
Correcting Routing Failures using
Declarative Policies and Argumentation

Palanivel Kodeswaran*, Anupam Joshi*, Tim Finin* and Filip Perich†

*Computer Science and Electrical Engineering
University of Maryland, Baltimore County

Baltimore MD 21250

†Shared Spectrum Company

Vienna VA

Many Internet failures are caused by misconfigurations of the BGP routers that manage rout-
ing of traffic between domains. The problems are usually due to a combination of human er-
rors and the lack of a high-level language for specifying routing policies that can be used to
generate router configurations. We describe an implemented approach that uses a declarative
language for specifying network-wide routing policies to automatically configure routers and
show how it can also be used by software agents to diagnose and correct some networking
problems. The language is grounded in an ontology defined in OWL and polices expressed in
it are automatically compiled into low-level router configurations. A distributed collection of
software agents use the high-level policies and a custom argumentation protocol to share and
reason over information about routing failures, diagnose probable causes, and correct them by
reconfiguring routers and/or recommending actions to human operators. We have evaluated
the framework in both a simulator and on a small physical network. Our results show that the
framework performs well in identifying failure causes and automatically correcting them by
reconfiguring routers when permitted by the policies.

Our declarative language exploits the advantages of ontology based languages in that they
naturally support evolution and can be used to model newer policies as they become relevant
to the organization. Furthermore, the logical basis of the language automatically enables rea-
soning and conflict resolution among policies. The developed ontology models concepts such
as neighbors, autonomous system, network prefix etc. We also model the different types of
policies viz. permissive, obligatory and prohibitive. In this work, we focus on import/export
filters and these policies typically influence whether route updates are accepted, shared or de-
nied. Using concepts defined in our ontology, we can write policies that specify which routes
are accepted from neighbors based on the relationship with the neighbor. The relationship
itself could be based on a variety factors such as economical, political etc. Our framework also
supports prioritization of policies that becomes useful in the context of resolving conflicts
among multiple policies.

Building on the reasoning capability of our declarative policies, we propose architecture for
the diagnosis and recovery of routing failures. In our architecture, router agents use the high
level policies to collaboratively reason with neighbors to diagnose routing failures and recover
from them by reconfiguring routers. Under cases where reconfiguration is not permitted by
policy, our framework recommends appropriate actions to the human operator. Agent com-
munication in our framework is achieved through an out of band communication channel
such as an Overlay network.

Our developed argumentation protocol is based on the FATIO argumentation protocol. Our
protocol consists of the following six messages that are used by router agents to argue with
their neighbors for diagnosing and correcting import/export filter misconfigurations. Ask is
used by the initiating agent to query its neighbor. In our use case, the Ask query is whether the
neighbor has a route to a destination prefix. The recipient of Ask responds with either a Con-
firm or Deny depending on whether the query in the Ask message evaluates to true or false. In
our use case, this corresponds to whether the neighbor has a route to the destination prefix or
not. On receiving a Confirm or Deny, the initiating agent can challenge the neighbor’s response
with a Challenge message if it does not agree with the neighbor. Following this, the neighbor
responds with a Justify message containing a proof tree of the neighbor’s evaluation of the Ask
query. If the initiating agent does not agree with the neighbor’s query evaluation, it responds
with an Assert message. This message contains assertions that the initiating agent believes in
that invalidate the neighbor’s evaluation. Such situations arise for example when the neighbor
is following an older version of a policy or when one policy replaces another. The neighbor
now evaluates the assertions and if they are acceptable, reconfigures the router according to
the new policy and responds with a Confirm message. This ends a round of argumentation. We
would like note that our protocol does not necessitate complete information disclosure for
operation. The pieces of information that are exchanged in the argumentation as well as the
set of allowable local reconfigurations can be dictated by the operator.

We have evaluated our framework in both a simulator and on a small physical network. Our
results show that the framework performs well in diagnosing routing failures and automatically
correcting them by reconfiguring routers where so permitted by operator policy.

