system
will select flight data files for all A7s for the year 1973. These are
selected by noting that only relation 0 (flight data summary) is selected,
that only data on PLANETYPE equal to A7 will be returned, and that only
ACTDATEYR 3 (1973) should be considered. The system notes that all files
belong to the same relation, so search order is irrelevant, since no
intermediate results need to be generated and combined. Since we have
already guaranteed that the files retrieved will contain only data on
A7s during 1973, we can simplify the function used to test each tuple
(record) to:

(AND (EQU (V ACTDATEMON) 1.)
(LT (V TOTHRS) 20.)
(GT (V TOTHRS) 10.)).

Since we are only to return a list, and the files already contain summaries
of flight hours by month, the returned data form is also particularly

-28.-

simple, requiring no arithmetic operations (any "hits" are merely listed).

1.3.7 Returning Answers
Once the data has been retrieved, the results are passed to an

output module, which decides on an appropriate display format for the
data* If possible it attempts to produce a graph. This can only be done
if (1) pairs of items are returned, (2) one item is numerical, (3) the
number of items returned is small enough (but not too small) to produce
a reasonable graph which will fit on a CRT screen. If a graph is not
possible, the system will produce a list or table; if there is too much —
data to fit on the screen, the results will be automatically output to
the line pointer.

Example 1.3.6 _ <
Suppose that only a very few planes flew between 10 and 20 hours

in January 1973. A typical output would be:

BUSER TOTHRS

67
68
76
■81

11
18
14
14

A larger number of items could result in a graph, such as:
i
i
i
20 -

l

T
i
i
i 18 X

X X
0
T

i
i
i 16 X X

X X
H
P

11 X X X X X
i
i 14 X X X X X

S\p i
i X X X X ' Xb i
i 12 X X X X X X
i
i X X X X X X X X
i
ii 10 X X X X X- X X X X

67 68 76 81 82 83 90 96 98
BUSER

-29-

If 40 or more items were returned (impossible for this query
with our current data base, since we have data on only 36 A7s) the results
would be output by line printer. The heuristics for selecting output
can be easily modified to produce whatever form of output is desired.

1.4 Other Work and Summary
Various portions of this system are treated in greater detail

in the rest of this report. In addition, work underway on answering
complex and vague questions, and on "browsing” (looking for "interesting"
data in a relatively non-directed manner) and "alerting" (screening data
as it is input for material deemed "intereating" by users) is described
in Chapter 5, and in greater detail in Conrad (1976).

The rest of this report is organized as follows:
Chapter 2 describes the language understanding phase in detai.1.
Chapter 3 describes our relational data base system and also gives

background information on other such systems.
Chapter 4 describes various components of the system and imple­

mentation details.
Chapter 5 is a preliminary report on our work on browsing.
Appendices describe the 3-M data base, the kinds of questions

that the Navy has asked of this data base in the past, and other
miscellaneous information.

-30-

2. The Language Understanding Phase

2.1 The Network

The parsing is accomplished by a large ATN network. The network
consists of a SENTENCE network and twelve specialized sub-networks which
recognize such constituents as time specifications, plane specifications,
etc. The entire parser currently consists of approximately 700 states.

The SENTENCE network guides the overall processing of the user's
request. It attempts to ascertain what basic kind of question the user
is asking and applies the various specialists to gather the constituents.
When it has processed the entire sentence, it constructs an internal repre­
sentation in the Paraphrase Language (see section 2.3).

2.1.1 The Specialist Sub-Networks

Whenever the SENTENCE network suspects that a particular type of
phrase is present in the user's request, it calls the appropriate specialist
sub-network. The specialist attempts to parse that constituent, and, if
successful, returns a representation of what it found in the paraphrase
language.

The following gives a brief description of the twelve specialist
networks and some example of typical phrases they recognize.

PIANETYPE: Recognizes noun phrases which refer to a plane or group of
planes. Examples of the phrases it recognizes are:
* "Skyhawks that had engine damage"

"The F4 with tail number 00048"
"Plane 061"
"BUSER number 016"

MA.INTTYPE: Recognizes phrases referring to maintenance, .either by their
work-unit-code, action-taken-code, or type-maintenance-code.
Some of the constructions recognized are:

"unscheduled maintenance on ..."
"scheduled work with ...

-31-

MAINTAT: Recognizes maintenance actions when referred to by their action-
taken codes. Some examples of these phrases are:

"action taken code Q"
"AT 6"

MAINTTM: Recognizes maintenance actions when specified by a legal type-
maintenance code. For example:

"TM Y"
"type maintenance code 10"

MAINTWUC: Recognizes maintenance when referred to by a legal work-unit
code. Examples of accepted phrases are:

"system work unit code 46"
"WUC 91"
"work unit 97"

DAMAGETYPE: Recognizes a specification of damage to aircraft. The
damage can be to a general area or system, or can refer to a parti­
cular how-malfunction code or codes. For example:

"damage to electronic systems"
"damage due to howmal code 53"
"launch damage"
"mechanical systems damage"
"HOWMAL 45 damage"

TIMEPP: Recognizes specifications of time periods, either as prepositional
phrases or other adverbial phrases. A time period can be a day,
a month, a year, or a span of time between two days, months, or
years. For example, the following are accepted:

"last month"
,rbefore April 73"
"between January 1 and June 31, 1975"
"during the month of August"
"on 10 Dec. ’75"

-32-

DATE: Recognizes a time period which is a date. A date can contain a
value for the month, day and year. Some strings which are
accepted include:

"June 29 '73"
"1 January"
"July fourth, 1976"
"1 2 76"

PLACE: Recognizes a phrase denoting a location. Our current imple­
mentation accepts locations in a coded form, although a few common
names are included. Some examples are:

"P9R"
"Midway"
"VMFA-122"

CODETYPES: Recognizes phrases which refer to one of several classes of
codes used in the data base. These include the action-taken
codes, work-unit codes, etc. Examples are:

"when discovered codes"
"malfunction codes"

ABBREV: Recognizes a number of phrases which are mapped into the
appropriate abbreviations as well as accepting abbreviations
and producing the appropriate phrase.

AMOUNT: Recognizes phrases used as numerical quantifiers. It produces
a list of predicates which represent the phrase. Examples are:

"three or more times"
"more than 6"
,rbetween 100 and 200"
"greater than 100 but less than 1000"
"30"
"any"

-33-

2.1.2 An Example of a Network

The AMOUNT net is delegated the task of recognizing phrases which
are used as numerical quantifiers and producing a list of predicates which
represents the phrase. It accepts such strings as "more than 6", "exactly
twelve times", and "between 100 and 200".

Figure 2.1 shows this network in a graphic form. In this figure
we use the following conventions. An arc labeled with a word or list of
words in parentheses is taken if and only if the current input word is a
member of the list. An arc with a word in angle brackets is taken if the
current word is a member of that lexical category. For example, the arc
labeled ^ONJ^ is taken only if the current word is a conjunction. An
arc labeled JUMP! can be taken at any time, but the input word is not
advanced. An arc labeled PUSH! makes a recursive call to another subnet
before it is taken. The actual code for this network is given in
Appendix C.

2.2 The Parser

Although we call this stage parsing, the term is somewhat misleading.
Conventionally, a parser is an instantiation of a grammar. A grammar is
a body of syntactic knowledge which is concerned with the structure of well-
formed sentences (or strings) and not their meaning. We have chosen to
implement a "semantic grammar" [Brown and Burton (1976)], that is, a grammar
which encorporates both syntactic and semantic information. This grammar
will accept only those sentences which are semantically well formed (i.e.
meaningful) with respect to our system.

Thus, in our system there is no real distinction between knowledge
which is syntactic and knowledge which is semantic or pragmatic. For
example, the knowledge of the general form of a noun phrase (see [woods
(1970)] or [Winograd (1972)]) is not to be found in any one place, but
distributed within the various semantic noun phrase recognizers. Our
system has such specialists for recognizing noun phrases referring to planes,
maintenance actions, codes, times, locations, etc.

-34-

<COMP> <CONJ > < IN T E G E R > <NEG>

MORE THAN AND 1 , 2 , 3 . . . NO
AT LEAST B U T ONE NONE

EXACTLY OR TWO NOT

APPROXIMATELY TH R E E •
AS MANY AS • . .

. • • • •

•

Figure 2.1 The AMOUNT net

-35-

2.2.1 Advantages of a Semantic Grammar

We have found that the notion of a "semantic grammar" has a number
of important advantages. Some of these are:
(1) Sentences which are parsed are only those which are "meaningful" to

the system. For example, the sentence:
"How many engine repairs required maintenance in May"

is immediately rejected. Our parser embodies the concept of ’plane
require maintenance’ but not that of ’maintenance require maintenance'
Because a sentence must closely fit one of a number of 'request frames
the chance of it being misunderstood is lessened.

(2) The processing of a sentence is guided by syntactic, semantic, and
pragmatic knowledge. We can make use of predictions and expectations
to focus on the 'most likely' interpretation of the sentence. Many
potential ambiguities can be immediately resolved or never seen at
all. For example, the word WING is ambiguous between the sense "a
part of a plane" and the sense "a squadron of aircraft". The local
context of a sentence is often all that is necessary to resolve t:he
ambiguity. The sentence:

"Were repairs done to that wing?"
selects the first sense since we recognize the concept 'someone repair
plane-part:' but not that of 'someone repair plane-group'.

(3) We can achieve efficient recognition of constituents through the
use of specialists. A general noun phrase parser, such as the one
used in the LUNAR system [woods et al, (1972)], must be aware of many
syntactic constructions which are special to certain constituents.
For example, most of the syntactic features which can appear in a
general noun phrase will not be found in a noun phrase which is speci­
fying a date or a time. Some syntactic forms are closely tied to
certain words or semantic classes of words. For example, "factive"
nouns such as FACT, IDEA, MOTION, etc., can be used to introduce a
non-reduced that-clause as in sentence (Si).

(SI) The fact that the plane crashed is important.

-36-

(4) The use of a semantic parser simplifies the handling of the problems
of ellipsis and anaphoric reference. When our system discovers a
pronoun or hypothesizes that a constituent has been deleted, it can
immediately restrict the set of possible referents on semantic grounds.
The referent must be one which satisfies the semantic constraints of
the sentence as seen so far. Consider sentence (S2) when followed
by either (S3) or (S4).

(52) "Which Skyhawk suffered birdstrike damage?"
(53) "Did it suffer any other damage?"
(54) "When did it occur?"

In sentence (S3) the "it" can only refer to the skyhawk of sentence
(S2) since the parser recognizes the concept of 'plane suffer
damage' but not that of 'damage suffer damage'. Similarly, in pro­
cessing sentence (S4), the only candidate referent is "birdstrike damage"
since the parser accepts sentences of the form "When did <damage>
occur" but not "When did <plane> occur".

(5) Treating syntactic and semantic knowledge in a more uniform way
leads to a well-balanced system. It is our observation that most
natural language processing systems tend to have much more developed
syntactic processors than semantic processors. In other words, they
can parse more than they can understand. Although this is not a serious
drawback, it can cause considerable overhead in a practical system.
In addition, many non-grammatical requests can be correctly understood
by a semantic parser which would be rejected on syntactic grounds by
a system which first performed a syntactic parse on all input.

2.2.2 Disadvantages of a Semantic Grammar

We feel that our current system has worked quite well at the present
level of competence. As we try to extend the domain of discourse of the
system, however, the basic structure will have to be rethought. It is our
belief that to achieve a truly significant level of intelligent linguistic
performance we must more fully investigate the interactions between the
different kinds of linguistic knowledge.

-37-

(1) The primary difficulty with a "semantic grammar" is that it does not
capture much of the regularity of natural language. A semantic grammar
is specifically designed to be conversant in a single domain of dis­
course. If we wish to construct a similar system for a different domain,
there is no clear package of syntactic knowledge that the two can share.
This problem exists for other kinds of "linguistic" knowledge as well.
For example, every natural language system should have knowledge of the
pragmatics of conversation. When a user says "I want to see X", he
is not just informing the system of his desires, but commanding it to
"show him X". Such a knowledge of speech acts is independent of the
domain of discourse. Indeed, this sort of knowledge seems to be a
language universal which cuts across languages and cultures.

(2) The fact that we are treating syntax, semantics, and pragmatics on a
uniform basis has other effects. If a sentence is rejected by the
grammar it is difficult to discover where the problem lies. It is not
possible to distinguish sentences which are ill-formed syntactically
from those ill-formed semantically or pragmatically. This situation
has an impact on the ease with which such a system can be modified,
either by the creators or itself.

(3) The ability of a system to apply its syntactic knowledge in the
absence of a semantic component would allow it to more easily handle
certain kinds of learning. For example, consider the sentence:

(S5) "Did any of these hanger queens fly last month?"
Let's suppose that our system does not know what the phrase "hanger
queen" means. Given this sentence, it could not progress beyond that .
phrase and would be unable to use the latter part of the sentence to
help narrow the possible meanings. We can imagine a system which could,
in this case, apply syntactic and morphological specialists to recognize
that "these hanger queens" appears to be a well formed noun phrase,
and could then continue to process the sentence.

If the other components of the- sentence are recognized, it would
not be difficult to hypotehsize that a "hanger queen" might refer to
an aircraft. With this hypothesis in hand, the system would be in a

r’»

-38-

good position to interact with the user and perhaps nail down an
adequate notion of what is meant. (We, in fact, intend to add this
ability to our system in the near future.)

(4) A potential problem with the approach we have taken is the strong
"top-down" nature of our recognition strategy (as opposed to "bottom-
up" or data driven). In our current system, we feel that the advantages
of a top-down approach clearly outweigh the drawbacks. A straight­
forward extension to a considerably larger domain of discourse may
reverse this relationship.

-39-

2.3 Context Registers and Subnets

In the PLANES system we have tried to combine as many of the
syntactic and semantic processes together as possible. We felt that
as the parsing task occurs, useful semantic information is also being
generated concurrently. To gain access to this information, much of our
parser was concerned with parsing specific entities known to be required
for inquiries about information in the PLANES data base. Such necessary
information includes the types of planes, the damage types, the maintenance
types, the time period in question, etc. As each of these entities is
matched, it is saved--either in some coded form or exactly as it appears
in the sentence--in a register. We call these registers "context registers

The context registers are normally filled with the information
that has been returned from the subnets of the augmented transition network
These subnets are designed to parse specific parts of the user’s request.
When a parse of a specific entity occurs in the subnet, a list is generated
that contains the "essense" of the entity. Some of the information coded
in the lists includes such information as whether or not a pronoun was
parsed, specific code numbers, or dates. A list of subnets and what they
return to the upper level net (a process called "popping") follows.

*planetype: Parses a name of a plane. It pops up

(plane (pronoun +) (type +) (buser +)
(plneg +) (pldam +) (plmai +)).

*mainttype: Parse a maintenance-type, maintenance-action, or work unit
code. It pops up

(maint (pronoun +) (type-maint +)
(action-taken +) (workunitcode +)).

*maintat: Parse an action-taken(at) code that gives the current status
of a maintenance task. It pops up ((at)).

-40-

*mainttm: Parse a maintenance type(tm) code. It pops up ((tm)).

*mainwuc: Parse a work unit code(wuc). It pops up ((wucsys)).

*damagetype: Parse a how malfunctioned code(howmal). It pops up
((howmal)).

*timepp: Parse a time range. It pops up

(time (date l) (date 2>) .

*date: Parse a date. It pops up

(date (month +) (day +) (year +)).

*place: Parse a place. It pops up (place +) .

*codetypes; Parse a codetype (describes the information available in
the data base). It pops up ((code)).

*abbrev: Parse an abbreviation or a phrase to be abbreviated. It pops
up

(abbrev (phrase) (abbrev)).

^amount: Parse a quantifier. It pops up

(((relation) (no.)) ((relation) (no. »>.

The information that is popped from the subnets is stored directly
I

in the context registers. These registers can then be used to form a
paraphrase of the user's request. The paraphrase generated by our current
system is somewhere in between the user's English request and the formal
query language needed to search the data base. Eventually we intend to
generate a more English-like paraphrase. It is a relatively simple matter

-41-

to convert the paraphrase into the query language. Further details can
be found in the section on the Translator (Section 4.3).

The paraphrase currently popped for each sentence is of the form:

(OPER (PLOT <T or NIL>) <SUBJ> (QUANTS) (NEG <T or NIL))
((a c t) (o b j) (q u a n t o)) (t i m e) ((o r i g i n) (d e s t ination)))

OPER: count, findall, findone, dates, where

PLOT: T if want answer plotted; NIL otherwise

SUBJ: *planetype, *mainttype, *damagetype, time, hours, flights,
failures, parts

QUANTS: Contains any quantifier of the subject; e.g. >20 flights,
(15 hours, etc.

NEG: T for negation of the action; NIL otherwise

ACT: malfunction, occur, repaired, on, arrive, nor, nors,
norms, normu, fly, found, need, perform [l]

OBJ: same as subject

QUANTO: contains any quantifier of the object

TIME: gives the time period over which the question is to be
answered

ORIGIN: the point of origination of a flight

[l] NOR = not operationally ready; +S = due to supply (waiting for
parts); +MS = due to scheduled maintenance; +MU = due to unscheduled
maintenance.

-42-

DESTINATION: the destination of a flight

As an example, the paraphrase generated for "Where was plane 3
repaired between November 1 and December 30 1972?" is:

((o p e r) WHERE

(PLOT) (plot NIL)

(SUBJ) (plane (pronoun NIL)

(type PLANE)
(buser 3.)

(plneg NIL)

(pldam NIL)

(plmai NIL))
(q u a n t s) NIL

(n e g) (neg NIL)

(
(a c t) REPAIRED
(OBJ) NIL

(q u a n t o) NIL)

<TIME> (time (date (month (11. 304. 305.))

(day 1.) (year 72.))

(date (month (12. 334. 335.))

(day 30.) (year 72.)))

(ORIGIN) (NIL

(DESTINATION) NIL))

-43-

2.4 Pronoun Reference and Ellipsis

Pronoun reference is one of the more difficult tasks in natural
language understanding. It requires using the current context of a
sentence to find a set of possible elements that the pronoun may stand
for from the immediate past history of inquiries to the system. After
weighing the merits of each member of the set, the system must select one
as the "best" choice to replace the pronoun. Ellipsis is a very similar
problem that occurs when a request does not express a complete thought.
It involves filling in missing information from a user's request with
information from the immediate past. As an example a user might follow
the question "How many maintenance actions did plane 004 have in May
1974?" with "In June?".

Winograd (1972) handles pronoun reference at the time a pronoun
is parsed. He utilizes a set of programs that are designed to handle
specific pronouns. For example, the definitions of "it" and "they"
utilize a special heuristic program which looks into the past for any­
thing that the pronoun might refer to. For each possibility, a value is
assigned which represents the likelihood that the phrase could be repre­
sented by the pronoun. When more than one phrase is possible, all are
carried along through the rest of the analysis of the sentence. At the
end, an ambiguity mechanism is applied to decide which is the best choice.
If no choice can be made, the user is asked for clarification.

Wood's (1972) routine analyzes pronouns in the semantic phase.
When a pronoun is found as a node in the syntax tree, a function is
applied to the node to try to determine what the pronoun stands for.
This determination is made by searching through a list of antecedent
noun phrases for one that has a syntactic and semantic structure parallel
to the given node. The node is then replaced by the antecedent noun
phrase that was selected.

The SOPHIE [Brown and Burton (1975)] natural language processor
handles ellipsis in a novel way. When it deduces that information is

-44-

mi‘s sing from the current request, SOPHIE looks for a previously mentioned
use of a currently specified object. The semantic grammar is used to
identify the type of concept that is involved. A context mechanism then
searches the past history for a specialist in a previous parse that will
accept the given concept as an argument. Once this is found, the phrase
can be substituted into the current request.

Our current implementation of PLANES handles pronoun references
to the previous request only. This is accomplished relatively easily
and cheaply by simply saving the card images found during the last query
of the data base in a temporary file. Thus, when a pronoun is parsed,
the query language is generated to search the temporary file only.
Thus, for example:

(1) "How many flights did plane 48 make during Dec. 1969?"

Paraphrase generated:

(COUNT (plot NIL)

FLIGHTS
NIL

(neg NIL)

(FLY (plane (pronoun NIL) (type PLANE)

(buser 48.)(plneg NIL)

(pldam NIL)(plmai NIL))

NIL)

(time (date (MONTH (12. 334. 335.))

(day NIL) (year 69.))

NIL)

(NIL NIL))

-45-

Query language generated:

(FIND 'ALL
'((V 0)) C"0" is the type of file to search]

'((SUM (V TOTFLTS)))

'(AND (EQU (V ACTDATE) 912.)

(EQU (V BUSER) 48.))

'NIL)

(2) "How many flight hours did it log?"

(Thus, "it" refers to "plane 48" in (1).)

Paraphrase generated:

(COUNT (plot NIL)

TIME

NIL
(neg NIL)

(FLY (plane (pronoun IT)

(type NIL) (buser NIL)

(plneg NIL) (pldam NIL)

(plmai NIL))

NIL)

(time (date (month (12. 334. 335.))

(day NIL) (year 69.))
NIL)

(NIL NIL))

-46-

Query language generated:

(FIND 'ALL

'((V 00031)) [this causes a search of only the

temporary file 00031 to take
place.]

'((SUM (V TOTHRS)))

'(AND (EQU (V ACTDATE) 912.)

(EQU (V BUSER) 48.))
'NIL)

One can see that the use of temporary files in handling pronoun
references can be very efficient since it saves searching through a great
number of cards that had been previously searched. However two limi­
tations occur in the current implementation: (1) pronouns can only
reference noun groups in the previous request; and (2) should a request
use a pronoun reference to the last sentence but ask for information
that is contained in a different set of cards than those in the temporary
file, no answer could be found. As an example, consider

(1) "How many flights did plane 48 make in April 1973?"

This would form a temporary file of the monthly summary card for April
1973 for plane 48.

r

If we followed with:

(2) "What damage occurred to it?"

This could not be answered since the temporary file does not contain
damage codes.

-47-

We wish to solve these problems without giving up the time
advantage introduced by the temporary files. It should be relatively
easy to solve the second problem. We can simply construct a table of
fields present on each type of data card. Then if the field we must
key on due to the user's request is not present on the cards in the
temporary file, we will know that we must search the data base directly.

The solution to the first problem will be somewhat harder. It
will require the saving of the past history of all paraphrases, queries,
and temporary files. These can be saved in a stack (possibly of fixed
size to limit its size) to allow us to examine the most recent entries
first. To hypothesize what the pronoun refers to, we must decide what*
category it is applicable to (simply examine the current paraphrase for
this), and then find the last non-pronoun entry that was made in this
category. Further examination of the paraphrase and its query language
request can be used to either reinforce or deny our hypothesis. If too
many conflicts appear, we may search further back, otherwise we will
assume that we have found the correct pronoun reference. When the con­
flicts cannot be resolved, we can ask the user to tell us which one of
a number of possible choices the pronoun stands for. Once a reference
point has been found to an object in the past, we can examine all temporary
files back to that point to see if they can be used to answer our request.
If not, we can still search the data base directly.

This method will also give us another advantage. We should be
able to change the current context back to an earlier environment; e.g.
by stating:

"Earlier we were talking about Skyhawks."

We can search back through the paraphrases, query requests, and temporary
files for a reference to "Skyhawks," and then be ready to use previous
information over again.

-48-

Storing the context registers in a stack makes the saving of
previous paraphrases relatively easy. It also makes ellipses relatively
simple to handle. We simply fill in any missing--but required--infor-
mation by finding the last non-empty entry of a particular context
register. Thus if given the sentences:

(1) "Tell me all the malfunctions found on the A7 with buser 12
on Feb. 15, 1970."

(2) "On Feb. 16, 1970."
/

the syetem can generate a paraphrase for the second request by copying
all context registers from the last request except the one for the time
period. The new time period is then used. As another example, if given

(3) "How many A7's had greater than 20 NOR hours on Feb. 15,
1970?" and

(4) "How many had greater than 30 NOR hours?"

all context regesters for the first request are copied except the ones
used to quantify NOR hours. This number is filled in from the new request.

The detection of missing information occurs by determining if
a sentence has run out of words permaturely or if a verb appears where
a noun phrase is expected. The beauty of the transition network is
that even if a mistaken ellipsis is made, the parsing process continues,
and the mistake will most likely be detected further into the parsing
process.

2.5 NETEDI: The Augmented Transition Network Editor

The structure of our augmented transition network (ATN) [Woods
(1970)] is such that we often must add to it new sentence types. Before
NETEDI existed, we had three ways of doing this: the TECO or SOS standard
languages for editing files, and the LISP editor [Gabriel and Finin (1975)]

-49-

It turned out that most of the new arcs we added for these new sentence-
types were "WRD" arcs. Here is an example of a typical WRD arc:

(WRD WHAT T (TO S:12))

This recognizes the word "what" and jumps to state s:12. (The "T" is
a test; any LISP predicate could be inserted in place of it. If the
predicate evaluates to "T" the arc is taken.)

An arc similar to this one has to be inserted for each work in
a new sentence-type. As one can perhaps guess, this is a tedious process.
Furthermore, it is not really necessary. Since most of the arcs will
be of a similar form, why not let the computer do the busy work? All we
should have to tell it is which words we want recognized and in what
order. A program can then make up a next state, form the arc and insert
it into the ATN.

Similar redundancies appear in other types of arcs. NETEDI has
been designed to rid the programmer of the necessity of contending with
these and also to give him or her a concise, easily understood repre­
sentation of sentences to be added to the ATN.

Here is an example of a sentence-form:

((WHAT WHICH) *PLANETYPE ($ROOT (NEED REQUIRE))
*MAINTTYPE IN MAY)

This is the kind of input that NETEDI receives and turns into new parts
of the ATN. Notice that the sentence-form is in the form of a list.
NETEDI looks at elements of this list one at a time. We'll follow this
example through NETEDI assuming we have an ATN as in figure 2.2. (The
real ATN is much larger, of course.)

Basically NETEDI is composed of three stages: (1) the tracing
stage, (2) the creating stage and (3) the answer stage. During the
tracing stage NETEDI tries to match as much of the sentence-form as it
can to existing arcs in the ATN. During this stage the ATN is not changed
at all-merely examined.

A,

-50-

Figure 2.2 An ATN for NETEDI operation example

-51-

The first thing NETEDI sees in the sentence-form is the list
"(WHAT WHICH)". Since it's in the tracing stage, it tries to find an
identical arc pointing out of the START state. There is one: it goes
to state S2. This is called a "WRD arc". Now NETEDI looks at state S2
hoping to find an arc to match "*PLANETYPE" (a "PUSH arc"). Again it is
successful: it finds the arc which points to S3. At S3 NETEDI cannot
find an arc to match the next element in the sentence-form, i.e. "($ROOT
(NEED REQUIRE))", so it shifts into the creating stage.

It should be mentioned that when NETEDI sees in its sentence-form
a single word not starting with "*", it doesn’t just proceed to look for
an associated WRD arc; before doing so, it checks its dictionary for two
things:

(1) It tests for compound words whose parts we would rather
treat separately. For instance, "anything" is treated by PLANES as the
two words "any" and "thing". If this information is entered in the
dictionary for a word and NETEDI encounters that word in one of its
sentence forms, it is able to make the necessary substitution. So the
sentence-form "(DID ANYTHING CRASH THIS MONTH)" becomes "(DID ANY THING
CRASH THIS MONTH)".

(2) It tests for words which are part of common phrases, e.g.
"as well as" or "all right". A mechanism exists in PLANES to treat these
phrases as one word. This is done by storing the information in the
dictionary entry of the first word of the phrase. If it can, NETEDI
replaces the phrase with the given single word. For instance the phrase
"as well as" gets replaced by the word "aswellas" in the sentence-form
and NETEDI tries again. So the sentence-form "(DID A PHANTOM AS WELL
AS AN F4 CRASH IN MAY)" is replaced by "(DID A PHANTOM ASWELLAS AN F4
CRASH IN MAY).

The creating stage begins when NETEDI finds that it cannot match
an element in the sentence-form to an arc in the net. From here on the
program has to create new states and new arcs in the ATN corresponding
to the words in the remaining part of the sentence-form.

-52-

"Creating" refers to the new arcs and new states which are created
in order to recognize new sentences. In our example, we are in state S3
and we have to add an arc to recognize ($ROOT (NEED REQUIRE)). (This
arc incidentally, will recognize any word whose root form is "need" or
"require", e.g. "needed", "needs", "will require", etc.)

The first thing we need is a name for a new state--one which has
not yet been used. This is so the arc will have a place to point to.
We can assume that in general arcs begin and end at a state. We can see
from figure 2.2 that the name S12 hasn't been used yet. So, we create a
state with that name and an arc to it (see figure 2.3a).

This process is continued, adding arcs and states until there are
no more words in the sentence-form. When this point is reached, NETEDI,
instead of creating a new state for the last arc to point to, connects
it to the (already existing) "END" state. The end result of this process
is shown in figure 2.3b. The program now moves on to its third and final
stage, the answer stage.

The answer stage is named as it is for the following reason:
When the system is asked a question, it usually is expected to return
an answer, e.g. the question "Which Phantoms required engine maintenance
in May?" (one of the questions the example sentence-form is designed to
handle) would get an answer something like this: "BUSER 0092, BUSER 0157".
The way it forms an answer is to execute a LISP function which searches
the data base. The purpose of the answer stage then is to put the appro­
priate function for the new sentence form at the end of the ATN.

There is now a working version of NETEDI. It can insert any kind
of arc, but doesn't know how to do anything else, e.g. set registers,
test values, etc. This version also doesn't have a very clean interface
to the LISP editor (which it uses as a file manipulator). These problems
are being worked on currently.

An example of NETEDI in action follows. In figure 2.4 a sample
question is given to PLANES to answer. PLANES can't answer it, so NETEDI
is called by the function "CONVERSE" (see figure 2.5). The sentence-
form corresponding to the losing sentence (and some others) is typed in

-53-

Figure 2.3b Resulting modified ATN (compare figure 2.1)
FP-5C39

-54-

Please enter your question....
» For each month in 1973 show the NOR hours for plane 3

Parsing.....
[CPU time was 0.69 seconds. Real time was 1.63 seconds.

I could not understand your request please rephrase it.

Figure 2.4 NETEDI example; a question PIANES
cannot answer initially.

-55-

(CONVERSE)
AUGMENTED TRANSITION NETWORK EDITOR VERSION 1

PLEASE TYPE THE SENTENCE-FORM TO BE ADDED TO THE NETWORK
(FOR EACH MONTH ($CAT PREP) 1973. ($ROOT (GIVE SHOW)) THE NOR HOURS
FOR P LANE 3)

PLEASE TYPE THE ASSOCIATED ANSWER-FORM
(POP (QUOTE (DATES (PLOT) TIME NIL (NEG NIL) (NOR (PLANE (PRONOUN NIL) (
TYPE NIL) (BUSER 3)) NIL) (TIME (DATE (MONTH NIL) (DAY NIL) (YEAR 111))
NIL) (NIL NIL))))

(

WHAT IS THE INITIAL STATE OF THE NETWORK
S0001
WHAT IS THE FILENAME AND PPN OF THE NETWORK TO BE EDITED?
(PLEASE TYPE IN THE FORM: (FILENAME EXT (PROJECT# PROGRAMMER#)))
(ATNNEW FOO (1000 423))
LOADING: (ATNNEW FOO DSK (1000 423))
;FASLOADING (ATN FAS DSK (1000 130)) FOR: DEFATN

16 S-EXPRESSIONS, 0 FUNCTIONS READ.
;FASLOADING (HATN FAS DSK (1000 130)) FOR: EDITATN
;LOADING EDIT.70

;FASLOADING (EDIT FAS SYS) FOR: EDITl
LOADING EDIT.INI (NIL)
THANK YOU
FOO
14 NEW STATES WERE ADDED TO FOO
NIL?

Figure 2.5 Dialogue to add to the system the ability
to handle the question from figure 2.4.

-56-

along with the associated answer-form, and a few other items. NETEDI
thanks the programmer and notes that fourteen states were added to the
net.

In figure 2.6 the question is asked again. This time the net
can answer it.

Now suppose we want to add to the network the ability to answer
a similar question, e.g. one which matches on some initial segment a
sentence already in the ATN. Figure 2.7 shows such a question. Note
that this time only five new states were added. PLANES can now answer
this new type of question, as shown in figure 2.8.

/

-57-

Please enter your question....
>:> For each month in 1973 show the NOR hours for plane 3.

Evaluating.
time was 3.1 seconds. Real time was 4.73 seconds.

290 ! X
i
i X
1
1 X
1
1 X

217! X
1
1 X
i
i X

145! X
i
i X
i
i X

72 ! X
1
1 X

o! X X X X X
304 303 303 302 301

MIN =0.0
ACTDATE

AVERAGE =58.0 MAX - 290.0

Figure 2.6 PLANES can now answer the question.

-58-

(CONVERSE)
AUGMENTED TRANSITION NETWORK EDITOR VERSION 1

PLEASE TYPE THE SENTENCE-FORM TO BE ADDED TO THE NETWORK
(FOR EACH MONTH ($CAT PREP) 1973. ($ROOT (GIVE SHOW)) THE NORS HOURS FOR
PLANE 3)

PLEASE TYPE THE ASSOCIATED ANSWER-FORM
(POP (QUOTE (DATES (PLOT T) TIME NIL (NEG NIL) (NORS (PLANE (PRONOUN NIL
) (TYPE NIL) (BUSER 3)) NIL) (TIME (DATE (MONTH NIL) (DAY NIL) (YEAR 111
)) NIL) (NIL NIL))))

THANK YOU
FOO
5 NEW STATES WERE ADDED TO FOO
NIL

Figure 2.7 A related question is now
easier to add

-59-

Please enter your question....
» For each month in 1973 show the NORS hours for plane 3.

Evaluating....
[CPU time was 3.0 seconds. Real time was 6.91 seconds.

173 ! X
i
i X
1
1 X
i
i X

129 1 X
1
1 X
1
1 X

86 | X
i
i X
1
1 X

43 ! X
i
i X
1 X

o i x X X X X
304 303 303 302 301

ACTDATE

MIN = 0.0 AVERAGE = 34.6 MAX = 173.0

Figure 2.8 PLANES can now answer the
question from figure 2.7

-60-

3. Implementation of a Query Language Based on the
Relational Calculus

3.1 Introduction -- The Relational View of Data

The problem with which we have been faced is the development of
a query language for the 3-M data base. The intended application of this
language is the intermediate language for the PLANES system [waltz (1976)].

Codd (1970) has introduced the notion of a relational view of data.
This Data Model (DM) is discussed in detail by Codd (1971a) and Date (1975).
The relational model has its foundation in the mathematical theory of
relations. In this model the data is viewed as being divided into "rela­
tions" which correspond to files in conventional data base terminology.
Each relation contains a collection of "tuples" which correspond to records,
and each tuple contains one or more "domains" or fields. A relation can
be conveniently viewed as a table with each row being a tuple and each
column a domain.

Date regards the relational view as superior to both the Heirar-
chical view of data (typified by the Information Management System (IMS)
[IBM (1971)] and the Network view (typified by the Data Base Task Group
System (DBTG) [ACM (1971)] in that the latter two systems are both data
dependent while the relational view stresses data independence which means
that the user is isolated from the actual physical organization of the
data. Data independence is particularly important in this project where
we are currently working with a small subset of the large 3-M data base.
If our natural language system were to be upgraded to work with the entire
data base (or a larger part of it) substantial changes would be necessary
in accessing methods and data organization, but, using the relational
model, these changes need not effect the "data model" seen by the users.
In addition, the internal tabular format of the data base as it is now
organized is ideally suited to a relational model of the data. For these
reasons, we have decided to use a relational model for the data base.

-61-

3.2 A Relational View of the 3-M PLANES Data Base
Having chosen the relational model to represent the data, we were

then faced with the problem of applying this model to the 3-M data base.
A study of the cardtypes used in the data base showed that certain groups
of cardtypes could easily be viewed as relations. The cardtypes thus chosen
to comprise each relation are shown in Table 3.1.

In this manner we have organized the data base into a number of
relations with each relation containing certain cardtypes. The tuples
in a relation now become the individual cards comprising the data.

To make file accessing more efficient, we have partially inverted
the files on two frequently accessed domains, the BUSER and the year
field of the action date.

3.3 The Data Sublanguage ALPHA

Having thus selected a model for the data, our next step was
to select a query language. Two families of higher level data sublanguages
for a relational data base are based on, alternatively, the relational
algebra (derived from the algebra of sets) or the relational calculus
[Date (1975), Codd (1971b), Codd (1971c)] (derived from the predicate
calculus). Codd (1971c) and Date (1975) have compared these two and
found the relational calculus to be superior, particularly for use as
a target language for a natural language system. The main reason for
their choice of the relational calculus as a target language was that
the calculus is non-procedural; i.e., a query in the relational calculus
conveys little information about how to proceed in searching the data
base. The relational algebra is more procedural which makes the automatic
construction of a query by a natural language system somewhat more difficult

A data sublanguage (DSL) refers to the parts of a query language
which are oriented strictly towards data accessing as opposed to computation
The host language (e.g., LISP, SAIL, etc.) is the language in which the
DSL is embedded. We have chosen to use the relational calculus sublanguage,
DSL Alpha, proposed by Codd (1971b). For our purposes, the DSL will
be embedded in LISP, so we have modified the syntax of DSL Alpha (as
presented in [Codd (1974)] to be compatible with LISP. The syntax of

-62-

ition Cardtypes Description
A 76 Flight data summary
F 12,32 Failed parts
I 17,27,47 Installed parts
M 11,21,31,41 Authorization of maintenance
0 79 Overall summary
R 16,26,46 Removed parts
U 71 Maintenance data summary

Table 3.1 Relations for the 3-M Data Base

-63-

the resulting language is presented in Table 3.2 (note that, since our
natural language system is aimed only at retrieval of data, we omitted
those portions of DSL Alpha which are relevant to data modification).
The notation used is BNF; terminal symbols are indicated by capital letters

The semantics corresponding to this syntax are, briefly, as follows
The function FIND is the top level function of this implementation. It
returns an output relation which is a list of the form ({name list)
(tuple list)).
1. The (name list) is a list of domains in the (tuple list).
2. The (tuple list) is a list of output tuples with each tuple in the

form specified by the (target-list) specification. The (tuple list)
contains only unique tuples; i.e., all duplicates are eliminated.

3. (quota) is the maximum number of tuples permitted in the (tuple list)
(if more occur, the list is truncated after sorting).

4. (range-specs) associates tuple variables with specific relations
(a tuple variable is a variable which takes as values the tuples in
its associated relation). All tuple variables to be used in the
FIND function must be declared in (range specs).

5. (target-list) specifies the (fterm)'s which make up the tuples in
the (tuple list) above.

6. (term) references a specific domain of the relation for the specified
tuple variable; i.e., (X HOWMAL) references the "HOWMAL" domain for
the variable X. (X (TOTAL)) means that the user defined function
TOTAL will be executed for each value of X which permits the summing
of several domains, for example.

7. (bool-expr) is a relational calculus expression which must be true
for each tuple in the output list.

8. (sort-expr) specifies how the output relation is to be sorted, the
domain on which to sort being specified.

We now give two examples of the use of the query language. First*
we have the query,

(S3.1) Find the total number of hours of unscheduled maintenance for
BUSER 3 during 1972.

-64-

query__stt : := (FIND quota (range_specs) (target_list) (bool__expr)
(sort_expr))

quota ::= integer ! ALL
range_specs ::= (tuple_var rel_name) range_specs { null
target_list ::= fterm J fterm target_list
fterm ::= term \ (fen arglist)
term : := (tuple__var attribute)
attribute ::= domain ! (user fen)
arglist ::= term 1 arglist term
bool__expr : := bool expr i (quant tuple var bool expr)

(log bool_expr bool__expr) j (NOT bool expr)
quant ::= ALL J SOME
pexpr ::= (pred jterm jterm)
pred ::= NEQ | EQU 1 LEQ | GEQ 1 LT ! GT
log ::= AND J OR
jterm ::= term \ const
fen SUM J AVG j COUNT 1 MIN ! MAX
sort_expr ::= (attribute seq) 1 NIL
seq ::= UP \ DOWN

Table 3.2 Syntax for DSL Alpha Implementation

-65-

This translates into the DSL Alpha expression:

(Q3.1) (FIND ALL ((V 0)) ((SUM (V NORMUNS))) (AND (EQU (V ACTDATE) 72)
(EQU (V BUSER) 3)) NIL).

Here V is declared to be a tuple variable on the 0 relation (which contains
cardtype 79, monthly summaries). SUM is a built-in function which, in
this example, sums the NORMUNS domain over all values of V which satisfy
the logic expression.

The second example is,

(S3.2) Find the date and not operationally ready hours for all mainte­
nances which were performed on the same day as a flight.

Our DSL Alpha expression for this is:

(Q3.2) (FIND ALL ((VI U) (V2 A)) ((VI ACTDATE) (Vl NORHRS)) (SOME V2
(EQU (VI ACTDATE) (V2 ACTDATE))) (NORHRS DOWN))

In this query VI and V2 are tuple variables on, respectively, relations
U (cardtype 71, daily maintenance summaries) and A (cardtype 76, daily
flight summaries). In the logic expression (SOME V2 ...), we see that
V2 is existentially quantified, so a given value of Vl will satisfy the
expression only if there exists a value of V2 such that the ACTDATE
domains of the two varibles are equal. The sort expression, (NORHRS
DOWN), specifies that the tuples in the output relation will be sorted in
descending order on the NORHRS domain.

It should be noted that our syntax contains no explicit restric­
tion of the range of a universally quantified variable (e.g., Y in
(ALL Y (EQU (X JCN)) (EQU (Y JCN))) as does the syntax of alpha expressions
as presented by Codd in (1971c). We have assumed that the universe for
such a variable is determined by the monadic (i.e., containing a single
variable) predicates for that variable in the logic expression. For

- 66-

example, in the expression (ALL VI (AND (GT (Vl NORHRS) 10) (EQU (Vl
JCN) (V2 JCN)))) the universe for Vl would be all members of its asso­
ciated relation for which the value of the NORHRS domain is greater than
10.

3.4 Optimization

The next important question is how to implement this language.
Codd (1971c) proposes an algorithm to reduce the relational calculus
to the relational algebra, which, as mentioned above, is. more procedurally
oriented than the calculus. The operations of the algebra (project,
join, divide, etc.) are easily implemented, and so we may search the
data base by reducing an expression in the relational calculus to one
in the algebra and then executing the latter expression on the data base.
For this reduction to be practical, however, it must produce an efficient
expression of the query in the algebra; so we come to the problem of
optimization.

Since the relational calculus is not a procedural language, it
is left up to the query system to discover an efficient strategy for
searching the data base. While Codd's reduction algorithm provides a
relatively straight-forward way to implement a relational calculus language,
it is an inefficient way to proceed. Palermo (1972) has identified two
major problems in the reduction algorithm: 1) intermediate storage
requirements may be extremely large, and 2) a given tuple may be retrieved
more than once from the data base. Palermo proposes modifications to the
reduction algorithm which minimize intermediate storage requirements and
require that no tuple be retrieved more than once. The algorithm uses
statistical information about the data base to dynamically determine the
order in which the relations in the data base are to be explored (the
phrase "exploring a relation" is used to indicate a process of extracting
information related to a specific query).

-67-

3.5 The Implementation

We have implemented Codd’s DSL Alpha following Palermo's algorithm.
A flow chart for the program is shown in Fig. 3.1. The operation of the
program will be discussed below in more detail as we follow through the
execution of two examples.

Our program contains one major enhancement of Palermo's algorithm
in our processing of single variable queries (which we call "simple"
queries) which do not require intermediate data structures to be formed.
For these queries, we form the required output relation as the data base
is searched, rather than building an intermediate object as the data
base is searched and then forming the output relation after the search
is completed. This method results in substantial savings of time and
storage, particularly when a built-in arithmetic function (such as SUM)
is being used.

Another feature of this implementation is a capability to save
the results of a search for future use. This is important, particularly
in a system such as this where a large data base is to be queried inter­
actively. In this situation, interesting results from a query may be
expected to elicit another query, and this query is likely to reference
the tuples just retrieved. This situation can be recognized in the
natural language system when pronoun references are being resolved. To
allow search results to be saved, a flag may be set (before the FIND
function is called) which will cause all tuples satisfying the logic to
be stored in temporary relations. The names of these relations (e.g.,
U0001) are made available to the user (or the natural language system)
who may use them as relation names in subsequent queries.

We shall now describe the basic operation of the program in more
detail. This will be done by means of two examples, one which requires
a simple search and the other a "complex" search. These examples are
essentially the same as those used above in the section on DSL Alpha.

- 68 -

FP-5037

Figure 3.1 Flow chart of relational database system

-69-

3•6 Simple Search
Given the query:

(S3.1) Find the total number of hours of unscheduled maintenance for
BUSER 3 during 1972 which corresponds to the query language form:

(Q3.2) FIND ALL ((V 0)) ((SUM (V NORMUNS))) (AND (EQU (V ACTDATE) 72)
(EQU (V BUSER) 3)) NIL).

The toplevel function FIND first calls the function NORMAL. Since the
logic expression is a single conjunct, the expression is returned sub­
stantially unchanged. We now enter EXPLORE-RELS in which the actual
search is carried out.

Since only one relation, 0, is involved, SELECT-RELS simply
returns that relation. FACTOR has no effect since there is only a single
disjunct in the logic expression (FACTOR is frequently necessary in other
cases since the process of putting a logic expression into disjunctive
normal form often causes the same predicate to appear in every disjunct,
and evaluation of an expression in this form would obviously be very
inefficient). After FACTOR has been exited, the function CODE is entered.

When CODE is called, to generate the code for the search, two
important things are discovered: 1) It is realized that both ACTDATEYR
and BUSER are index domains and some code is generated which will cause
only those tuples in relation 0 and with ACTDATE=72 and BUSER=3 to be
accessed on disk. 2) It is recognized that this is a simple search, so
the code (for the SUM function) is generated to sum the NORMUNS domain
for each tuple as it is retrieved. The code generated by 2) is simply:

(SETQ N (PLUS N (GETFIELD NORMUNS))).
Here N is a variable which is initialized to zero at the start of
the search and GETFIELD is a function which extracts a given domain (in
this case NORMUNS) from a tuple. SETQ is the standard LISP function
which assigns the value of its second argument to its first argument
(in FORTRAN we might write N = N + GETFIELD(NORMUNS)).

-70-

We now exit from CODE and enter a loop where the required tuples
are read from disk one at a time with the above expression being executed
on each tuple. When the search is completed, we have N = 280.

We save this result and exit from EXPLORE-RELS. We now enter
the function OUTPUT where, since sorting is not required, we simply
return the output relation:

(((SUM (NORMUNS))) (280)).

3.7 Complex Search

Suppose that we have two temporary relations A0002 and U0001
which have been created by an earlier search and that the values of some
selected domains of the tuples in these relations are as shown in Tables
3.3 and 3.4 We wish to determine the results of the query:

(S3.2) Find the date and not operationally ready hours for all mainte­
nances which were performed on the same day as a flight which
translates into the query language form:

(Q3.2) (FIND ALL ((A A0002) (U U0001)) ((U ACTDATE) (U NORHRS))
(SOME A (EQU (U ACTDATE) (A ACTDATE))) (NORHRS DOWN)).

This time, NORMAL removes the quantifier (SOME A) from the logic
expression and returns it and the remainder of the logic expression (the
"matrix", which is, in this case, (EQU (U ACTDATE) (A ACTDATE))). These
are passed to EXPLORE-RELS which first calls SELECT-REL which estimates
the intermediate storage that would be required by each relation if it
were explored first and then selects the relation with the minimum storage
requirements. The storage requirements are estimated by following through
the code generation process used by CODE; but, instead of generating code,
statistical information on the data base (e.g., the number of unique
values in a given domain of a relation) is used to estimate the probability
that a tuple will satisfy a given predicate. These probabities are then
multiplied by the number of tuples to be searched to derive the storage

-71-

Table

Table

TUPLE# ACTUATE
1 3179
2 3180
3 3182

3.3 The temporary relation A0002

TUPLE# ACTDATE NORHRS
1 3179 5
2 3179 2
3 3181 6
4 3182 7

3.4 The temporary relation U0001

-72-

estimate. In the present case, the only predicate is a "join term"
which does not restrict the number of tuples to be retrieved (the reason
for this will become more apparent later when we discuss the semijoin),
so we see that U0001 will require more storage than A0002. Since we are
attempting to minimize storage requirements, SELECT-REL choses A0002
to explore first.

We now enter CODE. Here, again, the predicate is recognized as
a join term which is so named because in the translation from relational
calculus to relational algebra this predicate translates into a "join"

toperation on the domains in the predicate. Following Palermo, we have
employed "indirect relations" for internal manipulation. In an indirect
relation, rather than working with an entire tuple, we use only a "tuple
reference number" which uniquely identifies the tuple. In Tables 3.3
and 3.4, the TUPLE# column is the tuple reference number (these numbers
are not part of the permanent relations on disk, but are generated as
the tuples are input). For example, relation A0002 can be represented
as simply the indirect relation (123). A join is implemented in two
stages using indirect relations. First, a "semijoin" is formed for the
first relation to be explored. A semijoin consists simply of a list of
pairs of the form ((domain), (tuple reference number)) where (domain)
is the domain on which the join is to be performed. In our example, the
which which would be generated for this is

(SEMIJOIN address ACTDATE)
where [address] is an address where the results are to be stored. A
search of the relation A0002 with this code yields the semijoin:

((3179 1) (3180 2) (3182 3)).

Upon the completion of this semijoin, we return to SELECT-REL
where U0001 is found to be the only remaining relation. When CODE is
entered, it realizes that A0002 has already been explored and so an
"indirect join" is generated:

(IJOIN [address] [semijoin on A] ACTDATE EQU)

-73-

where [address] is as above and [semijoin on A] is the semijoin just
created. The result of the indirect join is a list of pairs of tuple
reference numbers with the numbers in a pair corresponding to the two
variables in the predicate and with each pair satisfying the predicate.
The indirect relation produced by the above indirect join is:

((A U) ((1 1) (1 2) (3 4)))
where the variable names are carried along to identify the columns of
the indirect relation.

In exploring this relation, one complication occurs which we did
not mention above. When CODE was called for this relation, it was also
discovered that there were two domains of the variable U to be retrieved
for the "target list" (i.e., ((U ACTDATE) (U NORHRS))). At that time
the code also was generated to retrieve these domains and the corresponding
tuple reference numbers, so this information was also retrieved at the
same time that the indirect join was being formed.

Having completed the exploration of both relations, we now exit
EXPLORE-RELS and enter the function QUANTIFY. In this function, all
indirect relations which have been generated in the data base search are
combined into one indirect relation and we then apply suitable operators
to perform the quantifications indicated in the logic expression. In
our example, only one indirect relation was produced in the relation
exploration, so we only need to apply the quantification operation.

The existential and universal quantifiers of the relational
calculus correspond to the operations of projection and division, respec­
tively, in the relational algebra. In our example, A is existentially
quantified so we need to project our indirect relation onto the variable U.
To do this, we simply remove the tuple reference numbers for the A0002
relation and eliminate any duplicates in the resulting indirect relation
(in this case there are none). This yields the result:

C(U) ((1) (2) (4))).

We now leave QUANTIFY with this relation and enter OUTPUT where
we assemble the output relation by taking those items in the target list

I ,

- 74-

wit h tuple reference numbers corresponding to those in the indirect
relation and eliminate any duplicate tuples. This gives us the result:

((ACTDATE NORHRS) ((3179 5) (3179 2) (3182 7))).
This is now sorted on the NORHRS domain to yield the final output relation:

((ACTDATE NORHRS) ((3182 7) (3179 5) (3179 2))).

3.8 The Future

Our implementation of the DSL Alpha query language currently
provides a relationally complete (as defined by Codd [1971c]) interface
between the natural language system and the data base. The system also
provides features such as the storage of search results. The basic algorithm
on which the implementation is based is reasonably efficient; however,
before any large scale use of the software is practical, a number of
improvements and evaluations should be made.

First of all, there are several areas of the program where
substantial improvements in performance can be affected with some recoding.
The area where improvement is most urgently needed is in the use of list
structures (which are inferior in terms of both machine time and storage
requirements to simpler array structures) for the storage of intermediate
results. In addition, it would be desirable if a facility existed for
storage of parts of the indirect relations and other temporary data
structures on secondary storage (i.e. disk) to allow working with
the large temporary relations likely to occur in practical usage of the
software (currently, all these objects are stored in core). In the area
of evaluation, the method used by SELECT-REL to estimate storage require­
ments needs to be evaluated to determine if it is adequate, and the overall
performance of the system needs to be analyzed to attempt to discover
any remaining bottlenecks.

In addition to these considerations, some performance improvements
could be achieved through modifications of the algorithm used. Smith
and Chang (1975), for example, have described a scheme for the optimi­
zation of expressions in the relational algebra, and some of their
techniques could certainly be employed in our system.

-75-

4. Elements of the System

In this section we explain in detail the operation of several
interesting system constituents: (1) the lexicon (an expert on words),
(2) the spelling corrector, (3) the translator (which translates a request
from paraphrase language--the output of the language understanding system-
to data base query language), (4) the output formatter (which automati­
cally selects tabular, graphical or list forms to present output to the
user).

4.1 The Lexicon

The lexicon consists of two parts: the DICTIONARY which contains
words and certain features associated with them and the DICTIONARY MANAGER
which is a package of procedures for accessing, maintaining, and updating
the dictionary. The overall organization of the lexicon is shown in
figure 4.1.

r

4.1.1 The Dictionary

Currently, our dictionary consists of approximately 1100 words
and phrases with associated syntactic information. A dictionary entry
for a word typically consists of the syntactic category that the word
belongs to and a list of syntactic features for the word when interpreted
under that category. It is a fact of English, as in most other languages,
that many words allow multiple senses for a single word. In these cases,
multiple entries are made in the dictionary. For example the word CRASH
has the following entries:

CRASH N -es

CRASH V -s-ed (intransitive)

This says that CRASH can be interpreted as a noun (N) whose plural is
formed by adding the suffix "es" or as an intransitive verb (V) whose
inflectional forms can be generated by adding the suffixes "es" or "ed".

-76-

ATN
Interpreter

Figure 4.1 Organization of the lexicon

tt
t

-77-

Initially, no entries exist for the regularly inflected forms of
words. Such forms are discovered and entries for them generated as they
are needed. For example, if the input contains the word CRASHED, a set
of programs (morphology specialists) are invoked which discover that
CRASHED is the past tense form of the root word CRASH. These programs
insert the lexical entry:

CRASHED V (CRASH) (tense past)(intransitive)
The words CRASHES and CRASHING are similarly recognized and their lexical
entries generated.

4.1.2 The Dictionary Manager

The dictionary manager is a collection of programs which access,
maintain, and update the dictionary. They also act as a filter between
the Parser and the users input suggesting alternative words as the 'next
word'. As each word of the input is needed by the parser, the dictionary
manager checks to see if there is an entry in the dictionary for that
word or if the word belongs to one of certain categories which are recog­
nized procedurally, such as the category "numbers". If an entry exists,
then the word is passed on to the parser with a list of features associated
with the word. These features are those found in the dictionary together
with any others suggested by the morphology specialists.

If the word does not have a lexical entry, then a series of morpho­
logy specialists are invoked to see if the word is a regularly inflected
form of a known word. These specialists use their knowledge of typical
English affixes to propose candidate 'roots' for the word. Each candidate
is then looked up in the dictionary and, if found, checked to see if it
accepts the affix removed.

If this process fails then the punctuation checker is called
which examines the word to see if it might contain any embedded punctuation.
For example, if the input is TAIL-NUMBER, the punctuation checker would
suggest that the two words TAIL and NUMBER be substituted.

-78-

If the word remains unrecognized, then the misspelling checker
is invoked to see if the word might be a misspelled version of a known
word (see section 4.2).

Finally, if the word is still unknown, control is passed to the
new word learner. This module interacts with the user and attempts to
create a lexical entry for the word.

Two other subsystems generate alternative suggestions for the
'next word': a compound word recognizer and a word substituter. The
compound word recognizer is used to map short phrases into single "words".
For example, we map the phrases UNITED STATES and UNITED STATES OF AMERICA
into the single "word" USA. Just before a new word is passed to the
parser, the compound word recognizer checks to see if that word can begin
a phrase that it knows. If so, then it checks the rest of the sentence,
and if it matches, suggests the alternative 'next word'.

The word substituter provides a similar mechanism - one which
can expand a single word in the input into a sequence words. For example,
the word DIDN'T is expanded into the sequence DID NOT. The sequence of
words substituted can be of zero length, which provides a facility for
ignoring words. This facility is used, for example, to ignore extraneous
punctuation.

4.2 Spelling Correction

An important part of interactive systems is the flexibility of
the user interface: it should be as tolerant of errors as possible.
Until workable speech understanding systems are available, the only
method for natural language input will be via typewriter keyboard. One
part of making this situation as livable as possible is to provide auto­
matic spelling correction at the front end of the system. A fast and
effective method for spelling correction has been devised and implemented
for the PLANES system.

4.2.1 The Problem

Normally, humans have little problem understanding written sentences
which contain even a very large number of errors. The reason for this

-79-

is that natural language contains a great deal of redundant information:
The most commonly quoted figure is that each letter in an English sentence
adds on the average only about 1.7 bits of information [shannon (1948)].
This low information density is due to the fact that not all letter
sequences are English words, and not all words can appear in any position
in a grammatical and semantically sensible sentence. While we cannot
hope to do as well on really garbled sentences as a human can, if the
system can tolerate most typographical errors it should be considerably
less frustrating to use.

4.2.2 Solution Methods

Several substantially different approaches to spelling correction
can be thought of; and all of the following ones have been tried in
existing systems.
(a) Perhaps the simplest approach is to experimentally study what mis­
spellings actually occur in the use of a particular system, and write
"filtering programs" that correct those errors specifically. This can
be done by simply storing common misspellings as synonyms for the intended
word; for systems with a small number of words this is a workable approach.
(b) Another simple approach is to store letters commonly substituted
for others (usually based on their proximity on the input keyboard) and
try all single letter substitutes, looking for an exact match.
(c) A more time consuming exhaustive search approach is to try all of
the "single misspellings" (which appears to cover about 75% of the mis­
spellings which occur in practice). There are four types: missing letter,
additional letter, wrong letter, and interchange of adjacent letters.
This exhaustive search can be done in a reasonable amount of time only
if great care is given to the representation of words in the dictionary,
and to the efficiency of the program. It should be noted that the exhaus­
tive approach takes far too long if one wants to correct for all combi­
nations of two "single misspellings"; thus one can not hope to use this
method to correctly recognize the word "mispeling".

-80-

(d) Yet another approach to spelling correction is based on the idea of
pattern matching. The thought here is that enough distinguishing charac­
teristics may remain in the misspelled word to distinguish the correct
word from among all the words in the dictionary except the correct one.
Many candidates for pattern features have been tried: phonemes, letter
pairs, syllabication, length, semantic use in sentence, etc. The advantage
of pattern matching is that it has the capability for correcting multiple
as well as single errors. A disadvantage is that since the approach is
essentially statistical in nature there exists the possibility of mistaken
identification, and an inability to correct single errors in a few unusual
cases.

The spelling correction algorithm finally implemented for the
PLANES system is essentially a LISP implementation of the algorithm used
on the PLATO computer aided instruction system [Tenczar and Golden (1972)]
with some differences and enhancements. This algorithm is in the pattern
matching class.

4.2.3 The Spelling Correction Algorithm

As currently implemented, spelling correction is done a single
word at a time, before the input sentence is passed to the parser. Thus
the spelling algorithm knows nothing about the context of a particular
word in the sentence. In the PLANES system spelling correction must
operate under two strong constraints: (1) it must be fast (less than a
second per misspelled word) so as not to introduce annoying delays in
interaction with the user; and (2) it must do a reasonable job of distin­
guishing misspelled words from unknown words, since it is anticipated
that the dictionary of known words will constantly be added to interac­
tively. The time constraint has been met, and in the current system
correctness is insured by asking the user to verify that the algorithm's
guess is correct before the sentence is passed to the parser.

The algorithm uses two data arrays: the first contains all the
words in the dictionary, and the second contains (in the same order)
encoded patterns which are used as the basis of comparison between the
dictionary words and candidate misspellings.

-81-

The algorithm works by first checking if the word is a member of
the dictionary (if so it is correctly spelled); if not it extracts the
pattern features of the word and compares these features with the (pre­
computed and stored) features of all the dictionary words to see if there
are any close matches. The key to the speed of the algorithm is that
the pattern comparison can be done very quickly, since the pattern features
of each word are mapped on to 2 PDP-10 words (72 bits) in such a way
that the exclusive-or of two patterns will give a bit string in which
the number of bits that are "l" increases with the "difference" or metric
distance between the features of the two words being compared. Thus a
numerical measure of the difference between two words can be found simply
by exclusive-ording the pattern bit strings and then counting the number
of bits that are "1" in the resulting bit string.

For example, one of the pattern features used is the number of
letters in the word. The length of the word is encoded into a bit field
in such a way that words that differ in length by one letter will give
one "conflict bit", those that differ by two letters will give two conflict
bits, and so on. Many features of the spelling of a word are used in
obtaining a pattern encoding; those features that are considered most
important (like length and first letter) are given the longest bit fields
so that they have the potential of producing the most conflict bits.
The key to the success of the algorithm seems to be that using many simple
features in combination gives a description which has greater descriptive
power than the simple sum.

Currently, the algorithm uses bit fields for the following charac­
teristics: first character, length, letter content (which letters of
the alphabet occur), letter order, consonant-vowel pairs, consonant-con­
sonant pairs, the last letter, doubled letters, and non-alphabetic letters
(e.g. dash). The algorithm has been written so that it can be used as
loosely or tightly as desired, by adjusting a cutoff limit as to how many
conflict bits will be considered as misspellings rather than unknown words.
The cutoff limit is adjusted for the length of the word, since there is
less information available in a short word than a long one. In actual use

-82-

and testing the algorithm's performance is remarkably good: with a 5000
word test dictionary most misspellings of a 10 letter word with as many
as three letters wrong or missing came back with only one candidate, which
was the correct one. With the actual dictionary of the PLANES system
loaded the spelling correction algorithm found the single correct choice
for all simple one letter changes to the word "airplane", in addition
to the following misspellings: irplaine, arplain, airlpne, airrpplanee,
irplan, aiirplne.

4.2.4 Future Improvements

Currently, the algorithm does not handle the typographical error
of leaving out a space, which results in two or more words being consi­
dered as one: "thelastplane". The simple technique of breaking an
unknown word between every letter pair and trying to recognize the result­
ing fragments should handle most of these cases. Some care is needed in
doing this to avoid being confused by letter sequences which are both
prefixes and words. For example, if the dictionary contains both the
words "air" and "plane" but not the word "airplane", when the user types
"airplane" for the first time the system must allow for the possibility
that the word is unknown and correctly spelled, and not "outsmart" itself.

A more ambitious future project is to improve the interface between
the spelling correction module and the parser so that the syntactic and
contextual knowledge of the parser can be used to disambiguate possible
misspellings. Then, if the spelling corrector comes up with two candi­
dates for a misspelled word, but only one of them gives a sentence which
parses correctly, the system could simply respond: "Assuming xxx is a
misspelling of yyy the answer is ...", rather than requiring user verifi­
cation of every correction.

4.3 The Translator

The translator converts the paraphrase described in the previous
section into the database query language. The query language requires

-83-

(1) a list of predicates to direct the search, (2) a list of fields to
return, and (3) a sort field. The predicates are generated by the trans­
lator from the subject, object, and time period in the paraphrase. These
predicates include individual plane "bureau serial" numbers(BUSER),
plane series codes(TEC), type maintenance(TM) codes, action taken(AT)
codes, system work unit(WUCSYS) codes, how malfunctioned(HOWMAL)
codes, and actdate(ACTDATEDAY, ACTDATEMON, ACTDATEYR) codes. The
fields are discovered by examining the operator(OPER) and action(ACT)
positions of the paraphrase. As an example of a translation of a para­
phrase, consider:

"Where was the A7 with buser 122 repaired on Feb. 7, 1969?"

Paraphrase:

(WHERE (plot NIL)

(plane (pronoun NIL) (type A7) (buser 122)

(plneg NIL) (pldam NIL)
(plmai NIL))

NIL
(neg NIL)

(REPAIRED NIL NIL)

(time (date (month (2. 31. 31.))

(day 7) (year 69.))

NIL)
(NIL NIL))

-84-

The planetype list causes the generation of two predicates:

(EQU (W TEC) 'AAFF) and (EQU (W BUSER) 122.).

The time list results in the predicate

(EQU (W ACTDATE) 9038.).

The operator WHERE and the action REPAIRED return the basic
frame

(FIND ALL ((W M)) ((W ACTDATE) (W ACTWC))

<place for predicates>

(ACTDATE DOWN)).

Putting the predicates into the frame gives the final result:

(FIND 'ALL '((WM)) '((W ACTDATE) (WACTWC))

'(AND (EQU (W TEC) 'AAFF) (EQU (W BUSER) 122.)

(EQU (W ACTDATE) 9038.))

'(ACTDATE DOWN)).

The only difficult task required of the translator is to decide
which card types must be searched in the data base. This is easily
accomplished if all the fields to be keyed on are unique to a specific
card type. However, if the fields could be found on two or more different
card types, the Translator must decide which one to use. This turns out
to be relatively easy to accomplish by examining the time period context
register to see whether the dates are specified according to month-year
or month-day-year. This uniquely determines which card type contains all
the necessary fields and the correct date specification.

-85-

As an example, in the sentences

(1) "How many flight hours did plane 3 log in Jan. 71?" and

(2) "How many flight hours did plane 3 log on Jan. 5, 1971?"

both sentences generate exactly the same paraphrase except for the time
period field, namely:

(COUNT (plot NIL)
TIME

(FLY

(plane (pronoun NIL) (type PLANE) (BUSER 3)

(plneg NIL) (pldam NIL) (plmai NIL))

Nil)

(time <date> NIL) (NIL NIL))

where for (1): <date>=(date (month (1. 0. 0.))

(day NIL) (year 71.))
and for (2): <date>=(date (month (1. 0. 0.))

(day 5.) (year 71.))

The translator has the choice of searching two different card
types--monthly flight summary cards or daily flight cards. Upon examina­
tion of the dates it realizes that to efficiently answer (1) it should
search the monthly flight summary cards and to answer (2) it should search
the daily flight cards. Hence the following two queries result for (1)
and (2) respectively:

- 86-

(1) (FIND ’ALL '((V 0))

’((SUM (V TOTHRS)))

’(AND (EQU (V BUSER) 3.))

(EQU (V ACTDATEMON) 1.)

(EQU (V ACTDATEYR) 71.))
NIL)

(2) (FIND ’ALL ’((X A))

’((SUM (X FLTHRS)))

'(AND (EQU (X BUSER) 3.)

(EQU (X ACTDATE) 1005.))
NIL)

-87-

4.4 Help Files
In any system where information is transferred, some users will

need help with procedural problems whether that system resides in a computer
or in a filing cabinet. There must exist a reference manual of some sort
for the user to quickly find an answer to these problems. If the system
is in a computer, the reference manual can be placed in the computer, too.
Then it is called a "help file". It can even be made interactive. The
advantages of this should be obvious: (1) the user can direct the search
for information so as not to be deluged with an entire book, and (2) he
or she doesn't have to get up from the terminal and search through a book­
shelf for the answer to the problem.

In the PLANES system, help files are disguised to look just like
the rest of the system to the user. That is, there is neither a special
language to use nor a special mode to enter when the user needs help.
PLANES recognizes some questions as referring not to the data base but to
its own operation or conventions instead. For instance: "What types of
planes do you know about?", or "Can you tell me the abbreviation for 'work
unit code'?" These questions are answered using the same machinery as
"Which planes crashed in May?" uses. The essential difference is that
PLANES looks in different places for their respective answers.

These are the things a user can now request (and receive) help on:
(1) abbreviations; the system can give the standard abbreviations for a
number of common phrases and vice versa, (2) codetypes; it knows the
official names of plane types, maintenance types, etc., and (3) concepts;
a few key concepts have explanatory paragraphs available.

- 88 -

5. BROWSER

The specific purpose of the BROWSER System is to provide a tool for
measuring, isolating and correcting problems in the maintenance of aircraft
by the U. S. Navy. This paper discusses the design of BROWSER. The reader
should understand that only a small portion of the design is currently
implemented and as the coding process continues the design will probably
change. The design process is iterative with each approximation drawing
closer to an acceptable solution to the design problem.

BROWSER can be thought of as a complex information retrieval system.
The user may enter English language questions into the system and wait for
the information to be returned. On the basis of the returned information
he will typically ask other queries and eventually converge on the solution
to his main question. Alternatively the user may in vague terms describe
the area in which he suspects a problem. BROWSER uses this description and
"asks" a series of its own questions in an attempt to converge on a problem
solution. In either case, the same underlying data retrieval mechanisms are
used.

BROWSER was designed to parallel the techniques a human would use
to isolate a problem and its causes. The procedure which it uses to process
a problem is a coded version of the process through which a human would achieve
the same result. The difference, however, is that the human can handle a wide
variation in results while BROWSER can handle only those results which can be
foreseen, at least in pattern form.

BROWSER tries to strike a compromise. Many problems fall into
categories where creative effort is not needed and unexpected results are
rare. A well-defined technique for solving the problem exists. Other problems
are not understood enough to provide such a technique. BROWSER can handle
routine problems almost unassisted while its interactive ability gives the
user access to all of BROWSER'S facilities for creative problem solving.

5.1 Modes of Operation
The basic action of BROWSER is the isolation of maintenance problems.

In interactive mode, the user can supply a series of questions (i.e. a
procedure) to isolate the maintenance problem. In the other two modes,

-89-

these procedures are pre-stored and applied to collections of data to isolate
maintenance problems. Multi-mode design ensures the effective use of 'live1
and 'canned1 procedures. Little can be said about the procedure a human
employs to isolate problems because of human variability. This paper is
concerned with the application of 'canned' procedures. Note, however, that
'canned' procedures are typically the coded version of particularly success­
ful 'live' procedures.

The system design incorporates three modes of operation. The Super­
visor controls which mode is currently active and will be described later.

Interactive mode takes precedence over the foreground and background
modes. BROWSER is communicating directly with the user through the PLANES
system. The user is in direct control of all of BROWSER'S facilities.
Here the emphasis.is on fast response to queries. In this mode the user
can:

1) get information concerning the use and limitiations of the
BROWSER System; e.g. "can you perform standard deviations?"

2) get immediate answers to questions which require only informa­
tion retrieval; e.g. "who manufacturers part JR1473B?"

3) retrieve answers to previously processed questions;
4) enter a query which requires extensive processing; e.g.

"why is turnaround poor at VF-137?"
5) direct various system functions; e.g. "graph the output of the

last query."
6) enter data into one of BROWSER's files; e.g. "note that part

JR1473B has a verified manufacturer's defect which results in
turbine case ruptures."

The second mode of operation is foreground mode which takes precedence
over background mode. When the user enters a question into the system and
he does not want to wait for the answer or the projected turn-around time
is long, the question is entered into a queue. In foreground mode the system
uses stored procedures to process queries in this queue. In this mode BROWSER
operates with a priority, the same as an accounting program or any other
program in a time-sharing computer system.

The third mode is background mode. When there is no work in the

-90-

queue and there is no user at a terminal BROWSER enters background mode.
It gets processor time only when no other job in the computer system wants
it. BROWSER guides itself through the data base searching for maintenance
problems. Problems are defined in BROWSER as particular patterns in the
maintenance data. In this mode, BROWSER searches for these patterns through
out the data base.

5.2 The System Configuration
Figure 5.1 is a schematic representation of BROWSER. This configura

tion represents conceptual and functional divisions rather than divisions
between chunks of code. Each component will be described separately. The
components described in this section will not be described in further detail

Although the user is central to the total system design, very little
of this influence will be elaborated. The PLANES system is responsible for
man-machine interaction. It is a complex system and will not be described
since it is documented elsewhere.

It is adequate to say that PLANES is a system which understands a
subset of the English language and can translate this input into a machine-
understandable paraphase. The PLANES system has the ability to do simple
data retrieval. For queries in which the user can specify all the informa­
tion needed to locate the data of interest, the PLANES system can do the
retrieval. For queries which involve the application of procedures to
isolate the data of interest, the BROWSER system must be activated.

The Input/Output Handler is a collection of routines which controls
data transfers. It performs such tasks as locating, loading and positioning
magnetic tapes. For instance, if the maintenance data for an A-7 with tail
number 123456 during June 1971 is needed, the I/O handler finds the tape and
the location of the data on the tape by consulting a directory. It then
transfers this data into a temporary disk file so that it can be processed.
How the I/O handler does these things is not relevant to this paper.

The Data Base Search Routines are documented elsewhere. Some
sample search queries will be presented with an explanation. This is to
give the reader a feeling for the low level routines which BROWSER uses.

A description of the remaining components follow. Please note

1

-91-

F P - 5 C M 3

Figure 5.1 Schematic representation of BROWSER

-92-

that the terms 'query', 'question' and 'problem' are used interchangeably
to improve readability.

5.2.1 The Supervisor
The supervisor is the communication center of BROWSER. Virtually

all messages sent between system components must pass through it. After
examining the message, the supervisor may alter it before passing it to
its destination. There are five functions which the supervisor performs:

1) Data transfers,
2) The setting of system parameters,
3) Temporary answer storage,
4) Mode selection, and
5) Information checking.
Data transfers involve the modification of system files. When a

user enters a question which requires extensive processing, it must be
stored in the User Query Queue. To accomplish this, PLANES sends a
message (the query) to the supervisor along with its destination and
purpose. The supervisor verifies that all information for successful
processing of the query has been supplied. After making the addition to
the queue, the supervisor updates its directories to reflect the change.
Data transfers for the other system components are handled similarly.

The supervisor is also responsible for setting certain system
parameters. When the user wants a printed copy of the interactive session
or a detailed trace of a query's processing or he wants the results of his
last question graphed, then the supervisor will set parameters (flags).
These parameters tell the supervisor how to go about its business.

Most query processing will involve a substantial turn-around
time. BROWSER will work on these queries after the user has left the
terminal and will probably finish at a time when the user is not at a
terminal. It is the supervisor's responsibility to store the query, the
results and other relevant information. The user can then resume his
terminal session whenever it is convenient and examine these results.

It is the supervisor which determines which mode (interactive,
foreground, background) the system is operating in. The mode depends on

-93-

whether there is a user at a terminal and whether there are entries in the
User Query Queue. When the mode of operation changes, the supervisor must
make sure that no information or processing is lost. BROWSER should be able
to re-enter any mode that was interrupted and resume processing as if the
interruption had not occurred. This involves saving information on the status
of the system when it was interrupted. For example, nearly all queues require
the specification of a specific time period. If the processing of a query
in foreground mode is interrupted (i.e. a user has initiated an interactive
session) one of the items saved is the time period. When the user leaves,
the time period is restored and processing continues.

One of the most interesting and useful features of the supervisor
is information checking. The supervisor pays special attention to those
messages which are data base search queries. Suppose one of the modules
wants to know the turn around at VF-137 during June. Suppose also that
this information is available directly because a previous query computed
it (query results are saved for an indefinite period in the system Notebook).
Before passing the data base search query to the appropriate routines, the
supervisor checks to see if this information is available in the notebook.
This is done by comparing the current query against the queries in the Note­
book. A match indicates that the information is already available. In many
cases the supervisor can thus speed up the time required to process a request.

5.2.2 Query Management
The management of query processing in BROWSER has three divisions:

1) query sequencing, 2) process supervision and 3) answer refinement.
Query sequencing is selecting the order in which queries will be

processed. In a multi-mode system this sequence is determined by the system
mode as well as an order within each mode. Sequencing is therefore a function
of the User, the Supervisor and the Modules.

The User has the option of setting processing priorities in many
system components. This is a way of specifying an order within a system
component. In the Aircraft Listing he can specify that A-7s be processed
before F-14s. In the High NOR Module he can specify that checks be made
for missing inspections before checks for high cannibalization rates. A

-94-

useful feature of this priority scheme is that a priority of zero effectively
deletes a step. This temporary deletion is useful for skipping over steps
which are not relevant to the current query.

The supervisor is responsible for activating queries. The current
operating mode determines which query is activated. If the system enters or
is currently in foreground mode, the supervisor must select a query from the
User Query Queue. If the queue is empty, the supervisor must change modes.
Background mode implies that one of the modules will be activated. Typically
the particular module and query within the module will be the one following
the last query processed. In interactive mode the system is working on
queries directly supplied by the user.

(1) The four modules can be thought of as internalized users. For example,
the High NOR Module is a series of questions a user might ask to discover
why some piece of equipment is unreliable. Each question checks some
different aspect of the problem. The general strategy is test and branch.
The system asks a question, retrieves data to answer that question and then
from an inspection of the data decides whether this aspect of the overall
problem is worth processing in greater detail. A negative judgement means
that another aspect of the problem should be checked.

Suppose the High NOR Module has processed a query which determines
if PlaneXhas missed any schedules inspections last month. If the answer
is "no" then typically further processing on inspections may be bypassed.
If plane X has missed inspections,- the module must decide whether this is
significant information. If the missed inspections are deemed significant,
the module will initiate other queries to determine if similar planes had
similar patterns of missed inspections. Further processing may determine
that this inspection pattern occurred only on planes that crashed. In this
case, plane X would be tagged as having something in common with the crashed
aircraft and after further processing and accumulation of results, the user
would be alerted to this fact.

(2) The second point under query management is supervision of query
processing. This is primarily done by the modules with assistance from
the supervisor. Once a query is selected, the active module (e.g. User
Query Module) retrieves the query definition from the library. This

-95-

definition specifies all the routines necessary to answer the queries. In
turn, each routine specifies what information is required before successful
data retrieval or other processing can take place (e.g. the time period
must be given before data can be retrieved). This process will be detailed
later. Presently it is of interest to say that the active module checks
to be sure that all prerequisite information is present. If it is not,
the supervisor is notified. The supervisor must determine if it can write a
data base search query to supply the missing information. If it cannot, the
present query is shelved until the user can be contacted and the information
supplies. Missing information such as a listing of aircraft which use
part X can be retrieved from the data base. However, if the user did not
specify the depot at which he wanted to examine turnaround time, the system
must wait until the user is available to specify the depot.

When the module decides it has satisfied all the prerequisites, it
begins actual processing of the query. Guided by the query definition and
intermediate routines it begins to issue data base search commands. Upon
completion of each data base search, the module first handles any error
conditions which arise. Next it decides whether to pursue this query
further and if so in which direction and to what depth. In the user query
module the completion of a query signals the end of processing and control
goes back to the supervisor. In the other three modules a check is made
to see if other queries remain to be processed. If all queries are processed
control is returned to the supervisor.

(3) The third point under query management is clarification and refine­
ment of query answers. Much of this topic was presented under the previous
two points. When a module discovers that part X had maintenance problems in
several crashed aircraft does it stop and announce this fact, or does it alert
the user to all current aircraft with similar histories, or does it check the
maintenance record of other parts that the manufacturer of part X supplies?
This is a fuzzy area and no simple solution is possible. BROWSER allows
the user to set the maximum processing depth for queries. Once this depth
is reached BROWSER stops. This is not the complete answer since extensive
processing will waste time on trivial queries while shallow processing will

-96-

miss some problems altogether. The best compromise is to have the user
enter into an interactive dialog with BROWSER after it has located some
problem at the specified processing.depth. The user then uses BROWSER
as a tool to decide if the problem is worth investigating extensively.
A sample of how this dialog might proceed is given in Appendix B.

5.2.3 The Modules
A fair amount of space has been devoted to the description of the

actual functioning of the four modules without describing their organization
or usage. These will now be described and hopefully some of the mist will
dissipate.

Before designing BROWSER, I became acquainted with the queries
that the Navy actually receives. Some of these queries are presented in
Appendix F. Logical and processing similarities seemed to categorize most
of the queries into one of three groups. The first was the isolation of
aircraft and equipment with particularly bad mechanical properties. Here
the emphasis was on tracing and eliminating the causes of malfunctions.
The high not operationally ready (NOR) module is concerned with these
queries. The second category emphasized the efficient use of personnel
and repair facilities. The facility utilization module is concerned with
these queries. The final category emphasized the monitoring of corrective
actions. Here the queries asked if engineering proposals or other
corrective actions were actually improving the situation they were designed
for. The action monitoring module is concerned with queries in this category.

A fourth module was necessary to provide a method whereby the user
could have any query describable by the system answered. The user query
module takes an arbitrary query and processes it. If the query is such that
one of the other three modules can process it, the user query module merely
passes it on to the appropriate module. Otherwise the processing is done
locally. This means that the user query module must be more sophisticated
then the other’s because it must recogni-ze properties of the query to guide
its own processing while tne others merely accept a query and apply
'canned' routines on it.

A major difference exists between the user query module and the

-97-

others. Typically the user module is working on one query while the others
have a string of queries which are applied to a subset of aircraft, facilities
or corrective actions. A typical query for the user module would be "Does
A-7 tail number = 123456 have a particularly bad maintenance record?" Typically
the high NOR module would be given a series of aircraft (e.g. A-7’s) and be
expected to find general maintenance problems or wholesale degration rates.

The queries that the high NOR, facility utilization and action monitoring
modules cycle through will now be given. The descriptions are human descriptions of
the queries. A few machine understandable queries will be presented later.
Some of the queries overlap, many use the same intermediate routines and all
use the same set of data base search routines. None of the module queries
are unchangeable. Additions, modifications and deletions are expected.

Presently the high NOR module contains the following queries:
A. Checking for Wholesale Degradation of Aircraft

1) Does a trend analysis of failure and maintenance rates differ
significantly from the corresponding rates of new aircraft?

2) What is the rate of change of failures and maintenances?
3) Does failure or maintenance rates by work unit code change

uniformly? (i.e. Are some systems wearing at different rates?)
4) Identify aircraft with low/high acceleration of failure/maintenance

rates (i.e. is this a good or poor failure/maintenance history?)
5) How soon will maintenance costs force replacement of this aircraft

series?
B. Individual Aircraft/Component Degradation

1) Cull out the highest failure/maintenance rates by work unit code.
2) Isolate problem to specified level (e.g. part, unit or subsystem).
3) Compare against same units in all other aircraft with this configura­

tion.
4) Compare against same units in this series or type of aircraft.
5) Compare maintenance histories of crashed and current aircraft

which use this part.
6) Compare inspection schedule with master schedule to determine missed

inspections.
7) Compare inspection histories of crashed and current planes that

used this part.

-98-

8) Determine if aircraft had all applicable technical directives
installed.

9) Compare technical directive installations on crashed and current
aircraft.

10) Did crashed and current aircraft use the same maintenance
facilities?

11) Were malfunctions due to improper handling of this aircraft?
12) Was there a high rate of cannibalization for the aircraft?
13) Were there any other user specified conditions present?

The facility utilization module presently contains the following
queries :

1) Compare the cost of repairing or reworking parts in maintenance
facilities to the cost of replacement.

2) Compare the failure/maintenance rates of reworked/repaired
assemblies with the rates of new assemblies.

3) Compare the average turnaround time by work unit code across
maintenance facilities.

4) Find maintenance facilities with high NOR aircraft then:
a) Does a high no defect or no repair rate exist?
b) Find the percent of turnaround due to awaiting parts.
c) Find the number of aircraft serviced or cannibilized by

this facility which had no flight hours in the last
30/60/90 days.

The action monitoring module presently contains the following
queries:

1) Compare failure/maintenance rates before and after a corrective
action was performed by series.

2) Compare failure/maintenance rates before and after a corrective
action was performed across all aircraft incorporating the action.

3) Were the post corrective action failure/maintenance rates
significantly better than those .predicted by trend analysis
without the corrective action?

5.2.4 The Domains
Given the apparatus for accepting and processing queries, how does

-99-

the supervisor know what to do and when it is finished? The
domain of discourse must be specified in some manner. Given the four
modules just discussed, a fairly obvious way is to list all the elements
of the domain associated with each module. Every element of every domain
has a processing priority associated with it. In the absence of any other
information the supervisor simply scans down the domain and selects the
entry with the highest priority.

The high NOR module requires a domain consisting of all plane
types known to the system. This is a list of all the valid type of
equipment codes (e.g. TBCA is the code for A-7A series aircraft).

The facility utilization module requires a domain consisting of all
operational maintenance centers. This si a list of all organization codes
which denote maintenance centers (e.g. T71 is the AIMD at Pensacola).

The action monitoring module requires a description of all the
corrective actions which are to be monitored. Each action is represented
by a machine understandable description of the problem, a description of
the action and the goal that the action is to achieve. An example of this
will be presented later.

The user query module requires only a queue of the queries that
are currently in the system waiting to be processed. An example of this
type of query will be given later.

In all four cases it is the supervisor which decides which module
is to be activated and selects an element of the appropriate domain for
processing.

5.2.5 The Notebook
At various times I have referred to the by-passing of certain

routines if the goal of such routines is already known. If the number of
A-7s is already known, why run the code which will count A-71s in the data
base? The mechanism through which this is accomplished is the notebook.
The notebook is divided into two sections. The first contains processed
queries and the location in which results are stored. The second contains
facts and relations which have been shown to exist.

The first section of the notebook can itself be broken into two

- 100-

sections depending on whether the result of the query is a single number
response or a collection of data which satisfies the query. In the latter
case a temporary file is created to contain the data while in the former
the number is stored in the notebook with the query. "How many A-7s are
in the database" would return a number X which is stored in the notebook.
"How many A-7s had bird strike damage?" would return a collection of data
records, each of which would give information on an A-7 that suffered
bird strike damage. These data records would be stored in a temporary
file and the name of that temporary file would be saved with the query.

Before any query is processed the Supervisor compares the query
against these stored in the notebook. A match means the query was already
issued and the results are immediately available. The utility of this
method is shown by the interactive dialog of Appendix B. Here the user is
continuously referring to the results of the previous query. (e.g. "print
all of them but show me..."). If results were not saved, the previous query
would have to be processed again before its result could be used by the
present query. Note that I have presented a simplified version of this
section of the notebook. Each query may actually contain several "sub­
queries" and several temporary files to reach a result. For example "how
many A-7s suffered bird strike damage and had over 100 hours NOR?" would
require a file containing A-7s with bird strike damage and a file containing
A-7s with more than 100 hours NOR and the query result is a file containing
the intersection of the previous two files. Also note that file management
is important because temporary files will accumulate rapidly. BROWSER will
let the user specify an expiration date after which these temporary files
associated with a query can be deleted. In addition, BROWSER keeps frequency
of usage data on each file and will save frequently used files especially
if it took a lot of processing time to generate.

The second section of the notebook contains facts and relationships
which are known to exist. The user is responsible for entering this data
and may do so whenever the system is in interactive mode. Here you will
find information on parts which are known to be bad and the effects they
create or correlations between situations. Examples of these entries will
be given later. The Supervisor watches the performance of the system.

- 101 -

If the system tries to prove a fact or relationship that is already known,
the supervisor interrupts processing, supplies the known data and returns
control to the appropriate component. Suppose part X is manufactured with
a defect which causes turbine-case-ruptures. If the high NOR module is
trying to determine causes of turbine-case-ruptures the supervisor will
tell the module about part X. The module will not duplicate effort by re­
establishing part X as a bad part. The mechanism here is a simple matching
process. Each bad-part entry in BROWSER'S notebook supplies information as
to the system, subsystem or unit affected, the type of failure and the part
number (among other things). A match in any of these area's means that
this part MAY be involved in the problem.

A final point concerning the notebook is its use with hypothetical
questions. There are times when you want the answer queries with ficticious
or modified data as opposed to real world data. As a simple example,
suppose you know part X has manufacturers defects and that this condition
will be corrected. You now ask "suppose part X had no defect, what would
the mean time between failures be on A-7 aircraft?". BROWSER would tag
the appropriate item in its notebook as not being relevant for the present
query. Processing would continue as normal except that part X would not
contribute to the mean time between failures. Each time a failure which
involved part X was found the supervisor would cause it to be ignored.
The addition, deletion or modification of items in the notebook to suit
the needs of a hypothical question would be mostly a matter of tagging
appropriate items. This would not interfere with ordinary processing
because the tagged items would be applied only to a particular query.

5.2.6 The Libraries
The library structure is such that only one copy of a routine to

perform a given function exists. Modifications and updates of routines
are therefore automatically reflected throughout the system.

The heart of any module is really the name of a query and the
information necessary to direct query processing. The modules contain
code to sequence queries and analysis results but the actual query is in
the query definition library. The definition of a query contains the name

- 102-

of the query, parameters which must be supplied for successful processing
of the query and a string of intermediate routine names. The intermediate
routines are the steps which must be performed to answer the query • The
English version of the queries that BROWSER knows about were given in the
section on modules.

The routines needed for answering queries are in the intermediate
routine library. Each routine performs a complete function and may be used
by any number of queries. These are still fairly high level routines which
use many data base search commands to complete their functions.

The lowest level routines are the data base search commands. These
are the only routines which actually manipulate the data base or perform
comparisons on temporary files. Every detail of operation must have been
specified by one of the higher level routines for the search commands to
work.

Further description the contents of the libraries is given in the
"coded examples" section of this paper.

5.2.7 The Data Base
The data base is a term which includes a variety of files. The

size of the data base is huge in terms of bits of data stored. This is a
major component in estimating how long it will take to process a query.
Its size makes it mandatory that searching and processing of the data base
be done as efficiently and as seldom as possible. This is one reason that
BROWSER saves the results of searches and other data that might be referred
to frequently. Files that are in the data base are:

1) The 3-M data base which encompasses all aircraft maintenance,
flight and readiness data.

2) The 3M reliability and maintenance reports. (A summary by aircraft
series of failure rates, maintenance manhours and flight data.
This provides a measurement of the "average" aircraft for compari­
son purposes.)

3) Aircraft configuration file. (This is a file which specifies which
parts are on which plane.)

4) Inspection schedules.

-103-

5) Hierarchy of command. (Which squadrons compose which wing, etc.)
6) A parts file. (This is a cross reference for names, numbers, and

interchangeable parts.)
7) Manufacturers file. (Identifies parts supplied by a specific

manufacturer.)
8) Technical directive file. (A list of all the engineering change

proposals which were to correct some maintenance problem on
aircraft.)

5.3 Coded Examples
In this section I will endeavor to present samples of what actually

gets passed between the supervisor and the other components of the system.
For clarity, exact code will not be given but a close approximation to the
LISP functions is presented.

Suppose BROWSER has just started processing a user's query. The
typed sentence was "Did the A-7 with tail number 123456 miss any inspections
during August 1972?". The query was accepted by the PLANES system and stored
in the user query module as:

((Reference # 1073) (Processing-Priority 6)
(Query Find-missed-inspections)
(Tail # 123456)
(Planetype A-7)
(Time-period Aug. 72 Aug. 72))

The PLANES system does an analysis of the sentence and decides
(on the basis of keywords and the type of information supplied) that the
user's request best matches BROWSER'S query which locates missing aircraft
inspections. The user supplied information is identified and given the
name of an internally recognized variable. The reference number is supplied
by PLANES so that this query can be uniquely identified and a default
processing priority of 6 was supplied. As luck would have it this is the
only user query in the queue and BROWSER begins to work on it at once. The
supervisor taps the user query module on the shoulder and announces that
it is time to go to work. The user module decides not to pass the query to
another module because it deals with one airplane only. The module then

retrieves the definition of the find-missed-inspections query from the
appropriate library. After filling in the blanks, this query looks like:

(Find-missed inspections
((Tail #123456) (Planetype A-7) (Time-period Aug. 72 Aug. 72))
(Get-inspection-schedule Result 1)
(Get-actual-inspections Result 2)
(Compare (Resultl Result 2) • (Return Result 3)))

In English this reads: to find missed inspections for A-7 tail #123456 in
August 1973 1) find the schedule of inspections that should have been
performed on this plane at that time, store it in a temporary file and put
the name of that file in the variable "Resultl". 2) Find the actual inspec­
tions performed, store the results and put the file name in the variable
"Result 2". 3) Compare the two files and store the places where they differ
in a file whose name is in the variable "Result3". 4) Return the name of the
file in "Result3" to the user query module. The user module will pass the
name to the supervisor who gives the name to the PLANES system. The user
is then shown the contents of the file. Note that if the user had only
supplied the tail # but the planetype was also necessary, the user query
module would have complained to the supervisor that it needed more information.
The supervisor would issue a data base command which would find the plane-
type from an obscure list of tail numbers. If the supervisor could not
supply the missing information, the user would be required to supply it.
Having successfully filled in the query frame, the user query module would
retrieve the definitions of the intermediate routines. After filling in
the blanks, one looks like:

(Get-inspection-schedule
((Tail # 123456) (Planetype A-7) (Time-period Aug. 72 Aug. 72))
(Find-tape Tapename)
(Find Planetype-inspection-schedule Tapename Location)
(Output-to-temporary-file location temp-file-name)
(Return temp-file-name))

In English this reads: 1) Find the tape which contains the necessary
information. 2) Locate the exact information on the tape and remember its
location. 3) Read the information into a temporary file. 4) Return the

-105-

name of the temporary file.
Having successfully filled in all the blanks it can find, the user

query module passes control to the instantiated query which performs the
process just described. Note that the intermediate routine uses data base
search routines which look up the needed tape in various indexes, have the
tape mounted and do the data transfers.

Suppose that at some later time the user has decided that too many
inspections have been missed on the A-7 aircraft. He has issued bulletins
and changed policy but wants to know if the situation is improving. Thru
the PLANES system he makes an entry in the corrective actions listing which
looks like this:

((Problem Find-missed-inspections
((Tail #123456) (Planetype A-7) (Time-period Aug. 72 Aug. 72))
(Missed-Inspection-Data Results Monthly)

(Goal (Reduction 107.)))
This tells the action monitoring module to keep track of the missed inspec­
tions problem. Here the module is told that the find-missed-inspection
query was run for the given airplane and the result was unacceptable to the
user. That results which were found unacceptable are pointed to by the
variable "results". The module is to run the find-missed-inspection query
monthly until the inspection record has improved by 107». It is then to
notify the user that his goal is achieved. "Results" also contains the
monthly results that the module has received so that the user may see the
rate of improvement up to the present.

User created entries in the notebook would look something like:
(Bad-Part (Part Turbine-Case)

(Location (WUC 11340))
(How-Malfunction Rupture)
(Manufacturer Pratt-and-Whitney))

(Relationship (Correlation parametersl
(Find-missed-inspections parameters2)
(Failure (Part torque-link-strut)

(Location (WUC 11130)))
This first entry says that Pratt & Whitney turbine cases have been

-106-

identified as a part which has a particularly bad maintenance history. The
system of the aircraft which uses this part has the Work Unit Code of 11340.
The way the part typically fails is by rupturing. The manufacturer is given
so that other products from this manufacturer may be traced if necessary.

The second entry identifies a relationship that has been found to
exist. Here there is a correlation between a pattern of missed inspections
and the failure of torque-link-struts. The variable "parametersl" points
to more specific information concerning the correlation such as what the
exact correlation is, when it was found, which routine was used to find the
correlation. The next two elements of the notebook entry identify the
items between which the correlation exists. To recover the exact pattern
of missed inspections you would use the find-missed-inspections query with
the parameters which are pointed to by the variable Mparameters2M. Note
that the results of this query may still be available in the temporary file
created the first time this query was processed. This entry might look
like:

(Query-results-saved (Find-missed-inspections
((Tail # 123456) (planetype A-7) (time-period Aug 72 Aug 72)))
(Temporary-file-name Q1739)
(Expiration-date 15Jan76))

Any query which matches the specifications in Line 2 need not be processed
since the results are already stored in File Q1739 and will be available
until at least January 15, 1976.

The final example is one of the data base search commands. A command
such as the following could be constructed by the PLANES system directly and
need not ever been seen by BROWSER. The input sentence would be something
like "Find all action organizations in which tail number 158664 was serviced
between January 1970 and June 1970."

The data base search command would look like:
(Find all (file maintenance-actions)

(such-that (equal tail # 158664)
(time-period Jan. 70 June 70))

(return action-organizations))

-107-

5.4 Conclusion
The BROWSER system as described has several features which should

give considerable aid in isolating and correcting maintenance problems. One
of the system's strong points is the use of the PLANES system so that the
user has easy access to relevant information without having to code programs
himself. The system strives to return only as much information as is needed
to answer his queries. A system which answers a query with 100 pages of
printout is not performing a service to the user. It is the interactive
nature of the system with the user in control that gives this system its
power.

-108-

APPENDIX A; Augmented Transition Networks

A traditional model for recognizing sentences in certain types
of language has been the "transition network". One of these can be drawn
on a piece of paper as a group of circles with labeled directed lines
connecting them (see figure Al). The circles are called "states".
Generally, one will be designated the "start state" and another the
"final state". The lines are called "arcs" and represent ways to get
from one state to another if the label is matched by the current input
word. Every time an arc is taken, the input advances to the next word.

Now, the transition network in Figure Al can recognize such
sentences as "Bob ran." or "Rain falls.", but nothing more complicated.
Indeed any transition network is limited to a small subset of possible
English sentences. Why is this? One reason is that sentences can have
other sentences embedded in them. And those sentences can have sentences
embedded in them. And so on. For instance, consider "The man who owned
the dog which bit the thief called the police." This sentence has three
levels of" embedding.

If we allow the transition network to be recursive, this sentence
(and others) can be recognized. We allow the arcs to have labels which
are state names as well as labels which are parts of speech. Then when
a state-labeled arc is to be taken, the name of the state pointed to by
the arc is put on a push-down list, and we jump to the state named on
the arc without advancing the input. This is similar to a subroutine
call and is called "pushing to" the state. If we reach a state with a
"/l" in it and none of the arcs out of it can be taken, then we jump to
the state named at the top of the push-down list, again without advancing
the input. This is called "popping". If, however, the push-down list
is empty and we are out of words at the input, we say that we have
recognized the sentence.

An example might make this a little clearer. We will use the
recursive transition network in Figure A2 to recognize the example
sentence given above. Please refer to Table Al as you read this example.

-109-

ARTICLE START

FP-5040

Figure A2 A recursive transition network

- 110 -

TABLE A1

STEP
PRESENT
STATE

INPUT
WORD

PUSH-DOWN LIST
(TOP OF LIST TO LEFT)

NEXT ARC
TAKEN

1 START THE 0 PUSH TO NP
1 NP THE (S2) ARTICLE
3 NP MAN (S2) NOUN
4 S5 WHO (S2) PUSH TO START
5 START WHO (S5 S2) PUSH TO NP
6 NP WHO (S2 S5 S2) PRONOUN
7 S5 OWNED (S2 S5 S2) POP
8 S2 OWNED (S5 S2) VERB
9 S3 THE (S5 S2) PUSH TO NP
10 NP THE (S4 S5 S2) ARTICLE
11 NP DOG (S4 S5 S2) NOUN
12 S5 WHICH ($4 S5 S2) PUSH TO START
13 START WHICH (S5 S4 S5 S2) PUSH TO NP
14 NP WHICH (S2 S5 S4 S5 S2) PRONOUN
15 S5 BIT (S2 S5 S4 S5 S2) POP
16 S2 BIT (S5 S4 S5 S2) VERB
17 S3 THE (S5 S4 S5 S2) PUSH UP
18 NP THE (S4 S5 S4 S5 S2) ARTICLE
19 NP THIEF (S4 S5 S4 S5 S2) NOUN
20 S5 CALLED (S4 S5 S4 S5 S2) POP
21 S4 CALLED (S5 S4 S5 S2) POP
22 S5 CALLED (S4 S5 S2) POP
23 S4 CALLED (S5 S2) POP
24 S5 CALLED (S2) POP
25 S2 CALLED .0 VERB
26 S3 THE 0 PUSH TO NP
27 NP THE (S4) ARTICLE
28 NP POLICE (S4) NOUN
29 S5 — (S4) POP
30 S4 -- 0 POP

- 111-

Starting in state START, the first arc (the only arc in this case)
we see is labeled "NP" (for noun phrase). This is the name of a state so
we put "S2", the state pointed to by that arc, onto the push-down list.
Then we jump to state NP without advancing the input, i.e. we push to NP.
The first word in the sentence is "the", an article, so the ARTICLE arc
is taken. Notice that we are in state NP again. We look at the next word:
"man". This word is a noun, so we take the arc labeled "NOUN" to S5. Now
S5 has a "/l" in it, which means that we must pop if we can't take any of
the arcs. But we can take an arc, and here is where the recursion comes in.

The arc is labeled "START", the name of the first state we saw.
Not to be intimidated, though, S5 goes on the push-down list (which has
two states on it now), and we push to state START. We immediately push
to NP (S2 goes on the push-down list) and see the word "who". This makes
us take the PRONOUN arc to S5.

The next work, "owned", wouldn't be recognized by taking the START
arc (try it!), so we pop. That is, we jump without advancing the input
to S2, the state on top of the push-down list. Since "owned" is- a verb,
we can take the VERB arc to S3, where we push to NP again. The push-down
list now looks like this: (S4 S5 S2), with the top of the list to the
left. We are now at step 10 in Table Al.

"The" and "dog" are recognized by the ARTICLE and NOUN arcs, leaving
us in S5. We push to START, then to NP and take the PRONOUN arc for "which".
We pop to S2 and take the VERB arc for "bit", then push to NP. From here
we recognize "the" and "thief" with the ARTICLE and NOUN arcs (a common
construct apparently) and pop to S4. Since there are no arcs out of S4
but there is a "/l", we have to pop again. After three more pops in a row
we're in S2 looking at "called" on the input. We take the VERB arc then
push to NP and take the ARTICLE and NOUN arcs for "the police". Popping
from S5 leaves us in S4 with an empty push-down list. One more pop and
(since the push-down list is empty) we've recognized the sentence.

As one can see, recursion tends to make things difficult to follow--
and this was a ridiculously simple network. It should be obvious that even
this simple network can recognize a certain type of sentence, no matter
how many levels of embedding it has.

- 112-

There are many other instances of sentences where processing of
part of the sentence must be suspended while the same network processes
another part. But since we don't want to just recognize sentences as
belonging to a language, we require additional power. We can expand the
concept of recursive transition networks.

First, we can put conditions on the arcs which have to be satisfied
before the arc can be taken. Second we add structure-building machinery
which allows us to save parts of the sentence in registers, to move parts
of the sentence around to form its deep-structure, and, in our PLANES
system, to form commands to our lower level data base language which
correspond to questions asked in English.

This expanded concept is called an "augmented transition network"
or ATN. For those of you who are matehmatically inclined, it has the power
of a Turing machine (see Minsky (1967), Chapter 6).

-113-

APPENDIX B: Proposed Sample Dialogue for the PLANES System

Show OP RDY% by wing last month
100 X

80
X

X

X x
60 X

o
oCM

V
S. 0

0

1st 2nd 3rd 4 th 5 th 6 th

WING
(Would you like to see the exact percentages?)
No

Show OP RDY% for 5th wing by sqdn.
100 X

x X
80 X

X
60

* 40 « o 20
X

0

VF-1 VF-2 VF-4 VF-7 VF-10 VF-17
(Would you like to see the exact percentages?)
Yes

-114-

Squadron
VF-1
VF-2
VF-4
VF-7
VF-10
VF-17

OP RDY %
90
82
71
39
94
83

Give me hard copy
(output scheduled)

What was NORMS, NORMU and NORS for VF-7?
%N0R Tot hrs./month

NORMS = 17
NORMU = 19
NORS = 54

1304
1768
3170

(Did you want to see a detailed breakdown by BUNO?)
No, print it
(output scheduled)

What AIMD is associated with VF-7?
(VF-137)

Show EMT, AWP, MMHRS and TAT for AIMD VF-137.
Total EMT = 2737 hours ■—
Average AWP =78 hours
Total MMHR = 8417 hours
Average TAT =91 hours

(Would you like to see all 571 maintenance actions performed at VF .137 last
month?)

Print them by WUC
(output scheduled)
Show AWP by part for VF-137.
(There are 117 parts. Do you want to see all of them?)
Print all of them but show me the parts with the 5 highest AWP.
(output scheduled)
Part # NOMENCLATURE %AWP AWP Hours
123 Inertial Data Set 57 2036
456 Pneumatic Coupler 11 208
789 Torque Link Fitting 9 159
101 EPP Transformer 8 126
112 Canopy Latch 4 48

-115-

Show AWP for Part 123 at Other AIMD's

125
100

<D CO
bO 5-i
crJ C
5-i O
<U EC
>

< J CU

3

75
50

25
x

x

VF-109 VF-137 VF-207 VF-287 VF-379 VF-382

(Do you want to see the exact AWP hours?)
No, print them

X

\

-116-

APPENDIX C: Code for the AMOUNT Network (from section 2.1.2.)
(defatn AMOUNT

; e.g. more than three = = > ((< 3.))
; more than three but less than 5 ==> ((> 3)(< 5))
; three or fewer times ==> ((< = 3))
; four ==> ((= 4.))
; any ==> ((> 0.))
("default-registers" (predicates nil) (rel nil) (# nil))
((^AMOUNT (wrd (any some)

(setr rel ' >)
(setr # 0.)
(to AM:END))

(wrd between t (setr rel < >) (to AM:< >))
(cat comp

(not (wrd between))
(setr rel

(selectq *

(atleast > =)

(atmost <=)
(less than '<)
(greaterthan ' >)
(exactly =)
nil))

(to AM:REL))
(jump AM:REL t (setr rel ' =)))

(AM:< (cat integer t (setr # *) (to AM:< >:1)))
(AM:< ̂ :1 (wrd and t (to AM:< ->:2)))
(AM:< >:2 (cat integer t

(setr predicates (list (list ' > (min (list $# *)))))
(setr rel <)
(setr # (max (list $# *)))
(to AM:END)))

(AM:REL (cat integer t (setr # *) (to AM:#)))
(AM:# (wrd (time times) t (to AM:#))

(cat conj (eg $rel =) (to AM:C0NJ))
(jtimp AM:AMT))

(AM:AMT (cat conj t (to AM:AMTl)) (jump AM:END))
(AM:AMT1 (push *AMOUNT t

(setr predicates (list *))
(jump AM:END)))

(AM:C0NJ ; three or fewer ...
(wrd (fewer less) t

(setr rel <=) -
(to AM:END))

(wrd more t (setr rel ' > =) (to AM:END)))
(AM:END (wrd (time times) t (to AM:END))

(pop (append (list (buildq (+ +) rel #))
$predicates)))))

-117-

APPENDIX D: The PLANES Data Base

The original data base received from 3-M (in July 1974) was a
copy of one month’s transactions which passed thru 3-M. However it was
impossible to use this for any interesting question answering because
the data was not complete. Even questions which spanned a one month
interval could not be answered because the one month sample contained
corrections for previous months, data for last month and only part of the
current monthJs records. Most importantly however, very few interesting
questions could be asked if aircraft histories were not available.

It was decided to obtain a data base from which we could answer
interesting questions. After contacting the Naval Air Safety Center in
Norfolk, Virginia we obtained the description of 24 crashed aircraft -
12 A-7s and 12 F-4s. A request was then sent to 3-M for the maintenance
histories of these 24 aircraft plus 12 aircraft with poor maintenance
records plus 12 aircraft with good maintenance records. When the data
arrived 3 months later there were several problems. First it was written
in a density our equipment could not handle and had to be rewritten by
IBM equipment on the University of Illinois campus. The tapes were
formatted as print tapes. That is, the records were all 135 characters
long with titles and page numbers included. This is fine for printing
on a lineprinter but is not easily machine usable. Deletion of blanks
resulted in records of 80 characters each. This is a significant saving
when one considers that the original tapes would have occupied almost
a full disk pack. A serious problem was found during processing, data
for 20% of the aircraft were missing. Since the absence was noted on
all tapes, it is unlikely it was a machine error. In any case, by the
time the error was discovered, it was too late to reorder the tapes
(3 months wa3 an unacceptable wait) and we had to carry on with what we
had.

Before it was possible to answer questions from the data base
it was necessary to understand what was included in the data we had.
Almost two years spend in thumbing through various Navy manuals and
telephoning personnel at 3-M was necessary to approach a reasonable

-118-

comprehension of the data base. I decided to structure our data base
around the functions that the records denoted. I wrote an eleven page
internal paper which described in detail how the file structure was to
be created, what the reformatted records would look like, how to process
the tapes and how to identify the aircraft on which we had data [Conrad
(1975)].

Each file is organized by 1) record function 2) planetype (e.g.
A-7 or F4) 3) tail number and 4) time period. For example, one file would
contain all the failed parts found on tail number 156664 (which was an
A-7) in 1972.

The complete list of record functions is:
1) Maintenance actions
2) Installations
3) Removals
4) Failed parts
5) Daily flight summary
6) Daily maintenance summary
7) Monthly flight and maintenance summary
8) Summary of failures by work unit code for the series
Appendix E reproduces an internal paper I wrote which describes

the data included in each summary plus an example of typical data for
F-14 aircraft.

Before designing a question answering system, it is desirable
to have an idea of what kind of questions will actually be asked of the
system. To this end a study done by NAILSC was consulted [NALDA/NAILSC
(1974)]. It listed the data elements that were frequently retrieved from
the data base along with crude versions of the questions personnel wanted
answered. The study of this report led to three more internal papers.

First I compiled a listing of data elements which occurred in
the data base. This included the definition and usage of the field
and in some cases the definition of codes which could occupy that field.
Because this paper is both detailed and long (75 pages) it is not
included in this report.

-119-

Second I compiled the NAILSC study into English sentences so
that normal people could understand it. This is included as Appendix F.
It is actually a two section report, the first having just been described.
The second section is an expansion of Navy Acronyms (e.g. NOR = Not
Operationally Ready).

The third paper was a culmination of sorts since it is a proposed
dialog of what that PLANES and BROWSER system should be capable of.
This is Appendix B.

«

- 120 -

APPENDIX E: 3-M Summary Data and Typical
Values for F-14A Aircraft

E .1. Monthly Summary Data by Tail Number

Indexed by ORG, PUC, TEC, BUSER

Date of Summary - (month - year)
Total flights in Month
Total Flight Hours in Month
Total Ship Based Flights
Total Ship Based Flight Hours

/Readiness Reporting Hours

Not Operationally Ready Hours Due To:
1) Scheduled Maintenance
2) Unscheduled Maintenance
3) Supply (waiting for parts)

Reduced Mission Capability Hours Due To:
1) Scheduled Maintenance
2) Unscheduled Maintenance
3) Supply

Was The Aircraft With Its Assigned Unit During The Month

E .2. Daily Summary of Flights by Tail Number

Indexed by ORG, PUC, TEC and BUSER
Date of Summary - (Last Digit of Year + Day (1-365))
Ship or Land Based Flight
Flight Purpose
Departure Time

- 121-

Flight Hours
Number Flights in Day
Number Catapult Takeoffs
Type of Landing (day/night and apparatus used in landing e.g.
arrested landing)

Number of Landings
Was the Aircraft With Its Assigned Unit

E.3. Daily Summary of Maintenance by Tail Number

Indexed by ORG, PUC, TEC, BUSER
Date of Summary - (Last Digit of Year + Day (1-365)
Type of Maintenance - (NORMU, NORMS, NORS, RMCV, RMCS
Job Control Number of Maintenance - (may be multiple JCN done

per day)
Work Unit Code (SYSTEM) of Aircraft Which is Being Repaired
Work Begin/End Time
Maintenance Hours
Supply Hours (waiting for parts)
Was the Aircraft With Its Assigned Unit

E .4. Maintenance Summary by Aircraft Series

Indexed by Work Unit Code (system or subsystem on which work is
performed)

Nomenclature for WUC
Date - Time Period Report Covers (Arbitrarily)
Total Flight Hours
Total Maintenance Actions
Mean Flight Hours Between Failures
Mean Flight Hours Between Maintenance Actions
Failures Repairable in Place
Total Number of Failures

/

- 122 -

Total Unscheduled Maintenance Man Hours
Unscheduled Maintenance Manhour per Flight Hour
Maintenance Manhours per Maintenance Action
Maintenance Time per Maintenance Action

[Above Fields are Summed for Series Overall Total]

E .5. A Typical Summary for F-14A Aircraft

For a Six Month Period July '74 - December '74
Total Flight Hours - 9,886 hours
Total Maintenance Actions - 33,377
MFHBMA - .3 hours
In Place Repairs - 6,800
Total Failures - 12,530
MFHBF - .8 hr.
Unscheduled Manhours - 308,013 hrs.
Unscheduled Manhours/Flight hr. - 20.5 m/hrs/FH
Manhours per Maintenance Action - 6.1 m/hrs
EMT per Maintenance Action - 3.1 hr.

(average length of maintenance)

This is considered a reasonable aircraft

-123-

APPENDIX F*

Real-World Data on the 3-M Data Base

by

Forrest Conrad

Advanced Automation Group
Coordinated Science Laboratory

University of Illinois at Urbana-Champaign
January 1976

ABSTRACT
Based on a report of actual usage of the 3-M Data Base for

Aircraft, Mechanicsburg, PA., this appendix provides information on:
(1) frequently investigated categories of concern,

(2) corresponding types of sentences the PLANES system must be able
to answer, and

(3) a summary of the most frequently used abbreviations.

This exactly reproduces Advanced Automation Group Working Paper 5.

-124-

F.1. CATEGORIES OF CONCERN (FREQUENTLY INVESTIGATED)

1. Determine the causes and actions required to correct high NOR rate
equipment. 740/mo.

2. Determine whether to investigate an unsatisfactory material/condition
report. 414/mo.

3. Respond to CNO request to justify grounding an aircraft. Determine
whether incorporation/lack of incorporation of a technical directive
was a factor in a crash. 6/mo.

4. Determine total maintenance accomplished on a given type/model/series
during the past year, 1) at a given rework facility, 2) on a
technical directive, 3) on aircraft rework, 4) on engine rework. 25/mo.

5. Determine technical directive status of specific bureau numbers
(aircraft) for possible foreign military sale and/or determine TD status
and past maintenance action history of equipment in response to foreign
military query or sale. 4/mo.

6. Justify an engineering change proposal or evaluate benefits of a
technical directive. 225/mo.

7. Determine whether to extend maintenance intervals. 50/mo.

8. Determine the committed workload on rework facilities. 12/mo.

9. Determine whether to extend an engine on MOT. 1/mo.

10. Determine when "wearout" on a type/model/series will require wholesale
replacement. 74/mo.

Derived from NAILSC (Naval Aviation Integrated Logic Support Center),
NALDA (Naval Air Logistics Data Analysis), Navair Airtask
A4014013-0534-5401000001 APPENDIX C.

\

-125-

F.2. TYPES OF SENTENCES SYSTEM MUST HANDLE

The AN/ASN-90 inertial measurement set is number four on the aircraft
degradation ranking summary for the period Oct. 73 thru March 74.
Investigate and report on this problem.

The AN/ASN-90 inertial measurement set is fourth on the hit parade for
Oct. 73 thru March 74. Investigate and report.

How many AWM, reason code, and hours were documented by VA-125 from
Oct. 73 thru March 74 for WUC 73A50?

What BUNO's have had failures reported on WUCs 4614E00 and 1381000 over
the last six months?

What is the OP RDY % for the last six months for VA-35 (F-14's) at
Oceana?

What does it look like for all F-14 A/C?

What items (parts) are causing the rudder PC serve valve assembly to fail?
What is AIMD(ML-2) turnaround for AWP on part 137-JX?

for fault isolation
for repair
for validation 4/mo,

By part number and activity, give total items processed by AIMD last
month with ATC

ATC
ATC
ATC
ATC
ATC

A
B/C/K/Z
1
4
2 3 5
9 1 /mo,

By part number and activity, give total items processed with ML = 2
last month where

no repairs were necessary (ATC
corrective action was required (ATC
repair was not authorized (ATC
there was a lack of parts (ATC
AIMD limitations caused no action taken (ATC
the part was condemned (ATC

A)
B/C/K/Z)
1)
4)
2, 3, 5, 8)
9) 1/mo,

How many manhours did VP-31 spend performing daily inspections during
May 1973 - June 1974? 15/mo.

-126-

When corrective action was required (ATC = B/C/K/Z), what was the average
days TAT by part number and activity?

TAT less AWP
average days AWP 1/mo

What was the average AIMD TAT for ATC = A?
TAT for ATC = 1?
AWP for ATC = 4? l/mo

What was the AIMD ATC B/C/K/Z ML-2 EMT?
ATC 2, 3, 5, 8 TAT?

What was the average ML-1 MMH?
average ML-1 EMT? 1/mo

Determine aircraft which had no flight hours during the last 30/60/90
days by BUNO and status code.

Find HANGAR QUEENS over the last 30/60/90 days by BUNO and status code.
Compare NORS and N0RS percentages last month by squadron and by wing.

When was part 16357-XJ14 removed from BUNO 123456 because of bird strike
damage?
What was the EMT, MMHR, AWM, AWP and AIMD associated with the repair?
Was the item BCM?
What was TAT, NARF and date of the RFI associated with the NARF repair?

How many TMS is part X 1479-3 installed on?

Determine cost per component of items BCM to depot.

Determine AWP for part X1479-3.
Determine reason for AWP for part xl479-3.

Has there been BCM actions for part xl479-3 in the AIMD?
Has there been no defect actions (ATC = A) for part X1479-3 in the AIMD?

What was the total number of cannibalizations by squadron and TMS
during Jan. 1973 thru August 1973?
What were the manhours expended for corrosion prevention by squadron
last month?
What was the number of ship board flights by TMS last month?

What is the monthly MMH/FH of F-4's vs. A-7's last year?

What is MFHBMA on A-7’s by WUC last month?

Give verified failures and MMH by WUC on A-7's last month.

1/mo.
1/mo.

4/mo.
4/mo.
8/mo.

30/mo.

180/mo

4/mo.

4/mo.
15/mo.
15/mo.
4/mo.
4/mo.

-127-

Give the number of items processed by VP-73 by squadron last year. 15/mo.
What is the avg. TAT for an item repaired at VP-136 during Jan. 1973 -
June 1974? 4/mo.

What is the average number of items AWP in VP-137 last month? 4/mo.
What is the number of items repaired and replaced by TMS last month? 4/mo.

What were the reasons for failure per WUC per TMS last year? 4/mo.

How many hours were expended on calendar/phase inspections by ORG per
TMS last month?
How does this compare to those listed on MRC DECK? 4/mo.

Define high maintenance serial numbers so they may be removed and
overhauled.

4/mo.

Determine where inventory is by serial number. 8/mo.

Do a trend analysis on what type of failure of what parts have the highest
repair rates. 30/mo.

What repairable components were installed on and removed from VAQ-128
aircraft BUNO 156859 during the months of Oct. and Nov. 74? 4/mo.

What are the serial numbers of those components having a WUC of 17740? 4/mo.

What parts or components caused a high assembly item to have a high
failure rate in squadron VF-1 during Sept. 73? 4/mo.

Determine location of components/GSE/aircraft so as to better utilize
the material. 31/mo.

Determine the number of removals per month by types and series of engines. 4/mo

What is the reliability/utilization of part number XXXX? 4/mo.

Investigate component reliability failures by part number. 1/mo.

What was trend of VR-24 readiness in the past six months as opposed to
personnel posture? 1/mo.

What were the monthly operationally ready percentages by TMS by squadron. 4/mo.

Determine if any changes have occurred in the failure rate of A/C
components. 1/mo.

-128-

Identify the biggest problems with NOR hours.
man hours
degradation
maint. actions
aborts
UR's
mishaps 30/mo.

Determine the technical directive configuration of assigned aircraft
by BUNO. 1/mo.

Did TDC 12345678901 solve the problem it was designed for? 4/mo.

Does A-7E BUNO 156875 have all applicable technical directives installed?
What A-7E aircraft do not have the most recent TD's incorporated? 4/mo.

Determine the effect of TD's in maintenance procedures on fleet workload. 11/mo.

What narrative info has been documented on the UR’s against part QUUX-1732? 302/mo.

Which of the more than 900 unsatisfactory condition/material reports received
per month are worth expending man hours to investigate? 900/mo.

What is the frequentcy of manfunction of part QUUX-1732 over all aircraft
that incorporate it? 50/mo.

Is the quality of reworked products comparable to new material? 30/mo.

Compare the quality of reworked products by rework facility. 30/mo.

Compare maint. manhours of ’ace’ to 'non-ace* aircraft,
failed parts
parts removed
mishaps
UR's 30/mo.

What fails and what are the high man-hour consumers at aircraft rexrork
facilities by model/series and component? 1/mo.
Determine the average time between removals by type and series of engine. 1/mo.

How many maintenance actions for the last six months of data has
PEI(VF-121) had with WUC 13153, 63150, 73A54?

What were the main reasons that WUC 73A50 malfunctioned in the A-7E aircraft
(A/C) from Oct. 1973 through March 1974?

What WUC's at the five-digit level are causing maintenance problems on
F-14 flight reference associated equipment (WUC-56X10)?

\ -129-

In the HF communications system on S-3 A/C, what WUC requires frequent
maintenance?

Derived from NAILSC, NALDA, NAVAIR, Airtask A4014013-0534-5401000001
Appendices F and B.

-130-

F.3 . COMMONLY USED ABBREVIATIONS

A/C aircraft

ACT WC action work center

ACT DATE action date

ACTORG action organization

AIMD aircraft intermediate maintenance department

ATC action taken code

AT action taken

AWM awaiting maintenance time

AWP awaiting parts

BCM beyond capability of maintenance

BUNO _ bureau number

BUSER bureau number/serial number

CANN. cannibalization

CT card type

ECP

El

EMT

engineering change proposal

engineering investigation

elapsed maintenance time

-131-

F U N federal item identification number

FLT flight

FP failed part

F PC flight purpose code

FSC full systems capability

FSN federal stock number

GSE ground support equipment

HOWMAL how the part malfunctioned

IP installed part / items processed

ISS issue / installation code

JCN job control number

MA maintenance action

MANHR manhours

MAL CODE malfunction description code

MC meter code

MFG manufacturer's code
MFHBF mean flight hours between failures

MFHBMA mean flight hours between maintenance actions
ML maintenance level

ML1 REPAIRS maintenance level one-repair effected locally

-132-

mmh maintenance man-hours

MT meter time

MTBF mean time between failures

NFE not fully equipped

NOC not otherwise coded

NOR not operationally ready

NORM not operationally ready-maintenance

NORMS not operationally ready-scheduled maintenance

NORMU not operationally ready-unscheduled maintenance

NORS not operationally ready-supply

NSC naval safety center

NSN national stock number

OR operationally ready

ORG organization

PN part number

PUC/UIC permanent unit/unit identification code

RFI ready for issue

RMC reduced material condition/reduced mission capability

-133-

RMCMS

RMCMU

RP

RRC
RRS

SAP
SERNO

SHPOP

SQDN

TAT
TDC

TDSA

TEC

TFH

TM
TMS

TT

UR

WC

WD

WDC

WUC

reduced material condition scheduled maintenance

reduced material condition unscheduled maintenance

removed part

reporting requirements code (for GSE)

readiness reporting status

support action form

(or SN) serial number

ship operations (aircraft carrier landings, etc.)

squadron

turn around time
technical directive compliance

technical directive status accounting

type equipment code

total flight hours

type maintenance code

type/model/series

type of transaction

unsatisfactory material/condition report

work center code

when discovered code

when discovered code

work unit code

REFERENCES

ACM 1971. CODASYL Data Base Task Group, April 1971 Report, (available
from ACM).

Brown, J. S. and Burton, R. R. 1975. "Multiple Representations of
Knowledge for Tutorial Reasoning," in Bobrow and Collins (eds.)
Representation and Understanding, Academie Press, New York.

Bruce, B. 1975. "Case Systems for Natural Language," Artificial
Intelligence 6 (1975), pp. 327-60.

Celce-Murcia, M. 1972. "Paradigms for Sentence Recognition," UCLA
Dept, of Linguistics Memo.

Codd, E. F. 1970. "A Relational Model of Data for Large Shared Data
Banks," Comm. ACM, Vol. 6, No. 3, June 1970.

Codd, E. F. 1971a. "Normalized Data Base Structure: A Brief Tutorial"
Proc. ACM-SIGFIDET Workshop on Data Description, Access, and Control,
San Diego, Nov. 11-12, 1971.

Codd, E. F. 1971b. A Data Base Sublanguage Founded on the Relational
Calculus", Proc. ACM-SIGFIDET Workshop on Data Description, Access,
and Control, San Diego, Nov. 11-12, 1971.

Codd, E. F. 1971c. "Relational Completeness of Data Base Sublanguages,
Courant Computer Science Symposium 6, "Data Base Systems," New York
City, May 24-5, 1971, Prentice-Hall, New York.

Codd, E. F. 1974. "Seven Steps to Rendezous with the Casual User,"
Proc. IFIP TC-2 Working Conf. on Data Base Management Systems, Cargese
Corsica, April 1974, North-Holland Publ. Co., Amsterdam.

Conrad, F. 1975. Unpublished internal communication.

Conrad, F. 1976. "BROWSER," M.S. Thesis (forthcoming), Dept, of
Computer Science, University of Illinois, Urbana, October 1976.

Date, C. J. 1975. An Introduction to Database Systems, Addison-Wesley,
Reading, Massachusetts.

Fillmore, C. 1968. "The Case for Case" in Bach and Harms (eds.),
Universals in Linguistic Theory, Holt, Rinehart and Winston.

FMSOINST 4790.1A, Catalog of 3-M Aviation Information Reports, Dept, of
the Navy, (Mechanicsburg, Pa., 1974).

V«» * *

-135-

Gab riel, R. P. and Finin, T. 1975. "The LISP Editor," Advanced Automa­
tion Group, Working Paper 1, Coordinated Science Lab., University of
Illinois, Urbana.

Gabriel, R. P. and Waltz, D. L. 1974. "Natural Language Based Infor­
mation Retrieval," Proceedings of the 12th Allerton Conf. on Circuit
and System Theory, University of Illinois, October 1974, pp. 875-84.

Green, F. 1976. "Implementation of a Query Language Based on the
Relational Calculus," M.S. Thesis (forthcoming), Dept, of Computer
Science, University of Illinois, Urbana, October 1976.

IBM 1971. "Information Management System IMS/360, Application
Description Manual," IBM Form No. H20-0524.

Malhotra, A. 1975. "Knowledge-Based English Language Systems for
Management Support: An Analysis of Requirements," Advance Papers
of the 4th Inti. Joint Conf. on Artificial Intelligence, Tbilisi,
USSR, Sept. 1975, pp. 842-7.

Minsky, M. L. 1967. Computation: Finite and Infinite Machines,
Prentice-Hall, Englewood Cliffs, N.J.

Moon, D. A. 1973. MACLISP Reference Manual, MIT Project MAC,
Cambridge, Massachusetts.

NALDA/NAILSC (1974). "NALDA (Naval Air Logistics Data Analysis) System
Data Requirements Determination Report," Naval Aviation Integrated
Logistic Support Center, Patuxent River, Maryland 20670.

OPNAVINST 4790.1A, "Maintenance Data Collection Subsystem," The Naval
Aviation Maintenance Program, Vol. Ill, Dept, of the Navy (Washington,
D.C.).

Palermo, F. P. 1972. "A Data Base Search Problem," 4th Inti. Symposium
on Computer and Info. Technology, Miami Beach, December 1972, Plenum
Press; also available as IBM San Jose Research Report RJ1072.

Schank, R. C. 1973. "Identification of Conceptualizations Underlying
Natural Language," in Schank and Colby (ed.) Computer Models of
Thought and Language, W. H. Freeman.

Shannon, C. E. 1948. "A Mathematical Theory of Communication,"
Bell System Tech. Journal 27, 379-423, 623-656.

Smith, J. M. and Chang, P. Y. 1975. "Optimizing the Performance of
a Relational Algebra Database Interface," Comm. ACM, Vol. 18, No. 10.

■r «

-136-

Tenczar, P. J. and Golden, W. M. 1972. "Spelling, Word, and Concept
Recognition," Report, Computer-based Education Research Lab., University
of Illinois, Urbana.

Waltz, D. L. 1975. "Natural Language Access to a Large Data Base:
An Engineering Approach," in Advance Papers of the Fourth International
Joint Conference on Artificial Intelligence, Tbilisi, Georgia, U.S.S.R.,
Sept. 1975, pp. 868-72.

Waltz, D. L. 1976. "Natural Language Access to a Large Data Base,"
Naval Research Reviews, Vol. XXIX, No. 1, Jan. 1976, pp. 11-25. (Also
reprinted in Computers and People, Vol. 25, No. 4, April 1976.)

Wilks, Y. 1975. "A Preferential, Pattern-Seeking, Semantics for
Natural Language Inference," Artificial Intelligence 6 (1975), pp. 53-74.

Winograd, T. 1972. Understanding Natural Language, Academic Press,
New York.

Woods, W. A. 1970. "Transition Network Grammars for Natural Language
Analysis," Comm. ACM, Vol. 13, pp. 591-606.

Woods, W. A., Kaplan, R. M. and Nash-Webber, B. 1972. "The Lunar
Sciences Natural Language System: Final Report," Bolt Beranek and
Newman Inc., Cambridge, Massachusetts, Report No. 2378.

