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Abstract 
 

One of the most critical steps to integrating heteroge-

neous e-Business applications using different XML sche-

mas is schema mapping, which is known to be costly and 

error-prone. Past research on schema mapping has not 

fully utilized semantic information in the XML schemas. 

In this paper, we propose a semantic similarity analysis 

approach to facilitate XML schema mapping, merging 

and reuse. Several key innovations are introduced to bet-

ter utilize available semantic information. These innova-

tions, including: 1) a layered semantic structure of XML 

schema, 2) layered specific similarity measures using an 

information content based approach, and 3) a scheme for 

integrating similarities at all layers. Experimental results 

using two different schemas from an real world applica-

tion demonstrate that the proposed approach is valuable 

for addressing difficulties in XML schema mapping.  
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1. Introduction 
 

Schema mapping, merging, and reuse are critical steps 

in integrating independently developed, heterogeneous e-

business applications, either within or across enterprises. 

Typically, manual mapping is very labor-intensive, costly 

and error-prone [1]. Many schema mapping methods have 

been proposed [2], but they often fail to thoroughly ana-

lyze and fully utilize semantic information in the XML 

schemas. In this paper, we introduce a semantic similarity 

analysis approach aimed at facilitating XML schema 

mapping and reuse. We created a prototype system to 

validate this approach with real world application data. 

Several key innovations are introduced, including: 1) a 

layered semantic structure of XML schema, 2) layered 

specific similarity measures using an information content 

based approach, and 3) a scheme for integrating similari-

ties of all layers. 

Our approach focuses on recommending a set of data 

elements in the target schema as likely mapping/merging 

candidates for each element in the source schema based 

on their semantic similarities. Various similarity measures, 

including those we developed earlier [3], are used to 

measure different aspects of the semantic distance be-

tween pairs of data elements. 

A series of computer experiments have been conducted 

using the schemas from two different workgroups at the 

Automotive Industry Action Group (AIAG) [4] to validate 

the approach and assess its performance. The experiments 

produced encouraging results, and several directions were 

suggested for further performance improvement. 

The rest of the paper is organized as follows. Section 2 

provides the background of this research, including a brief 

review of selected existing similarity metrics and an intro-

duction to the real world integration data used in the ex-

periments. Detailed descriptions of the proposed approach 

are given in Sections 3 and 4. Section 5 reports the com-

puter experiments and results. Finally Section 6 concludes 

with directions for future research.  

 

2. Background 
 

The common approach to integrating heterogeneous e-

business applications is to provide interfaces (also known 

as adapters) that translate data from native specifications 

to an interlingua (also known as a merged or standard 

business document (SBD) specification) whose structure 

and semantics are agreed upon and understood by all par-

ties involved. The difficulty associated with this approach 

is that neither the standard nor the context of the integra-

tion is well documented. Additionally, relevant techniques 

such as semantic markup using domain ontologies have 

not yet reached a level of industrial maturity. Instead, 

practitioners in industrial integration increasingly rely on 

expressing the SBD specification in the form of XML 

schemas. An example of such a standard is BODs (Busi-



ness Object Documents) developed by an OAG (Open 

Application Group) [5].  

The semantics of XML Schema-based SBD specifica-

tions are not formally defined but implicitly embedded in 

the meanings of English words or phrases appearing in the 

names of the schemas’ components and fields as well as in 

associated descriptions. Precise understanding of these 

descriptions is difficult because of, among other things, 

the lack of clearly documented common approaches to 

associate and specify descriptions. For these reasons, it is 

very costly for experts to identify the reusable standard 

components that can be shared by other schemas and to 

understand how to use them. As a result, users often end 

up creating new standard components or customizing a 

standard by adding new, typically duplicating or overlap-

ping components rather than attempting to reuse existing 

ones [6, 7]. This phenomenon also occurs in large organi-

zations where multiple groups concurrently make SBD 

specifications (we witness this in the AIAG consortium). 

The result is a proliferation of standards, many of which 

have duplicate or overlapping semantics. 

In this paper, we use three key terms for XML schema 

integration: mapping, merging, and reuse. They refer to 

three closely related but different integration tasks. Map-

ping is a task in which one attempts to populate informa-

tion in one format into another format. Reusing is a task in 

which one looks for integration specifications to use in an 

integration project. Merging, perhaps the most time-

consuming task of the three, is an attempt to combine two 

or more specifications into a single one. All of the three 

tasks rely on identifying semantically similar data ele-

ments between two schemas. 

 

2.1. Similarity measures and related works 

 
Various approaches have recently been developed to 

help schema mapping, merging, and reuse between two 

schemas. Most of these approaches first attempt to iden-

tify semantic relations between the elements of the two 

schemas. The simplest approach to semantic similarity is a 

linguistic-based metric that computes similarity between 

names or descriptions of two elements by using string 

matching [8]. There are a variety of string matching algo-

rithms such as the widely used Jaccard [9] and cosine 

similarity [10, 11] measures. Others have proposed meth-

ods based on a linguistic taxonomy [12] such as WordNet 

[13], from which one can obtain more accurate and less 

ambiguous semantics for words in the element names. 

Structural similarity measures, such as those based on 

path length between two entities in a taxonomy, fail to 

recognize the different importance individual entities and 

relations have and the different roles they play in semantic 

analysis and measurement. The information content (IC) 

based metric was proposed to address this problem [14, 

15]. This approach measures the similarity between two 

entities (e.g., two words, two objects, two structures) x 

and y based on how much information is needed to de-

scribe the commonality between them (e.g., the features or 

hypernyms that two words share). The more specific the 

common(x, y), the more similar x and y will be. According 

to information theory, more information is needed for 

describing more specific objects, and the degree of speci-

ficity can be measured by their information content.  

This approach was first applied to the semantic relat-

edness of word senses in WordNet [15]. It defines com-

mon(x, y) as their most specific hypernyms C, and the 

similarity is given as  

( , ) ( ) log ( )Sim x y I C P C= = −                   (1) 

where I(C) is the information content of C, and P(C) were 

calculated as word frequencies in a corpus.  

Research in [16] compares the differences between 

the IC and structural approaches in measuring similarity 

between elements in a single XML schema. It shows that 

better results can be achieved by combining the two ap-

proaches.  

Each of the existing similarity metrics has its 

strengths and weaknesses. More importantly, each typi-

cally makes use of only part of the available semantic in-

formation. In contrast, in this paper we propose an innova-

tive approach that employs a variety of similarity metrics, 

including lexical, taxonomical, and information content 

based, in a coherent and justifiable manner. 

 

2.2. Real world data for validation experiments 
 

To test and evaluate the proposed approach, we ob-

tained schemas and manual mapping data from two differ-

ent workgroups at the Automotive Industry Action Group 

(AIAG). The AIAG Resource schema and the Truck and 

Heavy Equipment (T&HE) schema were used as the target 

and source, respectively. Both schemas are based on the 

OAG schema [5] and have overlapping concepts. How-

ever, they define some elements quite differently. For ex-

ample, as can be seen in Figure 1 below, both AIAG 

schema’s “Vehicle” and T&HE schema’s “VehicleInfor-

mation” are intended to describe the same object, but they 

have different labels (names) and different data structures.  



 
Figure 1. Three layers of XML schema 

There are a total of 139 global (top) elements defined 

in the T&HE schema that need to be mapped into the set 

of 145 global elements of the AIAG schema. Thus, the 

semantic distances of 139 x 145 (~ 20,000) pairs of ele-

ments need to be examined. Roughly 140 human hours 

were spent mapping 49 top elements in T&HE to those in 

the AIAG schema. A substantial amount of time is further 

required to merge at the message level. This is an indica-

tion that manual mapping is very time consuming. 

 

3. Layered semantic structure of XML schemas  
 

An XML Schema defines a set of global elements, each 

of which can be represented as a tree with a set of linked 

nodes. Each node in a tree has zero or more child nodes. 

We can classify the nodes into three types: 1) the root; 2) 

the leaves; and 3) the intermediate nodes (those with both 

parent and children). We call leaf nodes “atoms” since 

they are the smallest units and cannot be further divided. 

 Each tree can be divided into three layers: 1) the top 

layer (containing the root of the tree), 2) the atom layer 

(containing leaf nodes), and 3) the inner layer (containing 

intermediate nodes). Note that some trees may have empty 

inner layers, while others may have only one node, which 

is considered to be in both top and atom layer.  

Each layer typically captures the semantics of a global 

element from different perspectives. A top layer node 

through its label and namespace specifies the data object 

the global element is intended to describe. Nodes in the 

atom layer indicate the atomic elements. They include, for 

example, XML schema attributes, simpleType, and sim-

pleContent the designer felt were necessary to describe the 

global element. The inner layer provides the structural 

information of the global element by specifying how the 

atomic elements are grouped into intermediate nodes and, 

eventually, into the global element (the root). The linguis-

tic information in the labels of both atomic and intermedi-

ate nodes may also help to qualify the semantics of the 

global element. 

Consider the two global elements defined in the T&HE 

and AIAG schemas in Figure 1. The labels in their top 

layer nodes indicate that both of them are intended to rep-

resent the same “vehicle” object. However, the designers 

differ in their thinking about what atomic elements are 

needed (see their different atom layers) and how they 

should be organized (see their different inner layers). In 

fact, the VehicleInformation in the T&HE schema has 12 

intermediate nodes and 198 atoms, while the numbers for 

the Vehicle in the AIAG schema are 81 and 972, respec-

tively. On the other hand, the same set of ingredients (at-

oms) can produce elements of different semantics depend-

ing on how they are cooked (structured) or packaged 

(what the top layer node is). For example, several party 

elements (CustomerParty, DealerParty, and SellingParty) 

all contain the same atoms and intermediates, but they are 

intended for semantically different data objects. 

 

4. Similarity measures 
 

The complex relationship between nodes at different 

layers requires layer specific semantic analysis tools and a 

mechanism to combine these layer-wise similarities. For 

this reason, we developed two similarity measures. The 

first one, called atom level similarity, measures the simi-

larity between two atom layers of two elements. The sec-

ond one, called label similarity, measures the similarity 

between the labels (names). This measure can compare 

two top layers (each contains a single label) as well as two 

inner layers (each contains a set of labels). These two 

measures and how to combine them are described next. 

 

4.1. Atom level similarity 
 

Not every atom is equal in determining semantic simi-

larity. Two elements sharing an atom that is widely used 

in many elements is not as strong an indication of similar-

ity as sharing an atom that is rarely used [14, 15]. To ac-

count for the degree of importance of individual atoms, 
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we developed an IC based measure for atom layer similar-

ity. Specifically, let A(x) and A(y) denote the sets of atoms 

of global elements x and y, respectively. Then, the atom 

level similarity between x and y is defined as 

( ) ( )

( ) ( )

2 ( )
( ( ), ( ))

( ) ( )

i

i j

c A x A y i

A

c A x i c A y j

I c
Sim A x A y

I c I c

∈ ∩

∈ ∈

⋅Σ ⋅
=
Σ +Σ

   (2) 

The probability of each atom is taken as its frequency 

using the corpus formed by all labels in both T&HE and 

AIAG. The atom statistics are given in the table below. 

 

Table 1. Statistics of atoms in the two schemas 

 AIAG Schema T&HE Schema 

Total # of 

atoms 
67688 53812 

793 825 

non-OAG  OAG  non-OAG  OAG  
# of distinct 

atoms 
90 703 119 706 

 

Eq. (2) is based on the assumption that the source and 

target schemas share a significant number of atoms. This 

is the case for the AIAG and T&HE schemas (as shown in 

Table 1; more than 70% of atoms in the two schemas are 

defined in the OAG schema). Therefore we simply treat 

two atoms as either completely similar (with similarity 

score 1) if they have the same label and completely dis-

similar (score 0) if they do not. Eq. (2) can be generalized 

to work in situations where similarity scores between 

many atom pairs are between 0 and 1. Details of one such 

measure can be found in [3].  

 

4.2. Label similarity 
 

The label or name x of a node is a word or concatena-

tion of words (or their abbreviations). Before similarity 

can be compared, a pre-process called “label normaliza-

tion” is conducted to obtain full words from the concate-

nations and abbreviations, denoted as L(x). For example, 

L(VehicleInformation) = {vehicle, information}. To better 

ascertain the semantics of these words and to deal with the 

problem of synonyms, we expand each word by its de-

scription in WordNet, which consists of definitions of all 

synonyms, denoted as ( ( ))id x L x∈ .  

The descriptions of all the words in L(x) are then put 

together under two constraints to form a vector of words, 

W(x). First, for a fair comparison, W(x) should be inde-

pendent of the lengths of descriptions from the WordNet, 

which vary greatly from word to word. To achieve this, 

we require that all W(x) be normalized to a given length, 

say G words. From the statistics collected on the number 

of words in the labels and the lengths of word descriptions, 

we have ( ( ( )))i ilength d x L xΣ ∈  ranging from 50 to 100 in 

the experiments.  We therefore set G = 500. 

Secondly, words in L(x) are not equally important in 

defining x’s semantics (for example, “vehicle” is certainly 

more important than “information” in the label “Vehi-

cleInformation”). Semantic analysis that uses advanced 

techniques, such as noun phrase analysis from natural lan-

guage processing is complex and time consuming. Instead, 

we measure the importance of each word xi by its informa-

tion content I(xi) and require that the vector W(x) be 

formed in such a way that the number of words from de-

scription d(xi) is proportional to I(xi).  

For example, suppose the vector length G = 10; 

I(vehicle)/I(information) = 4; and descriptions d(vehicle) 

= (a b c d) and d(information) = (r s t). To satisfy both 

constraints, we would have  

     W(VehicleInformation) = (a b c d a b c d r s)  

where d(vehicle) is duplicated and d(information) trun-

cated.  

Finally, the similarity of labels x and y is measured by 

the cosine of the two vectors W(x) and W(y) [10].  

The procedure for label similarity is outlined below: 

For labels x and y: 

1) Normalize x and y to obtain full words L(x) and L(y); 

2) Calculate the semantic weight of each word L(x) and 

L(y) by 

( )

( )
( )

( )
k

i
IC i

x L x k

I x
w x

I x
∈

=
Σ

, 
)(

)(
)(

)( kyLy

j

jIC
yI

yI
yw

k∈
Σ

=    (3) 

where )(log)( ii xPxI −= , and P(xi) and P(yj) are 

taken as their frequencies in their respective schema; 

3) Obtain from the WordNet the description of each 

word in L(x) and L(y), remove most of the stop words 

from the descriptions [17], make each description a 

set of words of size )( iIC xwG∗ by duplicating or 

truncating the description, and take a union (keeping 

all duplicates) of all these sets to form W(x) and W(y); 

4) Measure Sim(x, y) by cosine(W(x), W(y)): 

( ) ( )

1/ 2 1/ 2

2 2
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where )(if x is the frequency of the term ‘i’ in W(x). 

Label similarity for intermediate nodes is measured in 

the same way and denoted as ( , )ISim x y . In this case, x 

(and y) is the union of labels of all intermediate nodes.    

 

4.3. Combined similarity score 
 

Several approaches for combining individual similarity 

measures (SimA, SimT, SimI) have been used in experi-

ments, including: average(a, b, c), max(a, b, c), additive 

(1 – (1 – a)(1 – b)(1 – c)), and weighted sum. The 

weighted sum seemed to work the best in the experiments:  



( , ) A A T T I ISim x y w Sim w Sim w Sim= + +          (5) 

where 1A T Iw w w+ + = .  

Among other things, this combination scheme allows 

us to adjust the weights to best reflect the importance of 

measures at individual layers. The weights can be ob-

tained from the domain experts or learned from human 

semantic mapping data. 

 

5. Experiments and results 
 

A prototype system is implemented. The system not 

only computes 
ASim , 

ISim , and 
TSim  as given in Eqs. (2) 

and (4) but also supports several combination rules, in-

cluding Eq. (5). A series of experiments has been con-

ducted in the prototype system with varying parameters. 

In these experiments, the 49 manual mappings produced 

by human integrators are used as the basis to evaluate the 

performance of the system. For each of the 49 T&HE 

global elements, the system recommends five most similar 

AIAG elements. We evaluate performance using a set 

rather than a single recommendation because the objective 

is not to fully-automate the process but rather to assist the 

human expert. A recommendation is considered a match if 

it contains the manual mapping. Results from using vari-

ous similarity measures, individual and combined, were 

obtained and reported in the table below.  

 

Table 2. Experiment results 

Similarity measure # of matches 

TSim
 

35 

ISim
 

8 

ASim
 

22 

 or T ISim Sim  35 

Weighted sum 31 

 

As shown in rows 2 and 3, intermediate-level and 

atom-level measures by themselves generate poor results 

(with 8 and 22 matches, respectively). This is because, as 

discussed earlier, the same set of atoms and intermediates 

can be used to produce semantically different elements 

(just like the same ingredients can be made into several 

kinds of dishes).  

The overall performance is mixed. The weighted sum 

leads to match rate of 63% (31 out of the 49 manual map-

pings). The combination weights are currently pre-

determined according to the ratio of the number of 

matches in each individual measure. This result is cer-

tainly very encouraging considering how difficult the 

problem is even for experienced integrators. However, a 

detailed examination of the results reveals that 13 manual 

mappings obtained by human integrators did not appear in 

any of the recommendations using either individual or 

combined similarity measures. This calls for further inves-

tigation.  

Another phenomenon to be noted is evidence suggest-

ing that more weight should be given to the label similari-

ties (top and inner layers). First, only one of the 22 

matches found using atom-level similarity was not found 

by either of the two label-similarity measures. Second, the 

highest number of matches found by individual measure 

was using the top-layer measure. Lastly, the cosine 

method, which uses the combined top and intermediate 

labels, found 35 matches (4 of them are different from 

those obtained using the weighted sum combination).  

 

6. Conclusions and plan for future research 
 

In this paper, we propose an innovative semantic simi-

larity analysis approach for XML schemas that exploits 

semantic information embedded in XML schemas beyond 

existing methods. This is done by dividing data elements 

into layers and measuring semantic similarity using layer 

specific metrics. We also implemented a prototype system 

to evaluate the proposed approach. This system recom-

mends for each element in a source XML schema a set of 

mapping candidates in a target schema based on the se-

mantic similarity measures between the elements in these 

two schemas. The proposed approach and the prototype 

system have the potential to provide valuable assistance to 

the human integrators for the problem of XML schema 

mapping, merging and reuse. 

A series of experiments were conducted with encourag-

ing results. The system found a match to the human ex-

perts’ mapping in 31 of 49 cases in a real world applica-

tion. The experiments also revealed that the problem is 

much more complicated than we initially thought. One 

observation is that the similarity scores vary greatly 

among the manual mappings (ranging from 0 to 1). This 

calls for further examination of similarity measures and 

the way they are combined and for exploring more elabo-

rated mapping procedures. The following immediate steps 

are planned for future research. 

 

1) Automatically determine the combination weights. 

Some machine learning techniques are under consid-

eration, including regression and neural networks. 

2) Increase the use of structural information. Our ex-

periments show that labels at higher levels are more 

important than at lower ones. There is also evidence 

that the atom layer becomes more important when an 

element’s structure is shallow. How to better incorpo-

rate the structural information into the semantic 

analysis will be investigated. In addition to the struc-

tural information, utilization of other features of the 

XML schema, such as cardinality and data type, will 

also be investigated. 



3) Explore an iterative mapping procedure. The hy-

pothesis is that the similarity measures for complex, 

difficult, or ambiguous elements will become more 

accurate when more mappings for other easier ele-

ments are established with each iteration. For exam-

ple, atoms defined in the T&HE schema (not in the 

OAG schema) are currently considered to have zero 

similarity with any atoms in the AIAG schema. This 

will be rectified if we map them first, and atom-level 

similarity for other elements in the subsequent itera-

tions will be improved. 

 

Without proper tools, a harmonized international li-

brary of integration specifications such as that envisioned 

by the UN/CEFACT TBG17 [18] is far-fetched. The 

number of data elements to harmonize can grow to hun-

dreds of thousands, taking years, if possible at all, to yield 

usable integration results. The work discussed in this pa-

per shows promise to assist experts in accomplishing inte-

gration tasks more efficiently. 
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