APPROVAL SHEET

Title of Thesis: Integrated Development Environment for Policies

Name of Candidate: Anjali Bharat Shah
Master of Science, 2005

Thesis and Abstract Approved:

Dr. Timothy W. Finin

Professor

Department of Computer Science and
Electrical Engineering

Date Approved:

Curriculum Vitae

Name: Anjali Bharat Shah.

Permanent Address: 4806 Westland Blvd, Apt A, Baltimore, MD 21227.

Degree and date to be conferred: Master of Science, May 2005.

Date of Birth: May 31, 1981.

Place of Birth: Mumbai, India.

Secondary Education: Mithibai College, Mumbai, 1998.

Collegiate institutions attended:
University of Maryland, Baltimore County, M.S. Computer Science, 2005.
Usha Mittal Institute of Technology, India, B. Tech. Information Technology,
2002.

Major: Computer Science.

Professional positions held:

Software Engineer I, Broadwing Corporation (July 2004 - Present).
Research Assistant, CSEE Department, UMBC. (May 2003 - June 2004).

ABSTRACT

Title of Thesis: Integrated Development Environment for Policies

Anjali Bharat Shah, Master of Science, 2005

Thesis directed by: Dr Timothy W. Finin
Professor
Department of Computer Science and
Electrical Engineering

There has been growing interest in the use of policy-based governing frameworks
for management of a wide range of systems. These systems ranging from simple and
static to increasingly complex and dynamic have demanding requirements that make
the management of policies a complex task. Though tools have been developed to fa-
cilitate policy frameworks, there is not much work in policy development that meets
the requirements of these policy-based environments. Some of these requirements
include: (i) facility for both individual and rule-based policy specifications, (ii) abil-
ity to test policy conformance, and (iii) simplification of the inherently error-prone
process of policy creation through the use of templates and well-designed interfaces.

In this thesis, we present RIDE, an integrated policy development environment
that uses a wizard-based approach to provide a user-friendly and extensible graphical
user interface. RIDE (Rei Integrated Development Environment) has been developed
as a plug-in extension of Eclipse workbench and enables the development of policies

specified in Rei, which is a declarative, machine-understandable policy specification

language. As our main goal was to facilitate policy development for distributed sys-
tems, we chose Rei specifications because Rei is grounded in a web ontology language
that allows it to model different kinds of domain knowledge and it has been success-
fully deployed in several open, dynamic distributed environments.

RIDE attempts to meet the requirements of a wide range of policy-based envi-
ronments for which existing tools provide little or no support. This is possible due to
the unique combination of following features it supports: (1) simple, user-friendly in-
terface offering valid input options through the entire process, (2) ease of management
of domain information by offering the option of template creation, (3) automation of
the complex and error-prone policy creation process by automatically generating user-
defined policies in Rei, (4) ability to express individual as well as group policies, (5)
ability to accommodate information spanning multiple domains by using ontologies
to represent domain information, (6) policy creation over speech acts that are used for
dynamic policy management, (7) support for creation and verification of policy test-
cases for checking policy conformance, and (8) conformity to the principles outlined
by Human Computer Interaction by performing iterative evaluation and refinement

of the interface to make it as simple and useful as possible from user’s perspective.

INTEGRATED DEVELOPMENT ENVIRONMENT FOR
POLICIES

by
Anjali Bharat Shah

Thesis submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment
of the requirements for the degree of

Master of Science
2005

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor, Dr Timothy Finin and
my thesis committee member, Dr Lalana Kagal of CSAIL, MIT for their invaluable
advice, support and guidance. I would also like to express my earnest thanks to
Dr Anupam Joshi for the help I have received from him throughout the span of
my graduate studies. I am grateful to Dr Yelena Yesha for being a member on my
thesis committee. Finally, I thank the staff members of graduate school and the
Computer Science and Electrical Engineering department at UMBC for help with the

administrative aspects of my thesis work.

il

TABLE OF CONTENTS

.. i
ACKNOWLEDGMENTS s s s s s, ii
LIST OF FIGURES s s s s, v
Chapter 1 INTRODUCTION s s s s 1
1.1 Overview of Problem Addressed and Thesis Contribution 1
1.2 Thesis Outline 3
Chapter 2 RELATED WORK 4
Chapter 3 PROBLEM DESCRIPTION AND THESIS CONTRI-
BUTION s 12
3.1 Problem Domain Description 13
3.2 Thesis Contribution 15
3.3 Scopeof Thesis 19

Chapter 4 RIDE FRAMEWORK AND POLICY TOOLKIT ... 20

4.1 Rei Policy Specification Language 20
4.1.1 Actiono 21
4.1.2 Constrainto oo 22
4.1.3 Deontic Object o0 23

iii

414 Policy 24

4.2 RIDE Framework Architecture 25
4.2.1 Eclipse Platform 000000 26

4.2.2 Model-View-Controller Architecture 26

4.2.3 Jena Toolkit oL 29

4.3 RIDE Policy Toolkit 30
4.3.1 Namespace Manager 31

4.3.2 Policy Creation User Interface 36

4.3.3 Policy Test-case Creation Interface 49
Chapter 5 CONCLUSION AND FUTURE WORK 51
5.1 Conclusion and Contributions 51
5.2 Future Work 52
REFERENCES e 53

v

3.1

3.2

3.3

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

LIST OF FIGURES

Rei Policy Editor Using Protégé-2000 17
Policy Creation Using Rei Policy Editor 17
Rei Editor’s Text Interface Showing Content Assist Feature 18
RIDE Framework Using MVC Architecture 28
Namespace Manager L 0oL 33
Template Creation Using Namespace Manager 33
Namespace Addition to Template 34
Namespace Deletion from Template 34
Direct Namespace Loading 35
Actor Selection for Rule Creation 37
Modality Selection for Rule Creation 38
Action Selection for Rule Creation 38
Completion of Rule Creation Process 39
First Step in Speech Act Creation Process 39
Second Step in Speech Act Creation Process 40
Simple Constraint Creation Process 42
Boolean Constraint Creation Process 43
Committing Rules/Constraints 44

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

Granting Object Creation Process 44

Policy Creation Process 45
Meta-policy Creation Process 45
Policy File Creation Process 46
Policy File showing Auto-generated OWL Code 46
Policy File Validation L. 48
Policy Test-Case Creation Process 48
Policy Test-Case Results 49

vi

Chapter 1

INTRODUCTION

Policy-based approaches have been widely employed in areas such as security,
trust and management of networks and distributed systems. Recent research affirms
their utility in more complex, open, dynamic distributed systems such as pervasive
computing environments, semantic web, grid computing and multi-agent systems.
Policies could be defined as rules that guide or control the behavior of entities in
a system. Security policies generally define rules for access-control, authentication
and integrity, or authorization of entities in a system. They restrict access to certain
resources in an organization. For example, there could be a policy stating that no
graduate student in UMBC can use the fax machine in the graduate school office.
Management policies define the role of an individual in terms of his duties and rights.
For example, a policy stating every graduate student in UMBC should display his
ID card to school officials upon demand. The chief benefit from using a policy-
based governing framework is that policies are separated from implementation of the
managed system. This gives improved flexibility in changing the behavior of the

system without changing its underlying implementation.

1.1 Overview of Problem Addressed and Thesis Contribution

The wide range of environments to which policy-based government is applicable
makes management of policies a complex task. Some of the characteristics of these

environments such as (i) a large number of clients, resources and services, (ii) inability

to pre-determine all resources and clients, (iii) inability to identify all entities, and
(iv) environments spanning several domains with diverse types of domain knowledge;
underline the need for appropriate tool support to facilitate their management. Our
work on Integrated Development Environment for policies uses Rei policy specification
language to express policies created by the user through a graphical interface. Rei is
a declarative, machine-understandable policy specification language [14]. It defines a
policy as a set of rules describing deontic [16, 10] concepts of permissions, obligations,
dispensations, and prohibitions. Associated with the language is a policy engine that
can be used within the application domain to interpret and reason over policies,
help resolve in case of conflicts between policies and answer queries related to policy
making. There is considerable amount of work in the area of policy specification
languages. However, compared to other policy languages, Rei is unique in that it has
been successfully deployed and used in open, dynamic distributed environments. Such
environments typically have more complex requirements that make it indispensable
that the language be supported by user interface tools that hide much of its complexity
from the users. It is the abstraction from the intricacies of policy specification using
Rei that our work seeks to provide.

The primary focus of this thesis is the development of an integrated policy man-
agement environment that provides user-friendly, easily extensible graphical tools
that automatically generate code for user-defined policies in a wide range of environ-
ments. Its main contribution is RIDE, which stands for Rei Integrated Development
Environment. RIDE toolkit consists of (i) a wizard-based intuitive, graphical user
interface that is plugged into the Eclipse framework, (ii) its interface with the Rei
engine that allows users to query the engine and test the correctness of the policies
created through the wizard, and (iii) a namespace manager integrated into the wizard
that has useful features like ease of management of domain independent information,
use of ontologies to describe domain specific information and namespace templates to

eliminate the need to re-enter frequently needed domain information. The domain-

specific information represented using ontologies that are expressed in semantic web
languages like OWL [2] and RDFS [24] offers several benefits. Firstly, policies can be
created using entities and the context at different levels of abstraction, ranging from
a specific instance to the most general class it inherits from. Secondly, it provides
the extensibility required to incorporate different kinds of application-specific knowl-
edge and the ability to accommodate information spanning several domains. This

enhances the scalability and extensibility aspects of RIDE toolkit.

1.2 Thesis Outline

This thesis is structured as follows:

Chapter I provides an overview of the problem domain and our efforts in work-
ing on a solution for it.

Chapter II provides information on related work on user interfaces for policy
languages.

Chapter III provides a comprehensive description of the problem domain, our
contribution in solving it, and scope of the thesis.

Chapter IV provides a detailed description of the IDE design, framework, sup-
ported features along with the description of tools and concepts used.

Chapter V presents a summary of the work and identifies directions for future

research.

Chapter 2

RELATED WORK

There has been considerable research in the area of policy specification lan-
guages and user interface support for them. However, a majority of these tools and
their respective policy specification languages are tightly coupled to the environment.
As a result of this, much of the complexity of the underlying implementation and
mechanisms is exposed to the user. The principle factor affecting our choice of pro-
viding a wizard-based intuitive approach has been to address this issue. We provide
abstraction from the underlying mechanisms and provide an easy-to-use, friendly en-
vironment. Although tools have been developed with features that aid right from
policy creation up to its deployment and conflict resolution, their policy specification
languages lack expressivity, which in turn limits their scope. On the other hand, our
work lets users express security, management and even conversation policies [14]. It
allows specification of individual and group based policies, which are auto-generated
in OWL. This expressivity is gained through the choice of Rei as the policy specifica-
tion language. Expressing them in OWL also enhances their interoperability. Kagal
[14] gives a comprehensive coverage of research efforts in specification for policy lan-
guages and advantages of using Rei over them. In this chapter we discuss related
work in the area of tool support for policy-based management.

The Platform for Privacy Preferences (P3P) is a standard developed by the
World Wide Web Consortium (W3C) that enables websites to describe their privacy

policies and allows browsers and other user agents to reason over these policies to

decide whether they match the user’s preferences [5]. It warns users of conflicts with
the website’s privacy policies, if any, and allows them to automate the acceptance or
rejection of the latter’s requests for information. This work tries to reduce Internet
users’ concerns about the personal information they reveal when visiting various web-
sites. Websites specify their policies in P3P expressed using machine-readable XML
[25] and users express their preferences using P3P Preference Exchange Language
(APPEL) [1].

The IBM P3P Policy Editor provides a user-friendly interface, for creating a
website’s privacy policies. Though it helps organizations create machine-readable
policies for their websites by reducing the complexity of this inherently error-prone
task, it cannot be used to describe privacy policy for agents and services on the web.
It does not allow much expressivity and is much more limited in its capabilities. Our
work, on the other hand, can be used to create Rei policies for any kind of web entities
such as resources, agents, services, and users. This is achieved by allowing the use
of generic variables for actors and actions in policy creation. These variables could
represent any entity or set of entities and any action or set of actions in the domain.
Constraints can be attached to them to specify conditions under which the rules and
policies apply. Also, unlike P3P policies, these policies are expressed in OWL and can
be easily translated to other semantic web languages, which makes them semantically
rich and suitable for the Semantic Web.

EPAL 1.1 [20] specifies enterprise-level privacy policies in terms of positive and
negative authorization rights. It can be thought of as a policy language that specifies
privacy rules in XML, which can be enforced by organizations to automate privacy
management tasks. EPAL Editor is developed as an open source project that provides
a GUI to enter information about policy rules, user category, action, data category,
purpose, policy condition and obligation, where a user category is similar to a role and
obligations are linked to rules implying that if the action is performed the obligation

holds. All information in these fields has to be typed out by the user making the

process tedious and less user-friendly. RIDE provides drop-down menus and dialog
boxes populated with a list of valid values to offer possible input options to the user.
The user can just click and choose the value to be entered in the corresponding field.
This reduces the chance of errors and simplifies the process of policy creation. EPAL
Editor does not benefit from the interoperability and scalability provided by ontology
languages like RDFS [24], DAML+OIL [8] and OWL, because policies created are in
XML. There is no support for describing domain-specific information, which restricts
its usage considerably. Our work can be used for any environment ranging from
pervasive computing systems to multi-agent systems with the provision it offers for
entering domain-specific information. RIDE toolkit also allows users to create, modify
and remove namespace templates, which are essentially means by which a user can
aggregate domain-specific information and persist this information for future usage.
This prevents the user from having to re-enter any such information that has already
been stored.

Ponder is a declarative, object-oriented language for specifying policies in dis-
tributed systems [6]. It defines basic policies like access control policies and obligation
policies to specify access control and management actions respectively. These are de-
scribed by a binding between a set of subjects and a set of targets. It also defines
composite policies, which provide the ability to group policies to reflect organiza-
tional structure or for reusability of common definitions, thereby allowing structured,
reusable specifications. Ponder allows meta-policy specification to disallow simulta-
neous execution of conflicting policies or for specifying application specific constraints
on sets of policies.

Ponder toolkit consists of a graphical domain browser, compiler framework, pol-
icy editor, management console tool and conflict analyzer for integrated policy man-
agement [7]. The graphical domain management tool allows browsing/updating poli-
cies and other objects in the domain. This is a useful feature, which is currently not

supported by RIDE. Policy editor is used for creating/modifying policies. Though

help is provided in the form of content assistance, users are expected to have a basic
understanding of ponder programming language as they are expected to type out
policies in the editor. On the other hand, RIDE has a user-friendly, wizard-based ap-
proach that automatically converts all user selections for rules and polices into their
respective Rei specifications expressed using OWL. The user is not required to know
either the specifics of Rei policy language or the semantic web language OWL. The
compiler framework of Ponder toolkit transforms policies directly into XML or low-
level representations suitable for the underlying system (by default Java code) that
can be interpreted at runtime. This makes it tightly coupled to the environment.
RIDE, on the other hand, generates all rules and policies in OWL to be reasoned
over by the Rei Engine. It does not need to transform policies into any other repre-
sentation, decoupling itself from the underlying environment. Their conflict analysis
tool, integrated with the policy editor, is able to detect conflicts between policies
of opposite modalities and detect inconsistencies between policies and external con-
text [15]. This is another useful feature that is currently not supported by RIDE.
However, it provides facilities for meta-policy specification over policies that are ex-
pected to conflict at run-time. Ponder provides a deployment model as well. After
specifying the policy, it is compiled by the Ponder compiler into a Java class and
then represented at runtime by a Java object. Authorization policies are enforced
by Access Controller agents that allow or reject access requests to controlled target
resources. Policy Management agents try to enforce obligation policies when the rel-
evant events occur. Though Ponder provides the specification of the interfaces for
these enforcement agents it does not provide any implementation.

Ponder toolkit is a well-developed tool support for integrated management of
distributed environments. However, since Ponder policy language does not support
run-time modification of policies, it limits Ponder toolkit from providing this feature.
RIDE allows policy creation over speech acts that are use in Rei policy framework

for run-time modification of policies. These include delegation, request, cancel and

revocation [14] speech acts. A valid delegation leads to a new permission. Similarly,
a revocation speech act nullifies an existing permission (whether policy based or
delegation based) by causing a prohibition. An entity can request another entity
for a permission, which if accepted causes a delegation, or to perform an action on
its behalf, which if accepted causes an obligation. An entity can also cancel any
previously made request, which leads to a revocation and/or a dispensation.

KAoS [22, 23] is a policy language based in OWL. It can be used to develop
positive and negative authorization and obligation policies over actions. It allows
conflict resolution and enforcement of policies within domains. It is similar to Rei and
uses semantic web language OWL in representing domain information, application
context and the policies. It provides the KAoS Policy Administration toolkit (KPAT)
to facilitate policy management.

KPAT graphical user interface is organized as a set of views, namely, domain
view, actor classes, policies, policy templates, policy disclosure, namespaces, configu-
ration, ontology query and guard manager. Domain view allows creation and deletion
of domains and policies. Actor class view shows the list of actor classes defined in the
loaded ontologies and is used to create, modify, and delete policies for the selected
actor class. Policies view shows a list of policies in the system and a hierarchy of
policy sets. It can be used to discover and resolve policy conflicts, modify and remove
policies, create, modify, and remove policy sets, and define membership in these sets.
Policy Templates view shows the list of available policy templates, from which the
user can create, modify or remove policies templates. Policy Disclosure view shows
a list of policy disclosure queries that could be asked about the authorized or obli-
gated actions by the policies in effect. Namespaces view allows loading ontologies,
displaying a list of loaded ontologies and information about the selected ontology.
Configuration view shows configuration of the Directory Service, which includes a list
of loaded ontologies, domains, policies and policy sets, and user-defined classes and

instances. Ontology Query view allows the user to query the ontology to ensure it

is defined correctly. Guard Manager view shows the hierarchy of registered Guards,
which are responsible for local policy enforcement.

KPAT and RIDE frameworks share a few similarities. Both approaches offer
well-defined and user-friendly graphical interfaces for policy creation. They hide
the complexity of their respective policy specification languages from the user and
automatically generate policies using semantic web languages. Both approaches offer
the notion of templates that can be created, modified or removed. These templates
capture information most frequently or commonly required by the user. However,
due to existence or absence of some features in either framework, there are both
advantages and disadvantages of using one over the other. The advantages of KPAT
are that it has features that can let users create domain-specific ontologies, browse,
modify and delete them. RIDE does not provide this. We believe that this is not
a required feature as Rei assumes all domain-specific ontologies could be created,
browsed and modified outside the IDE using Protégé-2000 [21], SWOOP [12] and
such other ontology editors. Secondly, KPAT GUI lets users browse through the
created policy objects. Rei IDE stores rules, constraints and policy objects as OWL
text files and has no GUI to browse through them. However, all text-based editing
features are provided by the text editor in Eclipse. KPAT provides conflict detection
between policies and facilitates policy enforcement, which RIDE does not support.

The advantages of using RIDE over KPAT for policy creation are that it lets users
create policies over speech acts such as delegation, revocation, cancel and request as
defined by Rei policy specification language. These allow policies to be dynamically
modified. KAoS only models simple delegations thereby limiting KPAT that has no
integrated support for dynamic policy management. Secondly, KPAT is a stand-alone
and RIDE is developed as a plug-in for the Eclipse workbench. This allows it to be
extended easily due to the extensible Eclipse framework. RIDE also provides support
for formulating test-cases to test policy conformance, which is not offered by KPAT.

KeyNote [4] is a distributed trust management system that provides a specific

10

language for representing policies, which govern the actions that principals (entities
that can be authorized to perform actions) are authorized to perform. The language
provides the semantics for describing actions, which are operations with security
consequences that are to be controlled by the system and which are specified as a
collection of name-value pairs. It is also used for specifying credentials, which allow
principals to delegate authorization to other principals. In KeyNote, the application
sends the engine a set of credentials, policies, public keys of the requester, and the
set, of actions. A KeyNote assertion is made of authorizer, licensees, conditions and
signature. The licensees’ field specifies the principals to which the authority is del-
egated and conditions’ field is a set of tests of the action environment. Satisfying
an assertion implies satisfying both the licensees and conditions fields and describes
actions the holders of the public keys that signed that request are authorized to per-
form. As KeyNote requires all assertions, credentials and policy files to be specified
in its native syntax, writing syntactically correct policy files can become a daunting
task.

To overcome this problem, a policy toolkit called Policy-Editor [17] has been
developed. It is based on the principle of using XML for policy specification in the
form of an XML user policy file, which is transformed using an XML style sheet
into the native KeyNote policy file format. Style sheets for transforming the policy
file in XML to the KeyNote policy file format and a graphical web-based format are
provided by the toolkit. It also consists of a Java-based graphical user interface,
which has drop-down menus and dialog boxes collecting inputs from user to populate
parameters of policy file.

Policy-Editor for KeyNote is an elegant solution in terms of using XML to hide
the complexity of the KeyNote syntax, which is similar to our idea of auto-generating
OWL files to hide the complexity of Rei syntax. However, KeyNote Policy-Editor
is quite limited in terms of its capabilities as compared to our work. It can be

used only to specify authorization policies, whereas RIDE not only lets users create

11

authorization policies, but also obligation policies. RIDE is designed to use domain
knowledge expressed using ontology languages. This makes it applicable to any kind
of domain ranging from multi-agent systems to pervasive computing environments.
Also, it is possible to specify constraints over attributes of requesters, actions, and
the environment at different levels of abstraction through the graphical interface
provided. This is not possible in KeyNote as they use a programming language
for describing assertions. In KeyNote, delegation is controlled by a delegation depth
and simple conditions on delegation. On the other hand, RIDE can be used to
generate permissions to delegate as separate permissions. These permissions can
have constraints specified not only on who can delegate, but also on whom they can

delegate to.

Chapter 3

PROBLEM DESCRIPTION AND THESIS
CONTRIBUTION

Policy-based governing frameworks for management of systems are gaining a
lot of popularity. One of the significant benefits of using policy-based approach is
improved flexibility in changing system behavior without changing its underlying im-
plementation. Though a plethora of policy specification languages have been devel-
oped to address issues and requirements of fairly static environments such as security
and trust management, management of network and distributed systems and privacy
government, Rei is applicable also to open, dynamic distributed environments. Its
usefulness is demonstrated by its successful deployment in a wide range of environ-
ments including pervasive computing environments, semantic web, grid computing
and multi-agent systems. In order to facilitate policy management using Rei, need
is evident to provide a policy management toolkit that hides the syntactic details of
the language and simplifies the inherently error-prone and complex process of policy
creation.

Main focus of this thesis is the development of an integrated policy management
environment that provides easy-to-use graphical tools that automatically generate
code for user-defined policies, provide abstraction from specifications of Rei policy

language and means to verify correctness of the policies created.

12

13

3.1 Problem Domain Description

Management of policies can get quite complex in systems that are large-scale,
open, dynamic, distributed or any combination of these. Though tools that have
been developed to facilitate policy management, there is not much work done that
singularly meets all the requirements of this wide range of environments that make
use of policy-based approaches.

Characteristics of the environments to which policy-based government is applied
outline features for policy management tools to support. Some of these requirements

that highlight the inadequacies of existing tools are:

e Support for dynamic policy modification: For systems that are constantly
changing due to variations in externally imposed constraints or environmental
conditions, policy-based management could get more difficult. It is desirable in
such cases to have a policy management toolkit that facilitates run-time modi-
fication of existing policies. This is required so that the system can constantly
adapt itself to meet the new requirements. Using our tool it is possible to create
policies over delegation, revocation, request and cancel speech acts that allow

dynamic policy modification.

e Facilities for group policy specification: There could be a large number of re-
sources and entities in the environments that make use of policy-based man-
agement. This could result in a potentially large number of policies governing
the environment. This underlines the need for policy management toolkits to
provide some features for defining policies for groups of entities. Our solution
allows creation of group policies, which can be described over common char-
acteristics of the entities and actions these entities want to perform over the

resources.

e Ability to accommodate information spanning several domains: The environ-

ments under consideration generally span more than one domain and need to

14

handle heterogeneous domain-specific information. It is very important that the
policy management tool-support has the ability to handle any domain-specific
information. Our tool is designed to accept domain knowledge expressed using
ontology languages. This makes it easily extensible and usable for any domain-

specific information without any change.

e Easy-to-use and easily extensible interfaces: Policy management frameworks
that are applicable and extensible enough to support a wide range of environ-
ments usually have complicated policy specification languages and underlying
mechanisms. A policy management toolkit that can hide all of this complexity
from the user through a friendly user interface is highly desirable. It makes
administration tasks simpler and reduces the chances of errors considerably.
RIDE provides a wizard-based graphical user interface that is intuitive and
user-friendly. It allows policy specification by providing a complete list of possi-
ble and valid values wherever applicable and automatically generates the OWL

code for these policies.

Constantly evolving systems with their changing requirements need the inter-
faces to be easily extensible. Our work is developed as an extension of the

Eclipse framework and it is easily extensible.

e Comprehensive support for testing: With the possibility of creating a large
number of policies and the ability to dynamically modify them; another impor-
tant feature the user would want to have is to be able to verify the correctness
of these policies. This is possible using RIDE. It has an interface with the Rei

Engine that allows users to check the correctness of individual policy modules.

The novel aspect of our work on an Integrated Development Environment for Rei
Policy Specification Language lies in the fact that it has been designed to support all
these requirements. Yet, there has been no compromise on simplicity and ease-of-use

aspects of the user interface.

15

3.2 Thesis Contribution

The following is a list of contributions made by this work:

1. The main contribution of the RIDE toolkit is the graphical wizard-based policy
specification tool. It provides user interface to create rules, constraints, granting
objects, policies and meta-policies. Rules are permissions, obligations, prohibi-
tions and dispensations as described by Rei. For more detailed description on
these, please refer to section 4.1. Constraints are specified over the entities and
actions in the domain and allow evaluation of the conditions under which the
rules apply. The wizard allows creation of granting objects to add additional
constraints to existing rules. Policies are created by combining any number
of existing rules, granting objects and a context. The context is a set of con-
straints used to define the environment under which the policy is applicable.
RIDE allows security policies to be defined using permission and prohibition
rules. Management policies can be defined using obligations and dispensations.
It can also create conversation policies. The order in which speech acts occur
is called a conversation. The order is a domain specific state and a log of the
speech acts that have occured so far. If appropriate domain ontologies are de-
veloped to represent speech acts like reply, query, deny and the like, then RIDE

can be used to create Rei conversation policies over them.

A complete list of possible and valid input options for various fields involved in
the process of rule, constraint and policy creation are presented to the user using
drop-down menus and dialog boxes. The user can just click and choose the value
to be entered in the corresponding field. This ’click-and-choose’ feature simpli-
fies the process considerably. These user-defined constructs are automatically
converted into their appropriate OWL representations as per the specifications
of Rei. This automates the laborious, complex and error-prone process of pol-

icy generation for any domain and keeps the user away from having to learn

16

OWL or Rei specifications. Individual and group policies could be created using
the wizard. Its support for policy creation over speech acts facilitates dynamic

policy modification.

2. The other contribution of RIDE toolkit is an integrated front-end to Rei Engine,
providing an interface for querying and policy testing. It is a wizard that allows
formulation of test-cases that verify correctness of the policies created through
the graphical wizard-based policy specification tool. It involves querying the
Rei Engine for an answer to the test-case and computes its result by comparing

the answer from Rei Engine to the expected answer for the test-case.

3. As a part of the wizard-based policy specification tool, a namespace manage-
ment tool is provided that allows users to enter domain-specific information.
This is achieved by use of ontologies to specify domain knowledge. It also has
support for creation, modification and removal of namespace templates. These
templates are used to save and re-use namespace information. It is provided to
make the tool user-friendlier. Namespaces are essentially URLs that are loca-
tors of the ontology files that capture the domain information. This makes our

tool scalable and capable of handling heterogeneous information.

Design and implementation of this work build upon our experience gained
through the earlier two approaches of developing a graphical user interface for Rei.
The first approach involved creating a tab-widget plug-in extension for Protégé-2000
ontology editor. It provided such features as loading and browsing the domain-specific
ontologies through Protégé-2000’s existing interface and allowed creating policies,
rules and meta-policies through features provided by our extension. Figure 3.1 and
Figure 3.2 show some of its interfaces.

Though, this approach provided a simple and convenient way for specifying Rei
policies, rules and meta-policies, it was not as intuitive and easy-to-use as wizard-

based approaches generally are. Furthermore, it was also limited by the limitations in

17

Fic. 3.1. Rei Policy Editor Using Protégé-2000

Fi1G. 3.2. Policy Creation Using Rei Policy Editor

18

design of the protégé-2000 ontology editor such as multiple dialog boxes opening up

when asking for details of each field in the policy creation process that could confuse

the user considerably.

& Resource - Policy3,rei - Eclipse Platform

- i

4

Fle Edt Navgate Search Project Run Window Help

" YL R R =

5 % Noviater v x| oy Policy 1 el X

2 x&z |8 prefix rafai]

1 [eren e 0 g 2000 s>,
] prowct chttpiffevee csee Limbe.edyf-hagall rersimplfieds >,
E ;’0401‘-"& <htpif e, csen.umbc.aduf~agall furivi >,
13 PolcyZse
1y Poleyduel
32 outine x

&7 Tashs (Oktems)
[#] | pespton

| Rasowes | In Folder

T

|

Fic. 3.3. Rei Editor’s Text Interface Showing Content Assist Feature

Our next approach was focused around developing a text-based editor for spec-

ifying policies in the Notation3 (N3) [3] representation. N3 is the XML syntax for

RDF and makes policies more readable. Policies written in N3 can be easily trans-

lated into other semantic web languages like RDFS, OWL. The N3 text editor was

based on providing content assistance and context information to the users while they

type out Rei Policies. Figure 3.3 shows one if its interfaces.

As we developed the interface using this approach, we realized that it would not

be as user-friendly as a wizard-based approach would. Also, it expected our users to

be familiar with N3, which could have severely limited its usability.

Our efforts in building user interface to aid policy development and maintenance

clearly emphasize our conformance of the principles and concepts outlined by Human

19

Computer Interaction [11]. These include requirements analysis to support design,
prototyping, iterative evaluation and iterative refinement of the interface to make it

as simple and useful as possible from user’s perspective.

3.3 Scope of Thesis

This thesis primarily limits its scope to using Rei policy specification language to
define policies. Design and implementation of RIDE are therefore influenced greatly
by concepts defined by Rei.

RIDE allows creation of only a subset of all possible Rei constructs. Rei grounded
in first order logic allows specification of a range of relations like role value maps using
logic-like variables. For example, it is possible in Rei to describe uncle of and same
group as relations. It also allows creation of complex constructs for entities in the
domain such as objects with start or ending constraints that are not possible to
express using RIDE’s graphical interface. The latter, however, allows a majority of
the Rei defined constructs to be specified easily.

The namespace management tool of RIDE requires users to input all the domain
specific information using namespace URLs that correctly point to the ontology files
created to capture all the required information. There is no support provided cur-
rently to create these ontology files containing domain terminology and instance data.
We believe that this is not a severe limitation as there are several ontology editors
available that could be used for this purpose. Also, RIDE expects the first namespace
to point to the terminology file containing a class called ” Action” that represents di-
rectly or through inheritance all domain actions. Entities (Actors) and resources in
the domain are all classes other than the Action class and its sub-classes. Following

the first ontology file, there could be any number of other ontology or instance data

files.

Chapter 4

RIDE FRAMEWORK AND POLICY TOOLKIT

This chapter gives the relevant details of Rei policy specification language,
Eclipse framework, Model-View-Controller architecture and Jena toolkit that con-
tribute to the design and implementation of our work. It also discusses in detail,

different features and functionalities provided by RIDE.

4.1 Rei Policy Specification Language

Rei is a policy specification language defined in OWL-Lite with general specifi-
cations for policies as well as mechanisms for policy verification, analysis and testing.
Rei defines a policy as a set of rules describing deontic concepts like permissions, pro-
hibitions, obligations and dispensations over actions in the environment with respect
to the actor, the action and the context. It models speech acts for remote policy
management like delegation and revocation that affect permissions and prohibitions,
and request and cancel that affect obligations and dispensations. It defines meta-
policies to resolve any conflict that may arise between enforced policies. It provides
specifications and tools for policy analysis like use-case analysis where certain opti-
mal situations are described and what-if analysis where a policy maker can test out
changes to the policy and check their effect before committing them. All these con-
cepts are specified using ontologies, called ’domain-independent ontologies’, written
in OWL. The use of the semantic language OWL enhances its interoperability and

extensibility. Associated with the language is a policy engine that can be used within

20

21

the application domain to interpret and reason over policies, help resolve in case of
conflicts between policies and answer queries related to policy making.

A short description of each of these Rei specified concepts along with an exam-
ple demonstrating their corresponding OWL representations follows. More detailed

explanation of all Rei concepts and terms can be found in [14, 13].

4.1.1 Action

Actions in Rei allow capture of contextual information and are of two types:
Domain Actions and Speech Acts. Rei Action ontology describes general properties,
some of which being actor (performer of the action) and location (location where
action occurred) inherited by its Domain Action and Speech Act subclasses.

Domain Action : This subclass includes additional properties for application
specific actions. These include target (object on which action is performed), precondi-
tion (condition that must hold before action can be performed) and effect (condition
that occurs after action is performed).

For example, where the domain is, say, CS department in some university and
we want to specify an action that uses the printers in that department, the OWL

representation would be as follows:

<owl:Class rdf:ID="CSPrinting">
<rdfs:subClass0f rdf:resource="&action;DomainAction"/>
<rdfs:subClass0f>
<owl:Restriction>
<owl:onProperty rdf:resource="&action;target" />
<owl:allValuesFrom rdf:resource="#CSPrinter" />
</owl:Restriction>
</rdfs:subClass0f>

</owl:Class>

22

Speech Act : This subclass specifies additional properties for dynamic and
remote policy management. These include sender (specifies sender of the speech act),
receiver (recipient of the speech act), condition (constraints added by the sender)
and context (actual message, either action or deontic object to be sent). It is further
subclassed into Delegate (leads to a new permission), Revoke (nullifies an existing
permission by causing a prohibition), Request (specifies a request for a permission,
which if accepted causes a delegation, or to perform an action, which if accepted
causes an obligation) and Cancel (cancels any previously made request creating a
revocation and/or a dispensation).

As an example of a speech act, consider a delegation action from Susan to Bob,

giving him the permission to perform a printing action in the lab.

<action:Delegation rdf:ID="Del_SusanToBob">
<action:sender rdf:resource="# Susan "/>
<action:receiver rdf:resource="# Bob "/>
<action:deontic>
<deontic:Permission>
<deontic:actor rdf:resource="# Bob "/>
<deontic:action rdf:resource="#LabPrintingAction"/>
</deontic:Permission>
</action:deontic>

</action:Delegation>

4.1.2 Constraint

Constraints are used to define a set of objects that satisfy or possess certain
property or a set of properties. It has two subclasses, SimpleConstraint and Boolean-
Constraint.

Simple Constraint : It defines properties like subject (entity the constraint is

about), predicate (the property of the entity) and object (value of the property).

23

The following is an example of a SimpleConstraint that defines that an action is

of type CSPrinting action.

<constraint:SimpleConstraint rdf:ID="IsCSPrinting"
constraint:subject="#var"
constraint:predicate="&rdf;type"
constraint:object="&univ;CSPrinting"/>

</constraint:SimpleConstraint>

Boolean Constraint : Rei allows SimpleConstraints and BooleanConstraints to
be combined in pairs to form a BooleanConstraint. This pairing is achieved using the
And, Or and Not operators. Properties defined are first (first constraint, either Simple
or Boolean) and second (second constraint in the pair, either Simple or Boolean).

The following is an example of a Boolean Constraint that defines that the

CSPrinting action can only be performed by graduate students.

<constraint:And rdf:ID="GradStudentConstraint'">
<constraint:first rdf:resource="#IsGraduateStudent" />
<constraint:second rdf:resource="#IsCSPrinting" />

</constraint:And>
Where, the Simple Constraint ”IsGraduateStudent” is defined as:

<constraint:SimpleConstraint rdf:ID="IsGraduateStudent">
<constraint:subject rdf:resource="#var" />
<constraint:predicate rdf:resource="&rdf;type" />
<constraint:object rdf:resource="&univ;Graduate" />

</constraint:SimpleConstraint>

4.1.3 Deontic Object

Deontic objects correspond to rules in the policy domain. This class as defined

in the Rei ontology has properties such as actor (actor or set of actors over whom

24

the rule applies), action (action or set of actions that the rule is described over) and
constraint (conditions that must be satisfied to make the rule applicable). It has four
subclasses: Permission, Prohibition, Obligation and Dispensation. Permission is used
to specify an action (set of actions) allowed for an actor (set of actors). Prohibition
describes an action (or set of actions) that the actor (or set of actors) is prohibited
from performing. Obligation is used to specify an action (or set of actions) that
the actor (or set of actors) is obliged to carry out. Dispensation is a waiver for an
obligation. It is used to negate or free the actor from an obligation.

The following is an example that describes that Susan has the permission to
perform CSPrinting action. Prohibition, obligation and dispensation can be similarly

described.

<deontic:Permission rdf:ID="Permission_Susan'">
<deontic:actor rdf:resource="#Susan"/>
<deontic:action rdf:resource="#CSPrinting"/>

</deontic:Permission>

4.1.4 Policy

A policy as defined by the Rei ontology consists of a list of rules (deontic objects)
and a context (Simple or Boolean Constraint) to guide the behavior of entities in the
policy domain. It can also include a set of conflict resolution specifications. This class
defines properties such as context, grants, granting, defaultBehavior, defaultModality,
metaDefault, rulePriority and imports. An explanation of each of these properties
can be obtained from [14].

A simple example of a policy for the CS Department that states that all members

of that department can perform CSPrinting action can be represented as follows:

<policy:Policy rdf:ID="CSDeptPolicy">

<policy:actor rdf:resource="#var" />

25

<policy:action rdf:resource="#CSPrinting" />

<policy:context rdf:resource="#members_of_CSDept" />

<policy:grants rdf:resource="#granting_right_to_print" />
</policy:Policy>
Where, the granting object "granting right_to_print" is defined as:
<policy:Granting rdf:ID="granting_right_to_print">

<policy:to rdf:resource="#var" />

<policy:deontic rdf:resource="#right_to_print" />

</policy:Granting>

OWTL representations of the Rei constructs described in examples above are pro-
vided solely as a means to facilitate understanding of the language specifications. The
user, however, is not required to know them as they are automatically generated by
RIDE.

Rei provides specifications called Meta-policies for conflict resolution. It provides
default meta-policy specification and meta-policies over conflicting rules and policies.
Current implementation of RIDE only supports meta-policy specification over con-
flicting policies. Rei also provides policy analysis tools to enable the development of

consistent and valid policies. Current implementation of RIDE does not support this.

4.2 RIDE Framework Architecture

RIDE has been developed by extending the Eclipse framework to provide a
wizard-based graphical user interface. It embodies the Model-View-Controller ar-
chitecture in building this user interface. Wizard-user interaction to get inputs from
the user and the automatic OWL code generation as the output are made possible
by making use of the Jena toolkit. A description of relevance and contribution of
these tools and concepts to the design and implementation of RIDE follows. We also

describe the capabilities and features of RIDE toolkit.

26

4.2.1 Eclipse Platform

Eclipse Platform is an IDE that provides building blocks and a foundation for
constructing and running integrated software-development tools [18]. It is open
source, extensible and specialized for building integrated development environments.
It has therefore been our choice in developing an IDE for policies. RIDE toolkit
extends the Eclipse platform by wrapping itself into a pluggable component; called
Eclipse plug-in. Eclipse runtime provides the necessary infrastructure to support the
activation and operation of all plug-ins. RIDE is activated when a user invokes the
”New” menu-item in the Eclipse workbench and chooses ”Policy” to be the new re-
source to be created. This launches a wizard that takes users through the various
steps in policy creation and at the end, automatically generates policy files written in
OWL based on user selections and entries. Once a policy file is created, users can test
policies by invoking a separate wizard. This wizard acts as an integrated front-end to
the Rei engine and provides an interface for querying the engine and policy testing.

The complete User Interface (UI) has been developed using Standard Widget
Toolkit (SWT) and JFace toolkit. This includes the wizards and the widgets these
wizards contain for interacting with the users. SWT provides an OS-independent API
for widgets and graphics. It is analogous to AWT/Swing in Java. It is implemented
in a way that allows tight integration with the underlying native window system.
JFace is a Ul toolkit implemented using SWT. It provides API for implementing
many common Ul programming tasks. The wizard framework and dialogs in RIDE
have been developed using the JFace API. All the widgets that appear on the wizard

pages have been developed using the SWT API.

4.2.2 Model-View-Controller Architecture

Many GUI-based applications use the Model-View-Controller (MVC) architec-
ture as a primary design pattern to present, manipulate, and store data for the end

users. It was first developed using the Smalltalk programming environment for creat-

27

ing user interfaces. It decouples presentation from data and from operation on that
data. Model, in the MVC architecture, stores data that defines the components in the
GUI. View creates the visual representation of the components. This is done from the
data in the model. Controller deals with the interaction of the user with the interface
and modifies the model and/or view in response to user actions as necessary. In user
interfaces, the views and controllers often work very closely together. For instance,
the user interactions with a view require controller to make necessary modifications to
the model, which in turn updates that particular view or any of the other views. For
this reason the view and the controller are typically represented by a single composite
object that corresponds with a view and an integrated controller. RIDE framework
follows the MVC pattern in its design and implementation of the user interface.
Implementation primarily consists of the following classes that help realize the

user interface as per the MVC paradigm.

e PolicyRuleModel.java : This class represents the model in the RIDE framework.

In a wizard-based GUI, wizard pages essentially act as the views for user inter-

action. The RIDE policy creation wizard consists of the following two wizard

pages.

e PolicyNamespacePage.java : This class represents one of the view-integrated
controller pairs in the RIDE framework. It contains necessary methods for
accepting namespace URLs from the user and storing them in the model for

further computational requirements.

e PolicyCreationPage.java : This class represents one of the other controller-
view pairs in the framework. It consists of nested views that appear as tabs
on the wizard page. The respective classes that represent these tabs are Ac-
torTab.java, DeonticLiteralTab.java, ActionTab.java and PolicyTab.java. These
classes together handle user interactions for policy creation and update each

other through the model based on user actions.

28
The policy test wizard consists of the following wizard page.

e PolicyUnitPage.java : This class represents a controller-view pair in RIDE
framework and contains logic to allow users to test policy conformance. The
interface allows test-case creation to verify if the individual policy units work
as desired. It provides an interface to the Rei engine to achieve test-case verifi-

cation.

— Updates

——+ Notifies

’ ----- Containg

+— [nteracts

Fic. 4.1. RIDE Framework Using MVC Architecture

The way the model and views interact with each other is by establishing a sub-
scribe/notify protocol between them. The model in our framework has setter methods
to store data (user inputs) collected by the different views. It provides getter methods
for access of this data by the different views. Views subscribe themselves as observers
of the data objects stored within the model. The model in turn notifies them when-
ever there is any change in the data objects held by it. In response, the corresponding
view affected by that data change gets an opportunity to update itself. This ensures

that the view’s appearance reflects the model’s state.

29

The decoupling between the model and the views and subscribe/notify protocol
existing between them depicts the behavior described by the Observer design pattern
[9]. The intent of this design pattern is to define a one-to-many dependency between
objects so that when object changes state, all its dependents are notified and updated
automatically. This occurs without requiring the changed object to know the details
of all the others. This is amply demonstrated in our design and implementation.
For instance, PolicyNamespace wizard page, the Actor tab and the Action tab know
nothing about each other. However, by interacting through the PolicyRuleModel they
behave as though they do. When user enters namespaces in the namespace wizard
page, the latter calls setter methods in the model to save this information. In response,
the model immediately notifies the Actor and Action tab views, which are registered
as observers of this data in the model. This ensures that any change in the namespace
wizard page automatically reflects itself in the Actor and Action tab views. Multiple
such dependencies exist between the different views in our framework as shown in
Figure 4.1. The decoupling of the model and the different views also enables the
RIDE framework to achieve greater flexibility and reuse. This is demonstrated by
reusing the PolicyRuleModel class for the policy creation as well as the policy test

wizards.

4.2.3 Jena Toolkit

Based on user inputs in the namespace view of the policy creation wizard as
described in the earlier section, the RIDE framework makes use of the Jena toolkit to
populate some of the widgets in the Actor and Action views. The Jena semantic web
toolkit is a Java Application Programming Interface (API) and software toolkit for
manipulating Resource Description Framework (RDF) models [19]. Jena Ontology
API provides the necessary means for accessing and manipulating ontologies repre-
sented in RDF-S or OWL semantic web languages.

Namespace URLSs entered by the user essentially point to the domain dependent

30

ontologies expressed in RDF-S or OWL. Using the API provided by Jena toolkit,
these ontologies are accessed and parsed to extract all the necessary information from
them. This information includes a list of actors in the domain, which populates a
drop-down menu for the actor’s field in the Actor tab of the policy creation page.
A list of all possible domain actions and speech acts to populate a drop-down menu
for the action field in the Action tab of the policy creation page. A list of property-
value pairs defined in the domain ontologies is also extracted to populate similar
drop-down menus for the constraint’s field in the Actor and Action tabs. This field
enables creation of constraints on actors and actions in the domain. The information
extracted from these domain-dependent ontology files using Jena toolkit to populate
the drop-down menus for the fields in several views is a means to offer a list of valid
and possible input options to the user. This information is persisted by the model and
updated when there is any change in the ontologies loaded through the namespace

view.

4.3 RIDE Policy Toolkit

RIDE Policy toolkit is a wizard-based graphical, user-friendly and extensible
tool support for policy management in a wide range of environments. Its main goal
is to be able to singularly meet the demanding requirements of the wide range of
application domains that could benefit from policy-based management. In doing so,
it has however made no compromise on ease-of-use and simplicity aspects of the user
interface.

RIDE allows creation of rules based on the notion of permissions, obligations,
revocations and dispensations as described by Rei. It allows creation of constraints,
which are described over actors and actions in the domain. Using RIDE, policies
can then be easily defined as contextually constrained rules in the domain. Policy
creation over speech acts for dynamic policy management, comprehensive support for

testing and ability to express policies over groups of actors and actions in the domain

31

are among some of the other useful features of RIDE toolkit.

This section discusses the policy creation process using RIDE toolkit in detail. It
covers specifics of tools that RIDE toolkit comprises of. The separation and division
of the RIDE toolkit into these tools is only logical based on the functionalities each

tool offers. Physically, each tool is a part of the wizard-based user interface.

4.3.1 Namespace Manager

Policy management using RIDE requires domain specific information to be rep-
resented using ontologies in OWL or RDF. Conceptually, the ontologies used in policy
creation and management are classified as domain dependent (or domain specific) and
domain independent. Domain dependent ontologies capture domain related informa-
tion such as classes of actors, actions and resources, specific instances of these classes,
as well as properties and their values associated with these classes. The domain inde-
pendent ontologies include those defined by Rei and some standard ontologies defined
by W3C for semantic web languages. All ontologies are referenced by RIDE using
namespaces expressed as prefix, URL pairs. URLs are used to fetch the ontology
files from their respective locations and prefixes are used in OWL code automatically
generated by the toolkit.

Given this importance of namespaces in policy development, RIDE toolkit pro-
vides comprehensive namespace management support through its namespace manager
tool. Its layout reflects the conceptual separation of ontologies into domain dependent
and domain independent ontologies.

Properties of the namespace manager tool that describe its functionalities follow.

A demonstration of the tool at work is also provided with the help of screenshots.

Ease of Management of Domain Independent Information : Namespace
manager furnishes the necessary information about domain independent ontolgies to
keep the user away from having to enter this information. Rei defined namespace

prefixes include policy, metapolicy, action, entity, constraint, deontic and analysis.

32

Namespace prefixes defined by W3C include those for RDF, RDF-S and OWL se-
mantic web languages. A list of all these prefixes and their respective URLs is always
displayed on the manager’s wizard page and is non-editable. Any namespace a user
might need beyond the ones provided by this list, could be entered using widgets

provided to enter domain dependent ontologies.

Namespace Loading using Templates : Since, domain related information
cannot be presupposed and also as a means to allow greater flexibility in modifying
domain specific information as per user’s requirements; namespace manager expects
users to enter this information. Entering namespace information can get tedious due
to long declarative URL descriptions. To facilitate this process, namespace manager
offers the notion of namespace templates.

Namespace templates could be thought of as holders of namespaces (prefix and
URL pair information) belonging to a particular domain for which the template was
created. Thus, if a user needs to enter information spanning several domains, a tem-
plate could be created to represent each domain. Any number of such templates can
be created or deleted using the namespace manager. Also, any number of namespaces
can be added to or deleted from the existing templates. Once templates are created
with namespaces stored under them, namespace manager takes care of persisting this
information and maintaining its correct hierarchy. This information does not have
to be re-entered and is reloaded during any subsequent usage of the wizard. There-
fore, information is entered once, but can be modified any number of times and the
reloaded information always reflects the last modification made.

For example, a user can create a template named University representing uni-
versity domain related information. Another template named CSDepartment repre-
senting a specific department in the university can be created. Namespaces can be
added to their respective templates. Figures 4.2 through 4.5 show the process of tem-
plate creation, template deletion, namespace addition to a template and namespace

deletion from a template using namespace manager.

FiG. 4.3. Template Creation Using Namespace Manager

33

F1a. 4.5. Namespace Deletion from Template

34

35

i
Namespace Wizard Page 1
add Mamespace URLs for Policy Creation

|—tlst of Domain-dependent Ontology and Instance data URLs

| Add to Template I
I
niv ;l http:,ljwww.cs.umbc.sdu,fw_d MNamespace Templates =X
nsk http: [fwew . cs.umbe, eduf~ [#1- University
CSDepartment
. _'l_J = I LI—J Create I Delete I
| Remove Namespace | Remove from Template I
— List of Domain-Independent Ontology URLs
‘ deontic tpif fevwer. o5 umbe, eduf~lkagall frei/ontologies/ReiDeontic, owl
Entity Ebp: f fvove. cs.umbe, eduf~lkagall jreifontologies/ReiEntity .owl
| owl tbp: ffwwie, w3, org 2002007 fowl
| kdF ttp: v, w3, org) 199902 22-rdf-syntax-ns
| rdfs ttp: v, w3, orgf2000401 frdf-schema
action tEp: ffwvewne. cs.umbe. eduf~lkagall freifontologies/Reilction. owl
ronstraint ttp:f fuevees, o5 umbc, eduf~lkagall freifontologies/ReiConstraint, owl
| policy ttp: ffvavie. cs . umbc eduf~lkagall freifontologies/ReiPolicy. owl
Load Namespaces 1
[Loads and saves the added namespaces|
< Back l Iyexts l Finisty I Cancel l

Fi1G. 4.6. Direct Namespace Loading

Direct Namespace Loading : There is also provision for entering namespace
information of domain dependent information without adding it to templates. This
serves user’s need to include domain specific information that need not be persisted.
This possibility can arise if user expects frequent changes in the namespace URL
information and prefers such information be added anew each time. The namespace
manager processes domain dependent information entered through both the means,
directly and through templates to compute information for the next set of wizard
pages. However, it expects namespace information be provided by at least one of
the two means and does not allow the user to proceed to the next wizard page if this
information is missing. Figure 4.6 demonstrates these features of namespace manager

tool.

36

4.3.2 Policy Creation User Interface

After entering namespaces using the namespace manager tool, the next step
in policy creation process using RIDE toolkit is creation of rules, constraints and
granting objects, which combine together to form policy objects. Policy creation
wizard launches the policy creation page after the user clicks 'Next’ on the namespace
management page. The earlier consisting of nested Actor, Deontic Literal, Action
and Policy tabbed pages provides a comprehensive and user-friendly policy creation
interface.

Using the tabbed pages of the interface, policy creation is an incremental process
that entails prior creation of rules, constraints and granting objects. A description of

creation process of each of these constructs follows.

Rules

Rule creation begins by selecting an actor on the Actor tab page from a drop-
down list consisting of actors in the domain. An action can be similarly selected
from the Action tab page using a drop-down list that contains all the domain actions.
This involves rule creation with a specific instance of actor and a specific instance of
action (e.g. 'Susan’ is obliged to perform ’AStudentPrintAction’). If the user wishes
to create rules not containing specific instances of actors or actions, but over classes of
actors or actions to create group policies (e.g. 'All GraduateStudents’ are permitted
to perform "PrintingActions’), it is possible without much change in the rule creation
process. The only change is that entries for actor or action fields on their respective
pages should be strings not selected from drop-down lists on these pages. Internally,
OWL code for the rules generated by RIDE toolkit uses 'varl’ as the string to denote
group of actors and ’var2’ as the string to denote a group of actions. The Deontic
Literal tab page provides a drop-down list of deontic literals or modalities to be chosen
from for the rule under construction. The selection made from this list decides if the

chosen actor or group of actors on the Actor tab page can, cannot, must or need

37

not perform the chosen action or group of actions on the Action tab page. Based on

this selection, the rule under construction would respectively be termed a permission,

prohibition, obligation or dispensation as defined by a deontic object in Rei.

After making these selections from the Actor, Deontic Literal and Action tabbed

pages, the rule creation process can be completed with the ’Add Rule’ button on

the Actor tab page. This will add the rule to a list of user-defined rules stored in

the model, which is described in detail in section 4.2.2. There is also provision for

deleting rules using the 'Delete Rule’ button that deletes selected rule(s) from the list

maintained by the model. Figures 4.7 through 4.10 show the rule creation process

using policy creation user interface of RIDE toolkit.

Policy Creation Wizard

Create new policies

Policy File Name
actor | Deontic Literal | Action | Policies |

Rule Mame PrintAction

Ackor cnstraint Name
’7 Susan :- iI o _E
George Froperties - Values
::I;t;;nes ;i
CSDept b
=zl
AME I OR
~ Rules pleiBoolean Co
Add Rule I Delete Rule l
Comnmit I
< Back |[& Cancel |

Fi1a. 4.7. Actor Selection for Rule Creation

Speech Acts

Speech acts, as defined by Rei, are created to dynamically modify already existing

rules. RIDE allows speech acts to be easily created using a process very similar to

Fi1a. 4.9. Action Selection for Rule Creation

38

FiG. 4.11. First Step in Speech Act Creation Process

39

40

I x|
Policy Creation Wizard

Craate new policies

Policy File Name deptpolicy - http: ffwwnw, umbe. eduf~anjalil fdeptpolicy. owl
actor | Deontic Literal | action Policies |

i~ List of Palicies

~ List of Rules Grant Name

Paolicy Name
RegiAction

r—List of Constraints -
’ISCSStud

IsCSGrad Add Grant | Delete Grant |
IsGrad

Add Policy I Delete Policy [

JETET

Add Meta-policy | Delete Meta-policy

< Back [DExt S | IWI Cancel I

Fi1G. 4.12. Second Step in Speech Act Creation Process

that of rule creation. The construction of a speech act is divided into two halves. The
first half concentrates on defining the sender of the speech act, the type of speech
act being sent and modality selection to indicate if the sender has the permission,
obligation, dispensation or prohibition to send the speech act. Sender of the speech
act is selected from the Actor page by following a process identical to selecting an actor
in the rule creation process. The modality selection for the speech act is similarly
done from the Deontic Literal page as described in the rule creation process. The
only variation is while making a selection on the Action page. The drop-down list on
this page contains not only a list of domain actions but also offers four other options
to create speech acts. These options are delegation, revocation, cancel and request.
One amongst these options is selected and the selection determines the type of speech
act being sent. This partial speech act construct is added or can be deleted using the
’Add Rule’ and 'Delete Rule’ buttons on Actor page.

The next half of the process begins after the partially constructed speech acts

41

on the Actor page are committed and they appear under the rules’ list on the Policy
tab page. This list also contains some existing rules. Any such rule that needs
to be modified dynamically is selected along with one of the partially constructed
speech acts and a new rule is created out of the two selections. This completes the
construction of the selected speech act. A constraint can optionally be added to the
newly created speech act rule. The already existing rule that was chosen appears
as a nested rule inside the speech act’s OWL code generated by RIDE. The other
partially constructed speech acts in the list can also be similarly completed. Figures
4.11 and 4.12 show two steps of speech act creation process. Figure 4.11 shows only
the Action page as selections on Actor and Deontic Literal pages are similar to rule

creation process.

Constraints

Constraint creation using RIDE is made simple by providing a drop-down list of
property-value pairs. For the Actor tab page, this list is constructed by extracting
properties and their corresponding values defined by the domain specific ontologies
over classes of actors and resources. For the Action tab page, it is similarly constructed
by extracting properties and their values defined over classes of actions.

Simple constraint over an actor/resource can be created by selecting a property-
value pair from the drop-down list in the constraints’ section on the Actor tab page.
Simple constraint over an action can be similarly created from the Action tab page.
These constraints are added to and can be deleted from the constraints’ list main-
tained by the model and displayed on the Actor and Action tab pages. The OWL
code generated for the simple constraint has the subject field populated with the
variable, 'varl’ if the constraint is over an actor/resource and 'var2’, if over an action.
The predicate and object fields are respectively populated with the property and its
value from the selection.

Boolean constraint creation is very straightforward once two or more simple

constraints are created. The first Boolean constraint can be created by selecting

42

two simple constraints present in the constraints’ list of Actor/Action pages and
combining the two using And button or Or button. Following this, any number
of Boolean constraints can be created by selecting two simple, one simple and one
Boolean or two Boolean constraints from the list. The list is constantly updated to
include all constraints created by such user interactions.

Simple and Boolean constraints created by following these processes can then be
committed so that they appear on the Policy tab page. On this page, a constraint
can be combined with a rule to define constraints for actors/actions in that rule. This
makes the rule applicable to only those actors/actions that satisfy the condition set by
the selected constraint. Likewise, these constraints can also be combined with speech
acts to specify a condition to be satisfied for it to be sent. They can be combined with
granting objects and policies for similar reasons. Figures 4.13 and 4.14 respectively
show the process of simple as well as Boolean constraint creation over actors and

actions in the domain.

N x|

Policy Creation Wizard
Create new policies

Policy File Mame
Actor | Deontic Literal | Action | Palicies |
I 1
Rule Name Constraint(s) on fictor ———————————— |
[Acter Constraint Name IsGradStud ‘

=l| Z| = -

Properties type - CSPrinter

bype - StudentCSPrinter
type - Term
Status - NokStarted
type - FacultyCSPrinter
type - StatusOfTerm
AND I type - Faculty
AT

area -

Rules | SimplefBoolear |4 LarT

PrintAction | type - Object
location - CSDept

Add Rule Delete Rule thesis-topic - Reasoning

type - AssociateProfessor
type - Staff
Commit type - Professor

type - Person
title - Prof.
affiliation - CSDept
name - Tim Finin

< Back I RNext > I Fir :’E:::Pz:rty

type - AssistantProfessor
type - Phone

type - Instructor

type - Place

type - Printer

type - UniversityRoot
type - Student

type - Undergraduate
type - Master

FiG. 4.13. Simple Constraint Creation Process

43

N x|
Policy Creation Wizard
Create new policies

Palicy File Name
Actor | Deontic Literal | Action | Policies |

Rule Name —Constraint(s) on Actor
Actor 1 Constraint Name

hs Z| = -

Properties - Yalues

Gradstud & IsCSStud

vpe - Graduate 3
F/fd:auon - CSDept ‘
54

-Rules
PrintAction

< Back I Next ” Fmist I Cancel I

Fi1G. 4.14. Boolean Constraint Creation Process

Granting Objects

A granting adds a set of constraints to an existing rule to form a new rule. This
allows reuse of rules (deontic objects) in different policies with varied constraints
and actors. It also helps modularize the policy creation process. From the list of
pre-defined rules and constraints on the Policy tab page, the user can select a rule
and any number of constraints to create a granting object. Figure 4.15 shows the
process of committing rules and constraints to create granting objects and policies
and complete the process for speech act construction. Figure 4.16 shows the process

of creating granting objects.

Policies
The two main types of Rei policies that can be created using RIDE’s policy cre-
ation user interface are individual and group policies. Individual policies are created

from rules defined over specific instances of actors and actions. Group policies can

Fi1G. 4.16. Granting Object Creation Process

44

ant_to_print

F1G. 4.18. Meta-policy Creation Process

45

.0" encoding="I1S0-8859-1" 2>

rdf 'http://www.w3,org/1999/02/22-rdf-syntax-nsH'>
rdfs 'http://www.w3.org/2000/01/rdf-schematf' >

owl 'http://www.w3,org/2002/07/0wlf' >

policy 'http://wew.cs.umbc.edu/~lkagall/rei/ontologies/ReiPolicy.owl#
action 'http://wwv,cs.umbc.edu/~lkagall/rei/ontologies/Reilction.owl#
constraint 'http://wew.cs. umbe. edu/~lkagall/rei/ontologies/ReiConstra
deontic 'http://wuw.cs.umbc.edu/~lkagall/rei/ontologies/ReiDeontic.ow
entity 'http://www.cs.umbc.edu/~lkagall/rei/ontologies/ReiEntity.owlf
univ 'http://wuw.cs.umbe.edu/~lkagall/rei/examples/univ/univ-ontology
inst 'http://www.cs.umbc.edu/~lkagall/rei/examples/univ/instances.owl
deptpolicy 'htop://wew.umbco.edu/~anjalil/policyfiles’'>

xmlns:rdf="grdf: "
dfs="grdfs; "
wl="gowl; "
olicy="spolicy: "
action="gaction;"
nt=m
deontic="g&deontic:”
ntity="Lentity:"
univ="guni
nst="£inst;
xmlns:deptpolicy="&deptpolicy: ">
<entity:Variable rdf:ID="vari” policy:desc="A variable” />
<entity:Variable rdf:ID="var2"” policy:desc="A variable” />
<constraint:SimpleConstraint rdf:ID="IsGradStud">
<constraint:subject rdf:resource="#varl® />
<constraint:predicate rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax
<constraint:object rdf:resource="http://wvw.cs.umbc.edu/~lkagall/rei/exampl
</ aint:Simpled nes
<constraint:SimpleConsctraint rdf:ID="IsCSScud™>
<constraint:subject rdf:resource="#vari” />
<constraint:predicate rdf:resource="http://www.cs.umbc.edu/~lkagall/rei/exa
<constraint:object rdf:resource="http://wvv.cs.umbc.edu/~lkagall/rei/exampl
</constraint:SimpleConstraint>
<constraint:ind rdf:ID="IsCSGradSc">
<constraint:first rdf:resource="#IaGradStud” />
<constraint:second rdf:resource="#IsCSSctud” />
</constraint:ind>
<deontic:Permission rdf: ID-"PEI‘I._D&].")
<deontic:actor rdf:resource="http://www.cs.umbc.edu/~lkagall/rei/examples/u
<deontic:action>
<action:Delegation rdf:ID=Del Perm Del"”>
<action:sender rdf:resource=http://www.cs.umbc.edu/~lkagall/rei/examples/u
<Anrinn: rAf: % hrrn: /e cm e mdnd ~ Leanal 1/ red /eeann e

ne:m

F1G. 4.20. Policy File showing Auto-generated OWL Code

46

47

be defined using rules created over a class of actors and actions that are constrained
by the associated conditions. The latter is useful in large-scale distributed environ-
ments where stating individual permissions and obligations is time consuming. For
example, if the domain ontology includes a Student class that has a name, address
and affiliation, a policy can be defined for all students whose ’affiliation’ property is
set to 'UMBC"’.

Rules and constraints created using Actor, Deontic Literal and Action tab pages
can be committed following which they appear on the Policy page. Granting objects
can be created on this page using the process described above. Rules, constraints
and granting objects, once created, make policy creation a very simple process. The
user can select the rules to be a part of policy under construction from the rules’
list. Similarly, in order to specify the context under which the policy to be created
is applicable, a constraint can be selected from the constraints’ list. Any number
of granting objects under the policies’ list can be selected to be included within the
policy and finally on triggering the ’Add Policy’ button, a policy with the name
entered in the Policy Name text field is added to the policies’ list. The OWL code
generated for a policy will show all the rules, constraints and granting objects selected
to form it. A user can create as many policies as needed using this process.

Meta-policies can be created over conflicting policies by choosing them from the
policies’ list. The policy and meta-policy creation process will be completed when
user hits the ’Finish’ button on the wizard. This will open a file dialog box to enter
the name of the policy file that will be stored in the local file system. This policy file
contains the auto-generated OWL code for all the rules, constraints, granting objects,
speech acts, policies and meta-policies present on the Policy tab page. Figures 4.17
and 4.18 show the policy and meta-policy creation processes. Figure 4.19 shows the
policy creation wizard in the process of a policy file creation. Figure 4.20 shows the

policy file generated by the wizard.

L VI AR LT

3 ﬁedu ReiPolicy IDE <7xml version="1.0" encodir
B PchvFllas <!DOCTYPE cdf:RDF[

CVENTITY rdf ‘heop://vuw.wld

@ [4 <!ENTITY rdfs 'hrep://uww.x

B« 'me < 'ENTITY owl 'heep://www.ud

[proi OpenWith b <!ENTITY policy 'http://wun

e <VENTITY action 'htetp://wwm

) Copy <'ENTITY constraint 'http:/

[<!ENTITY deontic 'heop://wu

<!ENTITY entity 'http://wwm

"m <VENTITY univ 'hettp://uww.c
Mave.., ZVENTITY inst 'hoop://vww.c
Pename <'ENTITY deptpolicy ‘htep:/
PR 1>

43 Import.... <rdfiRDF xmlns:cdf="grdf;"

3 Export... wmlns:rdfs="grdts; "

Ee————m xmlns:owl="gowl:"

‘Add Bakmark... smins:policy="gpalicy:*
xmins:action="gaction; "

‘pq“‘*_""“ ¥mlns:constraine="ieonscral

m xmlns:deontic="&deontic: "

Taam » ymins:encity="Lenticy;: "

: ¥mlns:univ="guniv; "

Compara With — » i
¥mins:inat="ginsg;"

Replace With b xmins:deptpolicy="ideptpoli
Properties <entity:Variable rdf:ID="y

<encity:Varishle rdf:ID="y

F1a. 4.21. Policy File Validation

o

Policy Test Generation Page
Create tests to verify policies

~Policy Tests
—Test 1

Actor

http: ffvewe . cs.umbc. eduj~lkagall freifexamples funiv/inst ances . owl# Susan ;I
Action

etpf feave . cs.umbe. eduf~lkagal 1 freifexamplesuniviinstances. owl#AStudentPrintingAction :J
Target (Optional)

http: jfwimw. cs.umbe. eduj~lkagall freifexamplesfunivfinst ances. owl#LabPrinter =~
" Cannot " Must " Need Mot ‘
" False mull ‘

Test 2
Actor
httpif v . cs.umbc, eduf~lkagall freifexamples funivfinstances . owl# George :I

~l<agal1 ,irei.!'axampl&s nlv,rhstances oM#Regsnatlcn

T Can T Cannot T TSt T TNeed NGt ‘

< Back I Next > I I Einish I Cancel I

FiG. 4.22. Policy Test-Case Creation Process

48

49

Policy Test Generation Page

Creste tests to verify policies

Policy Tests

r—Test1- =1
Actor |
http: ffwiw . cs.umbc, eduf~lkagal 1 freifexamples funivfinstances, owl#Susan :J
Action |
attp: v, cs, umbe, eduf~lkagall freifexamplesfuniv/instances. owl# AStudentPrintingAction __v_] |
Target (Optional) |
|

B x|

+ Can " Cannot i x|
) i) Test 1 was successfull i
& True " False Test 2 failed! |
stz - -
Actor |
http: v, cs.umbe. eduf~lkagal 1 freifexamplesjunivfinstances. owl#George L’
Action |
hktp: fvie cs. umbe, eduf~lkagal L jreifexamples juniv/instances, owl#Registration _:_'l |
Target {Optional) f
: — |
‘ Can " Cannot C Must % nheed Not |
‘ " True i+ False Nl ‘
‘

FiG. 4.23. Policy Test-Case Results

4.3.3 Policy Test-case Creation Interface

The idea of unit testing, borrowed from Software Engineering, is to provide some
infrastructure in order to make it easier for a programmer to determine that individual
program modules perform correctly according to specification. We have extended this
idea to test the correctness of individual policy units.

Policy files created by the user can be used to launch the policy test wizard. This
wizard provides a simple, user-friendly interface for policy test-case creation. Each
policy file created by the user using the policy creation wizard also has another file
with the same name, but with an added ’.model’ extension, which is automatically
generated by the wizard. The lists of actors, actions and targets formed by the policy
creation wizard during that specific policy file creation are stored in this file. Using
this file, identical lists of actors, actions and targets are created to populate drop-

down lists for the fields of policy test-case creation page of the policy test wizard.

20

It is used internally by the wizard and hidden from the users. From the drop-down
list, users can make selections to create policy test-cases. Target selection is optional.
They must also select if the chosen actor can, cannot, must or need not perform the
selected action. Test-case creation is completed by specifying a ’true’, 'false’, or 'null’
answer expected for it. Two such test cases can be created at a time. Once these test
cases are loaded, the policy test wizard uses its interface with the Rei policy engine
to obtain an answer for the loaded test-cases. The answers from the Rei engine are
compared with the answers the users had expected and results are returned.
Test-cases correspond to the rules that the enforced policies consist of. Rei
engine reasons over all these policies and rules and returns an answer. If the returned
answer matches the one expected by the user created test-case, it verifies that the
rules, which in fact are individual policy units are correct and consistent. In this
manner, every rule created by the user can be put to test. Testing the correctness
of these rules automatically ascertains the consistency of the policy formed out of
those rules. This helps the development of consistent and valid policies. Figures 4.21
and 4.22 show policy test-case creation and Figure 4.23 shows the results of policy

test-cases obtained by querying the Rei engine.

Chapter 5

CONCLUSION AND FUTURE WORK

In this chapter we provide a summary of our work and describe its contributions.

We also discuss possible directions for future research.

5.1 Conclusion and Contributions

The characteristics of the environments to which policy-based government is ap-
plied outline features for policy management tools to support. Though tools have
been developed to facilitate policy management, there is not much work in policy
development that meets all the requirements of this wide range of environments that
make use of policy-based approaches. In this thesis, we have presented our work,
which helps in that direction by meeting these requirements that highlight the inad-
equacies of existing tools.

We have described the framework and features supported by RIDE, the Rei
integrated policy development environment. It consists of a wizard-based, graphical
user interface that is plugged into the Eclipse framework and an interface with the Rei
engine for policy test-case verification. RIDE allows creation of rules based on Rei’s
notion of permissions, obligations, revocations and dispensations. It allows creation
of constraints, which are described over actors and actions in the domain. Policies
can be easily created using these rules and constraints. It also allows meta-policy
creation over conflicting policies.

RIDE’s user-friendly and extensible interface, support for policy creation using

o1

92

using speech acts to facilitate dynamic policy management, integrated namespace
manager to facilitate domain information specification, ability to express policies over
groups of actors and actions in the domain, automation of the laborious, complex
and error-prone process of policy generation for any domain and abstraction from the
details of Rei specifications and OWL contribute towards the novel aspects of our
work. Also, since the domain-specific information is required to be in semantic web
languages like OWL, RDFS and the policies are generated in OWL, its scalability

and extensibility aspects are enhanced.

5.2 Future Work

As per Rei specifications, meta-policies can be defined over conflicting rules in a
policy and can also be used to specify default behavior. Current implementation of
RIDE supports meta-policy creation over conflicting policies, but it does not support
meta-policy over rules or default meta-policy creation. It will be useful if future work
can address this issue.

Other possible directions for future research include (i) extension of RIDE’s user
interface to support creation and manipulation of domain ontologies, (ii) its extension
to support a graphical domain browser to view all policies in the domain and the way
they relate to each other, and (iii) the ability to create and modify policies using such
a browser that automatically detects inconsistencies between policies arising out of

such creations and modifications.

93

REFERENCES

[1] A P3P Preference = Exchange Language 1.0 (APPEL 1.0).
http://www.w3.org/TR/P3Ppreferences/.

[2] Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, Debo-
rah L. McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein. OWL
Web Ontology Language Reference, W3C Recommendation 10 February 2004.
http://www.w3.org/TR/owl-ref/, 2004.

[3] Tim Berners-Lee. Notation3. http://www.w3.org/2000/10/swap/Primer, 2003.

[4] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis. The KeyNote Trust
Management System Version. Internet RFC 2704, September 1999., 1999.

[6] L. Cranor, M. Langheinrich, M. Marchiori, M. Presler-Marshall,
and J. Reagle. Platform for privacy preferences 1.0 Specification.

http://www.w3.org/TR/P3P/, 2003.

[6] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Ponder Policy Speci-
fication Language. In Policy Workshop 2001, volume LNCS 1995 of 1, Bristol,

U.K., January 2001. Springer-Verlag.

[7] N. Damianou, N. Dulay, E. Lupu, M. Sloman, and T. Tonouchi. Tools for
Domain-based Policy Management of Distributed Systems. In Network Opera-

tions and Management Symposium 2002, pages 213-218, Florence, Italy, April
2002.

[8] DARPA. DARPA Agent Markup Language + Ontology Inference Layer
(DAML+OIL). http://www.daml.org, 2001.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

04

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Professional Computing

Series. Pearson Education.

Georg Henrik von Wright. A Note on Deontic Logic and Derived Obligation. In
Mind, 1956.

T. T. Hewett. The role of iterative evaluation in designing systems for usability.
In Proceedings of the Second Conference of the British Computer Society, human
computer interaction specialist group on People and computers: designing for

usability, pages 196-214. Cambridge University Press, 1986.

Maryland Information and Network Dynamics Lab Semantic Web Agents
Project. A hypermedia-based featherweight owl ontology editor.
http://www.mindswap.org/2004/SWOOP/.

Lalana Kagal. Rei : A Policy Language for the Me-
Centric Project. Technical report, HP Labs, September 2002.
http://www.hpl.hp.com/techreports/2002/HPL-2002-270.html.

Lalana Kagal. A Policy-Based Approach to Governing Autonomous Behavior
in Distributed Environments. PhD thesis, University of Maryland Baltimore

County, Baltimore MD 21250, September 2004.

Emil C. Lupu and Morris Sloman. Conflicts in Policy-Based Distributed Systems

Management. IEEE Transactions on Software Engineering, 1999.

J. Meyer and Roel Wieringa. Deontic logic: A concise overview. In Deontic Logic

wn Computer Science, pp. 3-16, Chichester: John Wiley and Sons, 1993.

R. Mohan, E. Levin, and C. E. Irvine. An editor for adpative xml-based policy

management of ipsec. In Proceedings of the 19th Computer Security Applications

18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

95

Conference, Las Vegas, NV, IEEE Computer Society, December 2003, pages 276—
285, 2003.

Object Technology International, Inc. Eclipse Platform Technical Overview.

http://www.eclipse.org/, 2003.

HP Labs Semantic Web Programme. Jena2 - A Semantic Web Framework.

http://jena.sourceforge.net/.

M. Schunter and C. Powers. The Enterprise Privacy Authorization Language
(EPAL 1.1). http://www.zurich.ibm.com/security/enterprise-privacy/epal/,
2003.

Stanford Medical Informatics. Protégé-2000 project.

http://protege.stanford.edu/.

A. Uszok, J. Bradshaw, P. Hayes, R. Jeffers, M. Johnson, S. Kulkarni, M. Breedy,
J. Lott, and L. Bunch. DAML reality check: A case study of KAoS domain and
policy services. In International Semantic Web Conference (ISWC 03). Sanibel
Island, Florida, 2003.

A. Uszok, J. M. Bradshaw, R. Jeffers, M. Johnson, A. Tate, J. Dalton, and
S. Aitken. Policy and Contract Management for Semantic Web Services. In AAAT

Spring Symposium, First International Semantic Web Services Symposium, 2004.

W3C. Resource Description Framework. W3C Recommendation,
http://www.w3.org/TR /rdf-schema/, 2002.

W3C. Extensible Markup Language (XML) 1.0 (Third Edition). W3C Recom-
mendation, http://www.w3.org/TR/REC-xml, 2004.

